Ultrasonic Solvent Extraction Followed by Dispersive Solid Phase Extraction (d-SPE) Cleanup for the Simultaneous Determination of Five Anthraquinones in Polygonum multiflorum by UHPLC-PDA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Chromatographic Conditions
2.3. Water Content Determination
2.4. Sample Preparation
3. Results and Discussion
3.1. Optimization of Chromatographic Conditions
3.2. Optimization of the Ultrasonic Extraction Conditions
3.3. Optimization of the Adsorption Conditions
3.4. Optimization of the Desorption Conditions
3.5. Method Validation
3.6. Sample Determination
3.7. Comparison with Other Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teka, T.; Wang, L.; Gao, J.; Mou, J.; Pan, G.; Yu, H.; Gao, X.; Han, L. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. J. Ethnopharmacol. 2021, 271, 113864. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-S.; Hxiao, H.-J. Rapid and sensitive authentication of Polygonum multiflorum (He-Shou-Wu) of Chinese medicinal crop using specific isothermal nucleic acid amplification. Ind. Crop. Prod. 2019, 129, 281–289. [Google Scholar] [CrossRef]
- Tang, W.; Li, S.; Liu, Y.; Huang, M.-T.; Ho, C.-T. Anti-inflammatory effects of trans -2,3,5,4′-tetrahydroxystilbene 2- O-β -glucopyranoside (THSG) from Polygonum multiflorum (PM) and hypoglycemic effect of cis -THSG enriched PM extract. J. Funct. Foods 2017, 34, 1–6. [Google Scholar] [CrossRef]
- Shin, J.Y.; Choi, Y.-H.; Kim, J.; Park, S.Y.; Nam, Y.J.; Lee, S.Y.; Jeon, J.H.; Jin, M.H.; Lee, S. Polygonum multiflorum extract support hair growth by elongating anagen phase and abrogating the effect of androgen in cultured human dermal papilla cells. BMC Complement. Med. Ther. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Zhu, W.; Xue, X.; Zhang, Z. Ultrasonic-assisted extraction, structure and antitumor activity of polysaccharide from Polygonum multiflorum. Int. J. Biol. Macromol. 2016, 91, 132–142. [Google Scholar] [CrossRef]
- Sun, H.; Luo, G.; Chen, D.; Xiang, Z. A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein, an Active Anthraquinone Ingredient. Front. Pharmacol. 2016, 7, 247. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yang, Q.; Xie, Y.; Sun, J.; Hu, J.; Qiu, P.; Cao, W.; Wang, S. Tetrahydroxystilbene glucoside extends mouse life span via upregulating neural klotho and downregulating neural insulin or insulin-like growth factor 1. Neurobiol. Aging 2015, 36, 1462–1470. [Google Scholar] [CrossRef]
- Yang, J.-B.; Liu, Y.; Wang, Q.; Ma, S.-C.; Wang, A.-G.; Cheng, X.-L.; Wei, F. Characterization and identification of the chemical constituents of Polygonum multiflorum Thunb. by high-performance liquid chromatography coupled with ultraviolet detection and linear ion trap FT-ICR hybrid mass spectrometry. J. Pharm. Biomed. Anal. 2019, 172, 149–166. [Google Scholar] [CrossRef]
- Lv, L.; Gu, X.; Tang, J.; Ho, C.-T. Antioxidant activity of stilbene glycoside from Polygonum multiflorum Thunb in vivo. Food Chem. 2007, 104, 1678–1681. [Google Scholar] [CrossRef]
- Lin, L.; Ni, B.; Lin, H.; Zhang, M.; Li, X.; Yin, X.; Qu, C.; Ni, J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review. J. Ethnopharmacol. 2015, 159, 158–183. [Google Scholar] [CrossRef]
- Ruan, L.-Y.; Li, M.-H.; Xing, Y.-X.; Hong, W.; Chen, C.; Chen, J.-F.; Xu, H.; Zhao, W.-L.; Wang, J.-S. Hepatotoxicity and hepatoprotection of Polygonum multiflorum Thund. as two sides of the same biological coin. J. Ethnopharmacol. 2019, 230, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-B.; Li, W.-F.; Liu, Y.; Wang, Q.; Cheng, X.-L.; Wei, F.; Wang, A.-G.; Jin, H.-T.; Ma, S.-C. Acute toxicity screening of different extractions, components and constituents of Polygonum multiflorum Thunb. on zebrafish (Danio rerio) embryos in vivo. Biomed. Pharmacother. 2018, 99, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, X.; Huang, Q.; Fang, D.; Li, G.; Zhang, G. Toxicity of raw and processed roots of Polygonum multiflorum. Fitoterapia 2012, 83, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Ge, L.; Wang, D.; Cai, X.; Huang, L.; Hao, C. Experimental and theoretical studies on the photoinduced acute toxicity of a series of anthraquinone derivatives towards the water flea (Daphnia magna). Dye. Pigment. 2009, 83, 276–280. [Google Scholar] [CrossRef]
- Panigrahi, G.K.; Verma, N.; Singh, N.; Asthana, S.; Gupta, S.K.; Tripathi, A.; Das, M. Interaction of anthraquinones of Cassia occidentalis seeds with DNA and Glutathione. Toxicol. Rep. 2018, 5, 164–172. [Google Scholar] [CrossRef]
- Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharm. Biomed. Anal. 2012, 62, 162–166. [Google Scholar] [CrossRef]
- Zhao, Y.; Kao, C.-P.; Chang, Y.-S.; Ho, Y.-L. Quality assessment on Polygoni Multiflori Caulis using HPLC/UV/MS combined with principle component analysis. Chem. Central J. 2013, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Yi, T.; Leung, K.S.-Y.; Lu, G.-H.; Zhang, H.; Chan, K. Identification and determination of the major constituents in traditional Chinese medicinal plant Polygonum multiflorum thunb by HPLC coupled with PAD and ESI/MS. Phytochem. Anal. 2007, 18, 181–187. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.; Xu, L.; Ma, J.; Li, J.; Ma, R.; Sun, K.; Wang, Z.; Zhang, H. Ionic liquid-based salt-induced liquid-liquid extraction of polyphenols and anthraquinones in Polygonum cuspidatum. J. Pharm. Biomed. Anal. 2019, 163, 95–104. [Google Scholar] [CrossRef]
- Chen, C.; Fu, Z.; Zhou, W.; Chen, Q.; Wang, C.; Xu, L.; Wang, Z.; Zhang, H. Ionic liquid-immobilized NaY zeolite-based matrix solid phase dispersion for the extraction of active constituents in Rheum palmatum L. Microchem. J. 2020, 152, 104245. [Google Scholar] [CrossRef]
- Hu, S.-S.; Cao, W.; Dai, H.-B.; Da, J.-H.; Ye, L.-H.; Cao, J.; Li, X.-Y. Ionic-Liquid-Micelle-Functionalized Mesoporous Fe3O4 Microspheres for Ultraperformance Liquid Chromatography Determination of Anthraquinones in Dietary Supplements. J. Agric. Food Chem. 2014, 62, 8822–8829. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, G.; Engelhardt, H.; Liu, H.; Zhao, J. Separation by capillary zone electrophoresis of the active anthraquinone components of the Chinese herb Polygonum multiflorum Thunb. Chromatographia 2000, 53, 185–189. [Google Scholar] [CrossRef]
- Wang, N.; Wu, Y.; Wu, X.; Liang, S.; Sun, H. A novel nonaqueous capillary electrophoresis method for effective separation and simultaneous determination of aurantio-obtusin, emodin and rhein in semen cassiae and cassia seed tea. Anal. Methods 2014, 6, 5133–5139. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, C.; Lin, Y.; Guo, J.; Deng, Y. Simultaneous determination of anthraquinones in radix Polygoni multiflori by capillary gas chromatography coupled with flame ionization and mass spectrometric detection. J. Chromatogr. A 2008, 1200, 43–48. [Google Scholar] [CrossRef]
- Xi, N.; Liu, H.; Xu, S.; Yan, X. Qualitative and quantitative analyses of aloe-emodin, rhein, and emodin in qi yin granules by high-performance thin-layer chromatography. J. Planar Chromatogr. Mod. TLC 2020, 33, 579–585. [Google Scholar] [CrossRef]
- Wang, N.; Duan, C.; Li, S.; Geng, X.; Ding, K.; Guan, Y. Aqueous extraction followed by dispersive solid phase extraction with in situ derivatization for the determination of aflatoxins in traditional Chinese medicines. J. Chromatogr. A 2020, 1618, 460894. [Google Scholar] [CrossRef]
- Taghvimi, A.; Dastmalchi, S.; Javadzadeh, Y. Extraction of Cyproheptadine as Potent Appetizing Stimulant in Herbal Supplements by Efficient Carbon Nitride Nanosheets as Dispersive Solid Phase Extraction Adsorbent. Pharm. Sci. 2020, 26, 434–440. [Google Scholar] [CrossRef]
- Gao, G.; Chen, H.; Dai, J.; Jin, L.; Chai, Y.; Zhu, L.; Liu, X.; Lu, C. Determination of polychlorinated biphenyls in tea using gas chromatography–tandem mass spectrometry combined with dispersive solid phase extraction. Food Chem. 2020, 316, 126290. [Google Scholar] [CrossRef]
Time (min) | A (%) | B (%) |
---|---|---|
0 | 55 | 45 |
1 | 55 | 45 |
10 | 30 | 70 |
13 | 10 | 90 |
13.1 | 55 | 45 |
15 | 55 | 45 |
Extration Method | Emodin (mg/kg) | Physcion (mg/kg) |
---|---|---|
Soxhlet extraction | 625.30 ± 2.36 | 160.09 ± 3.71 |
Ultrasonic extraction | 616.35 ± 3.24 | 158.96 ± 1.58 |
Compounds | Linear Range (mg/L) | Linear Equations | Correlation Coefficients (r) | LODs (mg/L) | LOQs (mg/L) | Intra-Day Precision (RSD, %, n = 5) | Inter-Day Precision (RSD, %, n = 5) |
---|---|---|---|---|---|---|---|
Emodin | 0.3–100 | y = 63161.74x − 10223.95 | 0.9982 | 0.07 | 0.23 | 1.5 | 3.0 |
Physcion | 0.3–40 | y = 40140.68x + 703.33 | 0.9992 | 0.08 | 0.28 | 1.0 | 3.0 |
Aloe-emodin | 0.1–20 | y = 74506.30x − 1424.71 | 0.9999 | 0.02 | 0.07 | 1.6 | 3.0 |
Rhein | 0.05–20 | y = 52340.46x + 601.59 | 0.9998 | 0.01 | 0.04 | 1.8 | 3.1 |
Chrysophanol | 0.05–20 | y = 82185.20x − 3521.00 | 0.9995 | 0.02 | 0.05 | 1.5 | 3.0 |
Sample | Compounds | Original (mg/kg) | Added (mg/kg) | Measured (mg/L) | Found (mg/kg) | Average Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|---|
Polygonum multiflorum | Emodin | 454.22 | 170 250 340 | 76.68 84.66 93.98 | 644.11 711.14 789.43 | 111.7 102.8 98.6 | 4.6 1.8 6.7 |
Physcion | 113.41 | 40 85 125 | 19.14 25.12 28.07 | 160.78 211.01 235.79 | 118.4 114.9 97.9 | 6.2 1.1 1.0 | |
Aloe-emodin | ND | 1.70 8.50 85.0 | 0.22 1.02 10.49 | 1.86 8.53 88.16 | 109.5 100.4 103.7 | 10.3 2.3 5.1 | |
Rhein | ND | 1.70 8.50 85.0 | 0.21 1.03 9.71 | 1.80 8.68 81.56 | 105.8 102.1 96.0 | 2.2 1.9 4.4 | |
Chrysophanol | ND | 1.70 8.50 85.0 | 0.23 0.84 9.44 | 1.94 7.04 79.30 | 114.1 82.8 93.3 | 9.3 1.8 5.0 |
Sample | Origin | Water Content (%) | Content mg/kg (n = 3) | ||||
---|---|---|---|---|---|---|---|
Emodin | Physcion | Aloe-Emodin | Rhein | Chrysophanol | |||
1 | Sichuan | 9.3 | 605.8 ± 1.5 | 312.1 ± 2.3 | ND | ND | ND |
2 | Sichuan | 7.8 | 641.9 ± 2.5 | 248.7 ± 0.3 | 12.9 ± 0.1 | ND | ND |
3 | Sichuan | 4.8 | 436.4 ± 1.2 | 238.5 ± 0.8 | ND | ND | ND |
4 | Yunnan | 8.4 | 867.4 ± 3.6 | 315.9 ± 0.8 | 6.0 ± 0.1 | ND | ND |
5 | Yunnan | 6.5 | 1100.4 ± 11.9 * | 256.6 ± 3.8 | 1.9 ± 0.4 | 22.6 ± 0.3 | ND |
6 | Yunnan | 3.8 | 349.8 ± 3.9 | 347.7 ± 0.5 | 18.3 ± 0.3 | ND | ND |
7 | Guizhou | 4.7 | 55.5 ± 0.2 | 42.4 ± 0.4 | ND | ND | ND |
8 | Guizhou | 4.6 | 170.0 ± 1.3 | 188.4 ± 1.5 | ND | 12.0 ± 0.2 | ND |
9 | Hubei | 8.3 | 591.5 ± 4.3 | 300.4 ± 1.6 | ND | ND | ND |
10 | Hubei | 8.6 | 685.8 ± 4.7 | 306.1 ± 1.0 | ND | 7.6 ± 0.1 | ND |
11 | Anhui | 8.6 | 564.7 ± 6.1 | 205.7 ± 1.7 | 1.4 ± 0.1 | ND | ND |
12 | Shanxi | 9.1 | 186.0 ± 1.4 | 103.9 ± 0.5 | ND | ND | ND |
13 | Guangxi | 9.5 | 835.7 ± 5.0 | 348.3 ± 3.0 | ND | 3.7 ± 0.2 | ND |
14 | Guangxi | 7.5 | 403.6 ± 3.0 | 202.3 ± 0.5 | ND | ND | 16.8 ± 0.1 |
15 | Jiangsu | 6.0 | 159.1 ± 0.2 | 55.4 ± 0.1 | ND | 1.3 ± 0.1 | 85.4 ± 0.5 |
16 | Guangdong | 5.2 | 337.1 ± 2.4 | 143.3 ± 0.9 | ND | ND | ND |
17 | Jiangxi | 7.9 | 85.3 ± 1.3 | 56.0 ± 0.4 | ND | ND | ND |
18 | Shandong | 7.7 | 448.8 ± 1.5 | 189.3 ± 2.2 | ND | 3.4 ± 0.2 | ND |
19 | Chongqing | 5.2 | 417.0 ± 4.3 | 143.2 ± 0.9 | ND | ND | ND |
20 | Henan | 4.9 | 556.0 ± 7.1 | 163.0 ± 2.7 | ND | ND | ND |
Sample | Analytical Method | Extraction Technology | Purification Method | Species | LODs (mg/L) | Ref |
---|---|---|---|---|---|---|
Polygonum multiflorum | HPLC-MS | Ultrasonic extraction | / | Emodin, Physcion | 0.00063~0.00082 | [16] |
Polygonum multiflorum | LC-MS/MS | Ultrasonic extraction | / | Emodin, Physcion | 0.0007~0.008 | [17] |
Polygoni Multiflori Caulis | HPLC-UV | Ultrasonic extraction | / | Emodin, Physcion | 0.04~0.06 | [18] |
Polygonum multiflorum | UHPLC-PDA | Ultrasonic extraction | Dispersive solid phase extraction | Aloe-emodin, Rhein, Emodin, Chrysophanol, Physcion | 0.01~0.08 | Our work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Yu, X.; Gui, J.; Wan, Y.; Chen, J.; Tan, T.; Liu, F.; Guo, L. Ultrasonic Solvent Extraction Followed by Dispersive Solid Phase Extraction (d-SPE) Cleanup for the Simultaneous Determination of Five Anthraquinones in Polygonum multiflorum by UHPLC-PDA. Foods 2022, 11, 386. https://doi.org/10.3390/foods11030386
Xu Y, Yu X, Gui J, Wan Y, Chen J, Tan T, Liu F, Guo L. Ultrasonic Solvent Extraction Followed by Dispersive Solid Phase Extraction (d-SPE) Cleanup for the Simultaneous Determination of Five Anthraquinones in Polygonum multiflorum by UHPLC-PDA. Foods. 2022; 11(3):386. https://doi.org/10.3390/foods11030386
Chicago/Turabian StyleXu, Ying, Xuan Yu, Jiaqi Gui, Yiqun Wan, Jinping Chen, Ting Tan, Fan Liu, and Lan Guo. 2022. "Ultrasonic Solvent Extraction Followed by Dispersive Solid Phase Extraction (d-SPE) Cleanup for the Simultaneous Determination of Five Anthraquinones in Polygonum multiflorum by UHPLC-PDA" Foods 11, no. 3: 386. https://doi.org/10.3390/foods11030386
APA StyleXu, Y., Yu, X., Gui, J., Wan, Y., Chen, J., Tan, T., Liu, F., & Guo, L. (2022). Ultrasonic Solvent Extraction Followed by Dispersive Solid Phase Extraction (d-SPE) Cleanup for the Simultaneous Determination of Five Anthraquinones in Polygonum multiflorum by UHPLC-PDA. Foods, 11(3), 386. https://doi.org/10.3390/foods11030386