Effect of Fortification with Mushroom Polysaccharide β-Glucan on the Quality of Ovine Soft Spreadable Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Beta Glucan
2.2. Cheese-Making Procedure
2.3. Physicochemical Characteristics
2.4. Sensory Properties
2.5. Proteolysis
2.6. Lipolysis
2.7. Color and Viscosity Measurements
2.8. Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics
3.2. Color and Viscosity Measurements
3.3. Sensory Evaluation
3.4. Proteolysis
3.5. Lipolysis
3.6. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Domínguez-Díaz, L.D.; Fernández-Ruiz, V.; Cámara, M. An international regulatory review of food health-related claims in functional food products labeling. J. Funct. Foods 2020, 68, 103896. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, P.J. Relationships between solution properties of cereal b-glucans and physiological effects—A review. Trends Food Sci. Technol. 2004, 13, 313–320. [Google Scholar] [CrossRef]
- Wolever, T.M.S.; Tosh, S.M.; Gibbs, A.L.; Brand-Miller, J.; Duncan, A.M.; Hart, V.; Lamarche, B.; Thomson, B.A.; Duss, R.; Wood, P.J. Physicochemical properties of oat b-glucan influence its ability to reduce serum LDL cholesterol in humans: A randomized clinical trial. Am. J. Clin. Nutr. 2010, 92, 723–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, E.D.M.; Calder, P.C.; Roche, H.M. β-1,3/1,6-Glucans and immunity: State of art and future directions. Mol. Nutr. Food Res. 2021, 65, 1901071. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.I.; Doosh, K.S. Study the effect of feeding on free fat yogurt manufactured by adding beta-glucan of barley in some health and physiological indicators of white mice. Ann. Rom. Soc. Cell Biol. 2021, 25, 4013–4022. [Google Scholar]
- Food and Drug Administration (FDA). Food Labelling: Health Claims; Oat and Coronary Heart Disease; Final Rule Federal Register Doc. 97-1598, Filed 1-22-1997. 2005. Available online: https://www.federalregister.gov/documents/1997/01/23/97-1598/food-labeling-health-claims-oats-and-coronary-heart-disease (accessed on 24 November 2021).
- Chiozzi, V.; Eliopoulos, C.; Markou, C.; Arapoglou, D.; Argiopoulou, S.; El Enshasy, H.A.; Varzakas, T. Biotechnological addition of β-glucans from cereals, mushrooms and yeasts in foods and animal feed. Processes 2021, 9, 1889. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Shadnoush, M.; Mortazavian, A.M. An overview of β-glucan functionality in dairy products. Curr. Nutr. Food Sci. 2017, 13, 280–292. [Google Scholar] [CrossRef]
- Chang, S.T.; Wasser, S.P. The Role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int. J. Med. Mushrooms 2012, 14, 95–134. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Rop, O.; Mlcek, J.; Jurikova, T. Beta–glucans in higher fungi and their health effects. Nut. Rev. 2009, 67, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Hozova, B.; Kuniak, L.; Kelemova, B. Application of b-glucans isolated from mushrooms Pleurotusostreatus (pleuran) and Lentinulaedodes (lentinan) for increasing the bioactivity of yoghurts. Czech J. Food Sci. 2004, 22, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Pappa, E.C.; Kondyli, E.; MacNaughtan, W.; Kakouri, A.; Nesseris, K.; Israelides, C. Quality and sensory properties of reduced fat yoghurt made with addition of b-glucans. Food Sci. Nutr. 2018, 9, 390–402. [Google Scholar] [CrossRef] [Green Version]
- Kondyli, E.; Pappa, E.C.; Kremmyda, A.; Arapoglou, D.; Metafa, M.; Eliopoulos, C.; Israilides, C. Manufacture of reduced fat white-brined cheese with the addition of β-glucans biobased polysaccharides as textural properties improvements. Polymers 2020, 12, 2647. [Google Scholar] [CrossRef]
- Schulz-Collins, D.; Senge, B. Acid- and Acid/Rennet-Curd Cheeses. Part A: Quark, Cream Cheese and Related Varieties. In Cheese. Chemistry, Physics and Microbiology, 3rd ed.; Major Cheese Groups; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Academic Press: Amsterdam, The Netherlands, 2004; Volume 2, pp. 302–328. [Google Scholar]
- Wang, J.; Zhang, L. Structure and chain conformation of five water-soluble derivatives of a β-d-glucan isolated from Ganoderma lucidum. Carboh. Res. 2009, 344, 105–112. [Google Scholar] [CrossRef] [PubMed]
- IDF Standard 4A; Cheese and Processed Cheese. Determination of the Total Solids Content. International Dairy Federation: Brussels, Belgium, 1982.
- British Standard, No. 696; Gerber Method for the Determination of Fat in Milk and Milk Products. BSI: London, UK, 1955.
- Kosikowski, F.V. Cheese and Fermented Milk Food; Edwards Brothers: Ann Arbor, MI, USA, 1982. [Google Scholar]
- IDF Standard 27; Determination of Ash in Cheese and Processed Cheese. International Dairy Federation: Brussels, Belgium, 1964.
- AOAC. Official Methods of Analysis, 14th ed.; Williams, S., Ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1984. [Google Scholar]
- IDF Standard 99A; Sensory Evaluation of Dairy Products. International Dairy Federation: Brussels, Belgium, 1987.
- IDF Standard 20B; Milk. Determination of Nitrogen Content. International Dairy Federation: Brussels, Belgium, 1993.
- Kuchroo, C.N.; Fox, P.F. Soluble nitrogen in Cheddar cheese. Comparison of the extraction procedures. Milchwissenschaft 1982, 37, 331–335. [Google Scholar]
- Stadhouders, J. The hydrolysis of proteins during the ripening of Dutch cheese. The enzymes and the bacteria involved. Neth. Milk Dairy J. 1960, 2, 67–76. [Google Scholar]
- De Jong, C.; Badings, H.T. Determination of free fatty acids in milk and cheese: Procedures for extraction, clean up and capillary gas chromatographic analysis. J. High Res. Chromatogr. 1990, 13, 94–98. [Google Scholar] [CrossRef]
- Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R.B. Antioxidant activity of Cheddar cheeses at different stages of ripening. Int. J. Dairy Technol. 2009, 62, 339–347. [Google Scholar] [CrossRef]
- Meira, S.M.M.; Daroit, D.J.; Helfer, V.E.; Correa, A.P.F.; Segalin, J.; Carro, S.; Brandelli, A. Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Res. Int. 2012, 48, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics with Special Reference to the Biological Science; McGraw-Hill: New York, NY, USA, 1960. [Google Scholar]
- Danezis, G.; Tsiplakou, E.; Pappa, E.C.; Pappas, A.C.; Mavrommatis, A.; Sotirakoglou, K.; Georgiou, C.A.; Zervas, G. Fatty acid profile and physicochemical properties of Greek protected designation of origin cheeses, implications for authentication. Eur. Food Res. Technol. 2020, 246, 1741–1753. [Google Scholar] [CrossRef]
- Zoidou, E.; Karageorgos, D.; Massouras, T.; Anifantakis, E. The Effect of probiotic lactic acid bacteria on the characteristics of Galotyricheese. Int. J. Clin. Nutr. Diet. 2016, 2, 114. [Google Scholar] [CrossRef] [Green Version]
- Katsiari, M.C.; Kondyli, E.; Voutsinas, L.P. The quality of Galotyri-type cheese made with different starter cultures. Food Control 2009, 20, 113–118. [Google Scholar] [CrossRef]
- Kondyli, E.; Katsiari, M.C.; Voutsinas, L.P. Chemical and sensory characteristics of Galotyri-type cheese made using different procedures. Food Control 2008, 19, 301–307. [Google Scholar] [CrossRef]
- Elsanhoty, R.; Zaghlol, A.; Hassanein, A.H. The manufacture of low fat Labneh containing barley b-glucan. 1-Chemical composition, microbiological evaluation and sensory properties. Curr. Res. Dairy Sci. 2009, 1, 1–12. [Google Scholar] [CrossRef]
- Anifantakis, E.M. Greek Cheeses. A Tradition of Centuries; National Dairy Committee: Athens, Greece, 1998; pp. 55–57. (In Greek) [Google Scholar]
- Lekkas, C.; Kakouri, A.; Paleologos, E.; Voutsinas, L.P.; Kontominas, M.; Samelis, J. Survival of Escherichia coli O157:H7 in Galoryti cheese stored at 4 and 12 °C. Food Microbiol. 2006, 23, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Koca, N.; Metin, M. Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. Int. Dairy J. 2004, 14, 365–373. [Google Scholar] [CrossRef]
- Krog, N. Additives in Dairy Foods: Emulsifiers A2. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 61–71. [Google Scholar]
- Volikakis, P.; Biliaderis, C.G.; Vamvakas, C.; Zerfiridis, G.K. Effects of a commercial oat-β-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese product. Food Res. Intern. 2004, 37, 83–94. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. Texture and lubrication properties of functional cream cheese: Effect of β-glucan and phytosterol. J. Texture Stud. 2018, 49, 11–22. [Google Scholar] [CrossRef]
- Singh, M.; Kim, S.; Liu, S.X. Effect of purified oat β-glucan on fermentation of set-style yoghurt mix. J. Food Sci. 2012, 77, 195–201. [Google Scholar] [CrossRef]
- Velez-Ruiz, J.F.; Barbosa Canovas, G.C. Rheological properties of selected dairy products. Curr. Nutr. Food Sci. 1997, 37, 311–359. [Google Scholar] [CrossRef] [PubMed]
- Jelen, P.; Renz-Schauen, A. Quarg manufacturing innovations and their effects on quality, nutritive value, and consumer acceptance. Food Technol. 1989, 43, 74–81. [Google Scholar]
- Mejri, W.; Bornaz, S.; Sahli, A. Formulation of non-fat yoghurt with β-glucan from spent brewer’s yeast. J. Hyg. Eng. Design. 2014, 8, 163–173. [Google Scholar]
- Sahan, N.; Yasar, K.; Hayaloglou, A.A.; Karaca, O.B.; Kaya, A. Influence of fat replacers on chemical composition, proteolysis, texture profiles, meltability and sensory properties of low-fat Kashar cheese. J. Dairy Res. 2008, 75, 1–7. [Google Scholar] [CrossRef]
- Konuklar, G.; Inglett, G.E.; Felker, F.C.; Carrieie, C.J. Use of β-glucan hydrocolloidal suspension in the manufacture of low-fat Cheddar cheese: Textural properties by instrumental methods and sensory panels. Food Hydrocoll. 2004, 18, 535–545. [Google Scholar] [CrossRef]
- Christensen, T.M.I.E.; Betch, A.-M.; Werner, H. Chemical methods for evaluating proteolysis in cheese maturation. Bull. Int. Dairy Fed. 1991, 261, 1–9. [Google Scholar]
- Yvon, M.; Chabanet, C.; Pelissier, J.-P. Solubility of peptides in trichloroacetic acid (TCA) solutions. Int. J. Pept. Protein Res. 1989, 34, 166–176. [Google Scholar] [CrossRef]
- Jarret, W.D.; Aston, J.W.; Dulley, J.R. A simple method for estimating free amino acids in Cheddar cheese. Aust. J. Dairy Technol. 1982, 37, 55–58. [Google Scholar]
- Fox, P.F.; McSweeney, P.H.L. Proteolysis in cheese during ripening. Food Rev. Int. 1996, 12, 457–509. [Google Scholar] [CrossRef]
- Mara, O.; Kelly, A.I. Contribution of milk enzymes, starter and rennet to proteolysis during storage of Quarg. Int. Dairy J. 1998, 8, 973–979. [Google Scholar] [CrossRef]
- Fox, P.F.; Singh, T.K.; McSweeney, P.L.H. Biogenesis of Flavour Compounds in Cheese. In Chemistry of Structure-Function Relationships in Cheese; Malin, E.L., Tunick, M.H., Eds.; Plenum Publishing Corporation: New York, NY, USA, 1995; pp. 59–98. [Google Scholar]
- Guinee, T.P.; Pudja, P.D.; Farkye, N.Y. Fresh Acid Curd Cheese Varieties. In Cheese: Chemistry, Physics and Microbiology, 2nd ed.; Fox, P.F., Ed.; Chapman and Hall: London, UK, 1993; Volume 2, pp. 363–419. [Google Scholar]
- Fox, P.F.; Law, J.; McSweeney, P.L.H.; Wallace, J. Biochemistry of Cheese Ripening. In Cheese: Chemistry, Physics and Microbiology, 2nd ed.; Fox, P.F., Ed.; Chapman and Hall: London, UK, 1993; Volume 1, pp. 389–438. [Google Scholar]
- Kondyli, E.; Massouras, T.; Katsiari, M.C.; Voutsinas, L.P. Lipolysis and volatile compounds of Galotyri-type cheese made using different procedures. Small Rum. Res. 2013, 113, 432–436. [Google Scholar] [CrossRef]
- Grazyna, C.; Hanna, C.; Adam, A.; Magdalena, B.M. Natural antioxidants in milk and dairy products. Int. J. Dairy Technol. 2017, 70, 1–14. [Google Scholar] [CrossRef]
- Moschopoulou, E.; Sakkas, L.; Zoidou, E.; Theodorou, G.; Sgouridou, E.; Kalathaki, C.; Liarakou, A.; Chatzigeorgiou, A.; Politis, I.; Moatsou, G. Effect of milk kind and storage on the biochemical, textural and biofunctional characteristics of set-type yoghurt. Int. Dairy J. 2018, 77, 47–55. [Google Scholar] [CrossRef]
- Kariyawasam, K.M.G.M.M.; Jeewanthi, R.K.C.; Lee, N.-K.; Paik, H.-D. Characterization of cottage cheese using Weissellacibaria D30: Physicochemical, antioxidant, and antilisterial properties. J. Dairy Sci. 2019, 102, 3887–3893. [Google Scholar] [CrossRef] [PubMed]
- Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrovic, P.; Niksic, M.; Vrvic, M.M.; van Griensven, L. Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525. [Google Scholar] [CrossRef] [Green Version]
Storage Time (Days) | Cheese | pH | Moisture (%) | Moisture in Non-Fat Substance (%) | Fat (%) | Fat in Dry Matter (%) | Salt (%) | Salt-in-Moisture (%) | Acidity (% Lactic Acid) | Ash (%) | Proteins (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | CC | 4.34 ± 0.02 a | 72.60 ± 0.36 a | 82.50 ± 0.50 a | 12.00 ± 0.58 a | 43.76 ± 0.93 a | 1.41 ± 0.12 a | 1.94 ± 0.14 a | 1.46 ± 0.04 a | 2.26 ± 0.04 a | 10.45 ± 0.49 a |
GC | 4.37 ± 0.04 a | 74.49 ± 0.66 b | 83.32 ± 0.19 a | 10.60 ± 0.60 a | 41.49 ± 1.23 a | 1.44 ± 0.15 a | 1.94 ± 0.21 a | 1.37 ± 0.03 a | 2.33 ± 0.04 a | 9.12 ± 0.41 a | |
7 | CC | 4.39 ± 0.03 a | 72.22 ± 0.84 a | 81.79 ± 0.44 a | 11.70 ± 0.56 a | 42.07 ± 0.71 a | 1.50 ± 0.13 a | 2.08 ± 0.18 a | 1.46 ± 0.06 a | 2.30 ± 0.04 a | 10.14 ± 0.66 a |
GC | 4.38 ± 0.02 a | 74.40 ± 0.55 a | 82.70 ± 0.40 a | 10.03 ± 0.23 a | 39.19 ± 0.08 b | 1.48 ± 0.07 a | 1.99 ± 0.08 a | 1.46 ± 0.06 a | 2.30 ± 0.01 a | 8.60 ± 0.29 a | |
14 | CC | 4.33 ± 0.06 a | 72.14 ± 1.07 a | 81.97 ± 0.76 a | 12.00 ± 0.50 a | 43.06 ± 0.24 a | 1.45 ± 0.00 a | 2.01 ± 0.03 a | 1.46 ± 0.06 a | 2.32 ± 0.04 a | 9.60 ± 0.28 a |
GC | 4.32 ± 0.05 a | 74.34 ± 0.54 a | 82.75 ± 0.37 a | 10.17 ± 0.44 a | 39.60 ± 1.16 b | 1.39 ± 0.06 a | 1.87 ± 0.10 a | 1.38 ± 0.02 a | 2.25 ± 0.01 a | 8.81 ± 0.23 a | |
21 | CC | 4.45 ± 0.04 a | 72.16 ± 0.78 a | 81.54 ± 0.41 a | 11.50 ± 0.58 a | 41.27 ± 1.05 a | 1.55 ± 0.06 a | 2.14 ± 0.08 a | 1.44 ± 0.06 a | 2.32 ± 0.03 a | 9.54 ± 0.37 a |
GC | 4.41 ± 0.03 a | 75.26 ± 0.14 b | 85.14 ± 1.71 a | 10.30 ± 0.50 a | 43.97 ± 4.36 a | 1.71 ± 0.18 a | 2.24 ± 0.26 a | 1.41 ± 0.06 a | 2.22 ± 0.03 a | 8.50 ± 0.17 a |
Storage Time (Days) | Cheese | L* | a* | b* | Viscosity, cP (mPa*s) |
---|---|---|---|---|---|
2 | CC | 95.00 ± 0.45 a | −24.21 ± 0.97 a | 8.40 ± 0.21 a | 320,000 ± 32,000 a |
GC | 92.95 ± 1.05 a | −22.76 ± 1.03 a | 8.19 ± 0.53 a | 282,667 ± 14,111 a | |
7 | CC | 95.31 ± 0.32 a | −24.61 ± 0.36 a | 9.30 ± 0.24 a | 474,667 ± 28,221 a |
GC | 93.69 ± 0.53 a | −23.95 ± 0.90 a | 8.59 ± 0.37 a | 412,333 ± 57,713 a | |
14 | CC | 95.02 ± 0.40 a | −24.93 ± 0.76 a | 10.42 ± 0.23 a | 421,333 ± 5333 a |
GC | 94.51 ± 0.26 a | −24.16 ± 0.74 a | 9.89 ± 0.70 a | 400,000 ± 18,475 a | |
21 | CC | 93.22 ± 1.71 a | −22.92 ± 0.72 a | 10.23 ± 0.38 a | 405,333 ± 19,230 a |
GC | 92.99 ± 0.40 a | −24.49 ± 0.59 a | 10.92 ± 0.83 a | 320,000 ± 64,000 a |
Storage Time (Days) | Cheese | Appearance (10) | Texture (40) | Flavour (50) | Total (100) |
---|---|---|---|---|---|
2 | CC | 9.14 ± 0.14 a | 36.35 ± 0.35 a | 44.49 ± 0.32 a | 90.30 ± 0.80 a |
GC | 8.80 ± 0.10 a | 36.80 ± 0.07 a | 45.20 ± 0.47 a | 90.80 ± 0.61 a | |
7 | CC | 8.97 ± 0.07 a | 35.72 ± 0.62 a | 44.03 ± 0.97 a | 89.63 ± 0.63 a |
GC | 8.90 ± 0.10 a | 36.33 ± 0.20 a | 45.13 ± 0.35 a | 90.40 ± 0.21 a | |
14 | CC | 8.77 ± 0.09 a | 35.95 ± 0.55 a | 40.97 ± 1.74 a | 87.55 ± 0.50 a |
GC | 9.03 ± 0.09 a | 36.60 ± 0.17 a | 45.37 ± 0.37 b | 90.97 ± 0.41 a | |
21 | CC | 8.93 ± 0.15 a | 34.80 ± 0.40 a | 41.83 ± 0.88 a | 84.60 ± 1.00 a |
GC | 9.13 ± 0.13 a | 36.93 ± 0.48 a | 45.17 ± 1.01 b | 91.23 ± 1.59 a |
Storage Time (Days) | Cheese | TN (%) | WSN (%TN) | TCA (%TN) | PTA (%TN) |
---|---|---|---|---|---|
2 | CC | 1.64 ± 0.08 a | 5.31 ± 0.27 a | 5.27 ± 0.30 a | 2.98 ± 0.42 a |
GC | 1.43 ± 0.06 a | 6.09 ± 0.39 a | 5.76 ± 0.11 a | 2.59 ± 0.05 a | |
7 | CC | 1.59 ± 0.10 a | 5.53 ± 0.12 a | 4.98 ± 0.07 a | 2.48 ± 0.12 a |
GC | 1.35 ± 0.05 a | 6.96 ± 0.48 b | 5.24 ± 0.63 a | 2.61 ± 0.35 a | |
14 | CC | 1.50 ± 0.04 a | 10.12 ± 1.12 a | 4.99 ± 0.42 a | 2.90 ± 0.34 a |
GC | 1.38 ± 0.04 a | 10.42 ± 1.49 a | 4.91 ± 0.29 a | 2.47 ± 0.15 a | |
21 | CC | 1.49 ± 0.06 a | 11.68 ± 0.24 a | 5.29 ± 0.26 a | 3.02 ± 0.36 a |
GC | 1.34 ± 0.03 a | 12.20 ± 0.31 a | 5.75 ± 0.21 a | 2.98 ± 0.17 a |
FFA(μg/g) | 2nd Day of Storage | 7th Day of Storage | 14th Day of Storage | 21st Day of Storage | ||||
---|---|---|---|---|---|---|---|---|
CC | GC | CC | GC | CC | GC | CC | GC | |
Acetic acid-C2 | 94.53 ± 14.03 a | 161.52 ± 5.63 b | 95.44 ± 5.35 a | 159.07 ± 25.76 b | 116.42 ± 0.51 a | 158.01 ± 21.94 b | 129.20 ± 9.01 a | 167.21 ± 14.95 b |
Butyric acid-C4 | 16.61 ± 5.48 a | 11.8 ± 1.67 a | 19.3 ± 1.52 a | 12.9 ± 2.00 b | 18.5 ± 1.70 a | 15.37 ± 3.09 a | 19.5 ± 2.52 a | 18.4 ± 1.03 a |
Isobutyric acid-C4 ISO | 2.73 ± 0.12 a | 1.84 ± 0.11 b | 2.58 ± 0.33 a | 3.16 ± 0.51 a | 4.20 ± 1.69 a | 2.58 ± 0.37 a | 6.13 ± 2.41 a | 3.59 ± 0.66 a |
Isovaleric acid-C5 ISO | 3.09 ± 0.15 a | 2.70 ± 0.16 a | 3.59 ± 0.67 a | 3.54 ± 0.25 a | 5.31 ± 2.00 a | 3.60 ± 0.52 a | 5.59 ± 1.73 a | 6.80 ± 0.59 b |
Caproic acid-C6 | 5.81 ± 0.54 a | 5.93 ± 0.53 a | 6.37 ± 0.50 a | 6.10 ± 0.54 a | 6.08 ± 0.34 a | 6.80 ± 0.59 a | 7.07 ± 1.45 a | 5.65 ± 0.72 a |
Caprylic acid-C8 | 2.02 ± 0.65 a | 1.33 ± 0.28 a | 1.38 ± 0.09 a | 1.02 ± 0.02 b | 1.32 ± 0.30 a | 1.38 ± 0.28 a | 2.92 ± 1.18 a | 1.72 ± 0.03 a |
Capric acid-C10 | 4.03 ± 1.22 a | 3.78 ± 0.86 a | 3.85 ± 0.3 a | 4.35 ± 0.8 a | 5.42 ± 1.48 a | 4.85 ± 0.55 a | 4.23 ± 1.38 a | 7.28 ± 1.42 a |
Lauric acid-C12 | 47.85 ± 9.59 a | 42.45 ± 3.65 a | 53.55 ± 2.37 a | 48.33 ± 4.23 a | 53.75 ± 6.35 a | 44.88 ± 1.89 a | 51.22 ± 3.13 a | 48.45 ± 5.37 a |
Myristic acid-C14 | 11.02 ± 1.55 a | 10.62 ± 0.84 a | 10.33 ± 2.03 a | 11.97 ± 0.95 a | 12.83 ± 1.47 a | 13.65 ± 2.33 a | 12.07 ± 0.66 a | 18.72 ± 1.67 b |
Myristoleic Acid-C14:1 | 1.35 ± 0.65 a | 0.93 ± 0.13 a | 1.28 ± 0.13 a | 1.32 ± 0.25 a | 1.15 ± 0.22 a | 1.43 ± 0.15 a | 1.22 ± 0.06 a | 1.07 ± 0.19 a |
Palmitic acid-C16 | 50.52 ± 12.04 a | 42.77 ± 5.97 a | 56.1 ± 6.21 a | 49.82 ± 10.29 a | 53.88 ± 9.38 a | 50.1 ± 2.19 a | 57.52 ± 1.20 a | 61.3 ± 5.07 a |
Palmitoleic acid-C16:1 | 7.65 ± 1.88 a | 3.75 ± 0.40 a | 8.52 ± 0.61 a | 4.67 ± 0.89 a | 8.43 ± 0.23 a | 6.73 ± 0.83 a | 8.17 ± 1.55 a | 6.85 ± 1.98 a |
Stearic acid-C18 | 23.83 ± 3.08 a | 17.48 ± 1.67 a | 28.67 ± 2.11 a | 18.68 ± 0.78 a | 30.9 ± 3.0 a | 25.53 ± 6.18 a | 33.23 ± 1.28 a | 27.7 ± 3.16 a |
Oleic acid-C18:1 | 16.73 ± 0.73 a | 12.43 ± 2.33 a | 14.78 ± 3.23 a | 11.82 ± 0.59 b | 19.47 ± 0.98 a | 12.8 ± 1.67 a | 21.68 ± 0.83 a | 19.18 ± 5.78 a |
Linoleic acid-C18:2 | N.D. | N.D. | N.D. | N.D. | 3.32 ± 1.18 a | 1.62 ± 0.43 a | 2.8 ± 1.43 a | 1.75 ± 0.45 a |
TFFA | 287.77 ± 13.89 a | 319.33 ± 11.72 a | 305.74 ± 10.52 a | 386.75 ± 23.42 b | 340.98 ± 20.55 a | 349.52 ± 20.87 a | 362.55 ± 19.9 a | 395.67 ± 20.57 a |
Storage Time (Days) | Cheese | DPPH% RSA | %CA (Fe+2) | SOSA% |
---|---|---|---|---|
2 | CC | 54.85 ± 7.22 a | 64.63 ± 2.74 a | 69.42 ± 4.24 a |
GC | 54.90 ± 4.47 a | 65.06 ± 2.06 a | 73.01 ± 5.12 a | |
7 | CC | 55.44 ± 1.39 a | 63.13 ± 2.52 a | 77.68 ± 6.70 a |
GC | 51.47 ± 2.51 a | 61.37 ± 1.77 a | 70.98 ± 1.34 a | |
14 | CC | 54.07 ± 3.24 a | 71.36 ± 4.38 a | 77.23 ± 4.77 a |
GC | 52.65 ± 3.78 a | 68.38 ± 2.52 a | 79.76 ± 1.95 a | |
21 | CC | 57.40 ± 3.59 a | 70.47 ± 3.65 a | 81.25 ± 3.81 a |
GC | 57.03 ± 6.71 a | 71.30 ± 0.20 a | 87.80 ± 0.83 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondyli, E.; Pappa, E.C.; Arapoglou, D.; Metafa, M.; Eliopoulos, C.; Israilides, C. Effect of Fortification with Mushroom Polysaccharide β-Glucan on the Quality of Ovine Soft Spreadable Cheese. Foods 2022, 11, 417. https://doi.org/10.3390/foods11030417
Kondyli E, Pappa EC, Arapoglou D, Metafa M, Eliopoulos C, Israilides C. Effect of Fortification with Mushroom Polysaccharide β-Glucan on the Quality of Ovine Soft Spreadable Cheese. Foods. 2022; 11(3):417. https://doi.org/10.3390/foods11030417
Chicago/Turabian StyleKondyli, Efthymia, Eleni C. Pappa, Dimitris Arapoglou, Maria Metafa, Christos Eliopoulos, and Cleanthes Israilides. 2022. "Effect of Fortification with Mushroom Polysaccharide β-Glucan on the Quality of Ovine Soft Spreadable Cheese" Foods 11, no. 3: 417. https://doi.org/10.3390/foods11030417
APA StyleKondyli, E., Pappa, E. C., Arapoglou, D., Metafa, M., Eliopoulos, C., & Israilides, C. (2022). Effect of Fortification with Mushroom Polysaccharide β-Glucan on the Quality of Ovine Soft Spreadable Cheese. Foods, 11(3), 417. https://doi.org/10.3390/foods11030417