Use of Healthy Emulsion Hydrogels to Improve the Quality of Pork Burgers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Emulsion Hydrogels Preparation
2.2. Pork Burger Formulation and Processing
2.3. Physicochemical Analysis
2.3.1. Chemical Composition and Caloric Value
2.3.2. pH and Colour
2.3.3. Cooking Loss and Texture Profile Analysis
2.4. Determination of Fatty Acid Profiles and Health Indices
2.4.1. Fatty Acid Profiles of Burgers and Fat Sources
2.4.2. Health Indices of Burgers
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition and Physicochemical Analysis
3.2. Fatty Acid Profiles and Healthy Indices
3.2.1. Fatty Acids
3.2.2. Health Indices
3.3. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burlingame, B.; Nishida, C.; Uauy, R.; Weisell, R. Fats and fatty acids in human nutrition: Introduction. Ann. Nutr. Metab. 2009, 55, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Elzerman, J.E.; van Boekel, M.A.J.S.; Luning, P.A. Exploring meat substitutes: Consumer experiences and contextual factors. Br. Food J. 2013, 115, 700–710. [Google Scholar] [CrossRef]
- Afshari, R.; Hosseini, H.; Khaneghah, A.M.; Khaksar, R. Physico-chemical properties of functional low-fat beef burgers: Fatty acid pro fi le modi fi cation. LWT-Food Sci. Technol. 2017, 78, 325–331. [Google Scholar] [CrossRef]
- Mehta, N.; Ahlawat, S.S.; Sharma, D.P.; Dabur, R.S. Novel trends in development of dietary fiber rich meat products—A critical review. J. Food Sci. Technol. 2015, 52, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Barros, J.C.; Munekata, P.E.S.; De Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Selani, M.M.; Shirado, G.A.N.; Margiotta, G.; Saldana, E.; Spada, F.P.; Piedade, S.M.S.; Contreras-Castillo, C.J.; Caniatti-Brazaca, S.G. Effect of pineapple byproduct and canola oil as fat replacers on physicochem- ical and sensory quality of low-fat beef burger. Meat Sci. 2015, 112, 69–76. [Google Scholar] [CrossRef]
- Cittadini, A.; Munekata, P.E.S.; Pateiro, M.; Sarriés, M.V.; Domínguez, R.; Lorenzo, J.M. Physicochemical composition and nutritional properties of foal burgers enhanced with healthy oil emulsion hydrogels. Int. J. Food Sci. Technol. 2021, 56, 6182–6191. [Google Scholar] [CrossRef]
- Rios-Mera, J.D.; Saldaña, E.; Cruzado-Bravo, M.L.M.; Patinho, I.; Selani, M.M.; Valentin, D.; Contreras-Castillo, C.J. Reducing the sodium content without modifying the quality of beef burgers by adding micronized salt. Food Res. Int. 2019, 121, 288–295. [Google Scholar] [CrossRef]
- De Oliveira Fagundes, D.T.; Lorenzo, J.M.; dos Santos, B.; Fagundes, M.; Heck, R.; Cichoski, A.; Campagnol, P.C.B. Pork skin and canola oil as strategy to confer technological and nutritional advantages to burgers. Czech J. Food Sci. 2017, 35, 352–359. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Avocado, sunflower and olive oils as replacers of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and quality traits. Meat Sci. 2012, 90, 106–115. [Google Scholar] [CrossRef]
- Heck, R.T.; Saldaña, E.; Lorenzo, J.M.; Correa, L.P.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Wagner, R.; Campagnol, P.C.B. Hydrogelled emulsion from chia and linseed oils: A promising strategy to produce low-fat burgers with a healthier lipid profile. Meat Sci. 2019, 156, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Alejandre, M.; Passarini, D.; Astiasarán, I.; Ansorena, D. The effect of low-fat beef patties formulated with a low-energy fat analogue enriched in long-chain polyunsaturated fatty acids on lipid oxidation and sensory attributes. Meat Sci. 2017, 134, 7–13. [Google Scholar] [CrossRef] [PubMed]
- WHO; FAO. Diet, Nutrition, and the Prevention of Chronic Diseases (Report of a joint WHO and FAO Expert Consulation); WHO: Geneva, Switzerland, 2003; Volume 916, pp. 1–160. [Google Scholar]
- Domínguez, R.; Munekata, P.E.; Pateiro, M.; López-Fernández, O.; Lorenzo, J.M. Immobilization of oils using hydrogels as strategy to replace animal fats and improve the healthiness of meat products. Curr. Opin. Food Sci. 2021, 37, 135–144. [Google Scholar] [CrossRef]
- Henchion, M.; Moloney, A.P.; Hyland, J.; Zimmermann, J.; McCarthy, S. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 2021, 15, 100287. [Google Scholar] [CrossRef] [PubMed]
- WHO Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 28 September 2020).
- Lima da Silva, S.; Amaral, J.T.; Ribeiro, M.; Sebastião, E.E.; Vargas, C.; Franzen, F.D.L.; Schneider, G.; Lorenzo, J.M.; Martins, L.L.; Cichoski, A.J.; et al. Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Sci. 2018, 149, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Olmedilla-Alonso, B.; Jiménez-Colmenero, F.; Sánchez-Muniz, F.J. Development and assessment of healthy properties of meat and meat products designed as functional foods. Meat Sci. 2013, 95, 919–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, D.P. Consumer acceptability of novel protein products. Developments in food proteins. Dev. Food Proteins 1982, 1, 217–246. [Google Scholar]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Ramella, M.; Munekata, P.E.S.; Pateiro, M.; Franco, D.; Campagnol, P.C.B.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Physicochemical Composition and Nutritional Properties of Deer Burger Enhanced with Healthier Oils. Foods 2020, 9, 571. [Google Scholar] [CrossRef]
- Rabadan, A.; Alvarez-Orti, M.; Martínez, E.; Pardo-Giménes, A.; Zied, D.C.; Pardo, J.E. Effect of replacing traditional ingredients for oils and flours from nuts and seeds on the characteristics and consumer preferences of lamb meat burgers. LWT-Food Sci. Technol. 2021, 136, 110307. [Google Scholar] [CrossRef]
- Barros, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Domínguez, R.; Trindade, M.A.; Pateiro, M.; Lorenzo, J.M. Healthy beef burgers: Effect of animal fat replacement by algal and wheat germ oil emulsions. Meat Sci. 2021, 173, 108396. [Google Scholar] [CrossRef] [PubMed]
- Gök, V.; Akkaya, L.; Obuz, E.; Bulut, S. Effect of ground poppy seed as a fat replacer on meat burgers. Meat Sci. 2011, 89, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, I.; Daǧlioǧlu, O. The effect of replacing fat with oat bran on fatty acid composition and physicochemical properties of meatballs. Meat Sci. 2003, 65, 819–823. [Google Scholar] [CrossRef]
- Dos Alves, L.A.A.S.; Lorenzo, J.M.; Gonçalves, C.A.A.; dos Santos, B.A.; Heck, R.T.; Cichoski, A.J.; Campagnol, P.C.B. Production of healthier bologna type sausages using pork skin and green banana flour as a fat replacers. Meat Sci. 2016, 121, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.G.V.D.O.; Oliveira, R.L.; Silva, T.M.; Barbosa, A.M.; Nascimento, T.V.C.; da Oliveira, V.S.; Ribeiro, R.D.X.; Pereira, E.S.; Bezerra, L.R. Feeding sunflower cake from biodiesel production to Santa Ines lambs: Physicochemical composition, fatty acid profile and sensory attributes of meat. PLoS ONE 2018, 13, e0188648. [Google Scholar] [CrossRef] [PubMed]
- Botella-martinez, C.; Lucas-gonzález, R.; Lorenzo, J.M.; Santos, E.M.; Sepulveda, M.; Teixeira, A.; Sayas-Barbera, E.; Pérez-Alvarez, J.A.; Fernandez-lopez, J.; Viuda-martos, M. Cocoa Coproducts-Based and Walnut Oil Gelled Emulsion as Animal Fat Replacer and Healthy Bioactive Source in Beef Burgers. Foods 2021, 10, 2706. [Google Scholar] [CrossRef] [PubMed]
- Alejandre, M.; Astiasarán, I.; Ansorena, D.; Barbut, S. Using canola oil hydrogels and organogels to reduce saturated animal fat in meat batters. Food Res. Int. 2019, 122, 129–136. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 116/2010 of 9 February 2010 amending Regulation (EC) No 1924/2006 of the European Parliment and of the Council with regard to the list of nutricional claims. Off. J. Eur. Union 2010, L37, 16–18. [Google Scholar]
- Jiménez-Colmenero, F.; Triki, M.; Herrero, A.M.; Rodríguez-Salas, L.; Ruiz-Capillas, C. Healthy oil combination stabilized in a konjac matrix as pork fat replacement in low-fat, PUFA-enriched, dry fermented sausages. LWT-Food Sci. Technol. 2013, 51, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Feiner, G. Meat Products Handbook: Practical Science and Technology; Woodhead Publishing Limited: Cambridge, UK, 2006. [Google Scholar]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Domínguez, R.; Bohrer, B.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M. Recent discoveries in the field of lipid bio-based ingredients for meat processing. Molecules 2021, 26, 190. [Google Scholar] [CrossRef] [PubMed]
- Moghtadaei, M.; Soltanizadeh, N.; Goli, S.A.H. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Res. Int. 2018, 108, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Co, E.D.; Marangoni, A.G. Organogels: An alternative edible oil-structuring method. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 749–780. [Google Scholar] [CrossRef]
- De Souza Paglarini, C.; de Figueiredo Furtado, G.; Honório, A.R.; Mokarzel, L.; da Silva Vidal, V.A.; Ribeiro, A.P.B.; Cunha, R.L.; Pollonio, M.A.R. Functional emulsion gels as pork back fat replacers in Bologna sausage. Food Struct. 2019, 20, 100105. [Google Scholar] [CrossRef]
- Jimenez-Colmenero, F.; Salcedo-Sandoval, L.; Bou, R.; Cofrades, S.; Herrero, A.M.; Ruiz-Capillas, C. Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends Food Sci. Technol. 2015, 44, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Câmara, A.K.F.I.; Okuro, P.K.; Santos, M.; de Paglarini, C.S.; da Cunha, R.L.; Ruiz-Capillas, C.; Herrero, A.M.; Pollonio, M.A.R. Understanding the role of chia (Salvia Hispanica L.) mucilage on olive oil-based emulsion gels as a new fat substitute in emulsified meat products. Eur. Food Res. Technol. 2020, 246, 909–922. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; da Silva Barretto, A.C. Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Sci. 2021, 171, 108284. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Fregapane, G.; Salvador, M.D. Composition and properties of virgin pistachio oils and their by-products from different cultivars. Food Chem. 2018, 240, 123–130. [Google Scholar] [CrossRef]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S.N. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Salas-salvado, J.; Fernandez-Ballart, J.; Ros, E.; Martınez-Gonzalez, M.; Fito’, M.; Estruch, R.; Corella, D.; Fiol, M.; Gomez-Gracia, E.; Aros, F.; et al. Effect of a Mediterranean Diet Supplemented With Nuts on Metabolic Syndrome Status. Am. Med. Assoc. 2008, 168, 2449–2458. [Google Scholar] [CrossRef] [Green Version]
- Venkatachalan, M.; Sathe, S.K. Chemical Composition of Selected Edible Nut Seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.; Dosler, S.; Mericli, A.H. Chemical composition and antimicrobial activity of Verbascum caesareum. Chem. Nat. Compd. 2016, 52, 125–126. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Salvador, M.D.; Gómez-Alonso, S.; Fregapane, G. Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Res. Int. 2018, 108, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.; Stonehouse, W.; Loots, D.T.; Mukuddem-Petersen, J.; Van Der Westhuizen, F.H.; Hanekom, S.M.; Jerling, J.C. The effects of high walnut and cashew nut diets on the antioxidant status of subjects with metabolic syndrome. Eur. J. Nutr. 2007, 46, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Hamedi, M.; Khodaiyan, F. Determination and characterization of kernel biochemical composition and functional compounds of Persian walnut oil. J. Food Sci. Technol. 2011, 51, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Arena, E.; Campisi, S.; Fallico, B.; Maccarone, E. Distribution of fatty acids and phytosterols as a criterion to discriminate geographic origin of pistachio seeds. Food Chem. 2007, 104, 403–408. [Google Scholar] [CrossRef]
- Tsantili, E.; Takidelli, C.; Christopoulos, M.V.; Lambrinea, E.; Rouskas, D.; Roussos, P.A. Scientia Horticulturae Physical, compositional and sensory differences in nuts among pistachio (Pistachia vera L.) varieties. Sci. Hortic. 2010, 125, 562–568. [Google Scholar] [CrossRef]
- Tavakolipour, H.; Armin, M.; Kalbasi-ashtari, A. Storage Stability of Kerman Pistachio Nuts Storage Stability of Kerman Pistachio Nuts (Pistacia vera L.). Int. J. Food Eng. 2010, 6. [Google Scholar] [CrossRef]
- ISO 1442; International Standards Meat and Meat Products-Determination of Moisture Content. International Organization for Standarization: Geneva, Switzerland, 1997.
- ISO 936; International Standards Meat and Meat Products-Determination of Ash Content. International Organization for Standarization: Geneva, Switzerland, 1998.
- ISO 937; International Standards Meat and Meat Products-Determination of Nitrogen Content. International Organization for Standarization: Geneva, Switzerland, 1978.
- AOCS Rapid Determination of Oil. Fat Utilizing High Temperature Solvent Extraction, Approved Procedure Am 5-04. In Sampling and Analysis of Vegetable Oil Source Materials; American Oil Chemists Society: Urbana, IL, USA, 2004. [Google Scholar]
- European Parliament; The Council of the European Union. REGULATION (EU) No 1169/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, an. Off. J. Eur. Union 2011, 27, 25–32. [Google Scholar] [CrossRef]
- Echegaray, N.; Rosmini, M.; Pateiro, M.; Domínguez, R.; Munekata, P.E.S.; Lorenzo, J.M.; Santos, E.M.; Bermúdez, R. Texture Analysis. In Methods to Assess the Quality of Meat Products; Lorenzo, J.M., Domínguez, R., Pateiro, M., Munekata, P.E.S., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; de la Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Mammasse, N.; Schlich, P. Adequate number of consumers in a liking test. Insights from resampling in seven studies. Food Qual. Prefer. 2014, 31, 124–128. [Google Scholar] [CrossRef]
- AENOR. UNE-EN ISO 8589:2010/Amd 1:2017 Sensory Analysis. Methodology. Ranking; AENOR: Madrid, Spain, 2017. [Google Scholar]
- Serdaroğlu, M.; Nacak, B.; Karabıyıkoğlu, M. Effects of Beef Fat Replacement with Gelled Emul- sion Prepared with Olive Oil on Quality Parameters of Chicken Patties. J. Food Sci. Anim. Resour. 2017, 37, 376–384. [Google Scholar]
- European Parliament; Council of the European Union. Corrigendum to Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2007, 12, 16. [Google Scholar]
- Monteiro, G.M.; Souza, X.R.; Costa, D.P.B.; Faria, P.B.; Vicente, J. Partial substitution of pork fat with canola oil in Toscana sausage. Innov. Food Sci. Emerg. Technol. 2017, 44, 2–8. [Google Scholar] [CrossRef]
- Pires, M.A.; Rodrigues, I.; Barros, J.C.; Carnauba, G.; de Carvalho, F.A.L.; Trindade, M.A. Partial replacement of pork fat by Echium oil in reduced sodium bologna sausages: Technological, nutritional and stability implications. J. Sci. Food Agric. 2020, 100, 410–420. [Google Scholar] [CrossRef]
- Dos Santos, M.; Munekata, P.E.S.; Pateiro, M.; Magalhães, G.C.; Barretto, A.C.S.; Lorenzo, J.M.; Pollonio, M.A.R. Pork skin-based emulsion gels as animal fat replacers in hot-dog style sausages. LWT 2020, 132, 109845. [Google Scholar] [CrossRef]
- Vaskoska, R.; Ha, M.; Naqvi, Z.B.; White, J.D.; Warner, R.D. Muscle, Ageing and Temperature Influence the Changes in Texture, Cooking Loss and Shrinkage of Cooked Beef. Foods 2020, 9, 1289. [Google Scholar] [CrossRef]
- European Union; European Commission. COMMISSION REGULATION (EU) No 1047/2012 of 8 November 2012 amending Regulation (EC) No 1924/2006 with regard to the list of nutrition claims. Off. J. Eur. Union 2012, L 310, 36–37. [Google Scholar]
- Vargas-Ramella, M.; Munekata, P.E.S.; Gagaoua, M.; Franco, D.; Campagnol, P.C.B.; Pateiro, M.; da Barretto, A.C.S.; Domínguez, R.; Lorenzo, J.M. Inclusion of Healthy Oils for Improving the Nutritional Characteristics of Dry-Fermented Deer Sausage. Foods 2020, 9, 1487. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Agregán, R.; Lorenzo, J.M. Effect of the partial replacement of pork backfat by microencapsulated fish oil or mixed fish and olive oil on the quality of frankfurter type sausage. J. Food Sci. Technol. 2017, 54, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Wolfer, T.L.; Acevedo, N.C.; Prusa, K.J.; Sebranek, J.G.; Tarté, R. Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat Sci. 2018, 145, 352–362. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Pateiro, M.; Barba, F.J.; Franco, D.; Campagnol, P.C.B.; Munekata, P.E.S.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Microencapsulation of healthier oils to enhance the physicochemical and nutritional properties of deer pâté. LWT 2020, 125, 109223. [Google Scholar] [CrossRef]
- Martins, A.J.; Lorenzo, J.M.; Franco, D.; Vicente, A.A.; Cunha, R.L.; Pastrana, L.M.; Quiñones, J.; Cerqueira, M.A. Omega-3 and Polyunsaturated Fatty Acids-Enriched Hamburgers Using Sterol-Based Oleogels. Eur. J. Lipid Sci. Technol. 2019, 121, 1900111. [Google Scholar] [CrossRef] [Green Version]
Fatty Acids | Treatments | SEM | Sig. | |||
---|---|---|---|---|---|---|
Pork Backfat | Walnut Oil | Pistachio Oil | Algal Oil | |||
C12:0 | 0.10 b | 0.00 a | 0.01 a | 0.72 c | 0.091 | *** |
C14:0 | 1.22 b | 0.02 a | 0.09 a | 8.72 c | 1.093 | *** |
C14:1n-5 | 0.01 a | 0.00 a | 0.00 a | 0.17 b | 0.022 | *** |
C15:0 | 0.06 b | 0.01 a | 0.01 a | 0.53 c | 0.066 | *** |
C16:0 | 23.71 d | 6.31 a | 11.01 b | 15.17 c | 1.936 | *** |
C16:1n-7 | 1.52 b | 0.08 a | 1.01 b | 7.93 c | 0.938 | *** |
C18:0 | 13.00 d | 2.44 c | 1.37 b | 0.52 a | 1.524 | *** |
9t-C18:1 | 0.17 c | 0.03 a | 0.02 a | 0.09 b | 0.018 | *** |
11t-C18:1 | 0.20 d | 0.10 b | 0.14 c | 0.08 a | 0.014 | *** |
C18:1n-9 | 35.00 c | 18.68 b | 52.17 d | 0.15 a | 5.814 | *** |
C18:1n-7 | 2.22 b | 0.88 a | 2.45 b | 7.37 c | 0.748 | *** |
C18:2n-6 | 14.46 b | 58.43 d | 28.64 c | 0.09 a | 6.508 | *** |
C18:3n-6 | 0.02 b | 0.00 a | 0.00 a | 0.11 c | 0.014 | *** |
C18:3n-3 | 0.76 b | 12.82 c | 0.46 b | 0.01 a | 1.623 | *** |
9c,11t-C18:2 (CLA) | 0.13 d | 0.07 c | 0.05 b | 0.00 a | 0.014 | *** |
C20:0 | 0.23 d | 0.11 b | 0.17 c | 0.05 a | 0.020 | *** |
C20:1n-9 | 0.81 d | 0.20 b | 0.33 c | 0.02 a | 0.088 | *** |
C20:2n-6 | 0.67 d | 0.04 c | 0.03 b | 0.00 a | 0.084 | *** |
C20:3n-6 | 0.15 c | 0.00 a | 0.00 a | 0.12 b | 0.021 | *** |
C20:4n-6 | 0.22 b | 0.00 a | 0.00 a | 0.24 b | 0.035 | *** |
C20:3n-3 | 0.13 b | 0.00 a | 0.00 a | 0.00 a | 0.017 | *** |
C22:0 | 0.03 b | 0.05 c | 0.12 d | 0.00 a | 0.013 | *** |
C20:5n-3 (EPA) | 0.03 a | 0.00 a | 0.00 a | 1.42 b | 0.186 | *** |
C24:0 | 0.04 a | 0.05 b | 0.10 c | 0.16 d | 0.013 | *** |
C22:5n-3 (DPA) | 0.17 b | 0.00 a | 0.00 a | 0.45 c | 0.055 | *** |
C22:6n-3 (DHA) | 0.06 a | 0.00 a | 0.07 a | 44.99 b | 5.890 | *** |
SFA | 38.94 d | 9.13 a | 13.05 b | 26.19 c | 3.547 | *** |
MUFA | 39.97 c | 20.02 b | 56.18 d | 15.85 a | 4.887 | *** |
PUFA | 16.81 a | 71.35 d | 29.25 b | 47.43 c | 6.219 | *** |
n-3 | 1.14 a | 12.82 b | 0.53 a | 46.87 c | 5.709 | *** |
n-6 | 15.53 b | 58.47 d | 28.67 c | 0.56 a | 6.432 | *** |
LC n-3 | 0.26 a | 0.00 a | 0.07 a | 46.87 b | 6.127 | *** |
Parameters | Treatments | SEM | Sig. | ||
---|---|---|---|---|---|
CON | T1 | T2 | |||
Chemical composition (g/100 g) | |||||
Moisture | 70.45 a | 74.26 b | 74.56 b | 0.296 | *** |
Fat | 10.03 b | 5.92 a | 5.64 a | 0.319 | *** |
Protein | 17.34 | 16.83 | 16.80 | 0.111 | ns |
Ash | 1.90 a | 2.24 b | 2.23 b | 0.026 | *** |
Energy content (Kcal/100 g) | 159.69 b | 120.60 a | 117.98 a | 2.981 | *** |
Energy reduction (%) | 0.00 a | 24.46 b | 26.13 b | 1.841 | *** |
Fat reduction (%) | 0.00 a | 41.07 b | 43.14 b | 3.077 | *** |
Colour parameters | |||||
L* | 55.46 a | 64.06 c | 61.70 b | 0.650 | *** |
a* | 11.60 | 10.58 | 11.11 | 0.216 | ns |
b* | 18.87 a | 20.49 b | 19.99 a b | 0.279 | * |
pH | 5.67 | 5.63 | 5.61 | 0.018 | ns |
Cooking loss (%) | 26.41 | 25.47 | 25.03 | 0.299 | ns |
Texture parameters | |||||
Hardness (N) | 54.29 a | 68.67 b | 68.01 b | 1.257 | *** |
Springiness (mm) | 0.76 | 0.75 | 0.75 | 0.004 | ns |
Cohesiveness | 0.57 a | 0.59 b | 0.59 b | 0.004 | * |
Gumminess (N) | 30.83 a | 40.05 b | 39.66 b | 0.812 | *** |
Chewiness (N·mm) | 23.09 a | 30.45 b | 29.59 b | 0.658 | *** |
Fatty Acids | Treatments | SEM | Sig. | ||
---|---|---|---|---|---|
CON | T1 | T2 | |||
C12:0 | 0.09 b | 0.07 a | 0.07 a | 0.002 | *** |
C14:0 | 1.15 b | 0.83 a | 0.82 a | 0.027 | *** |
C16:0 | 22.47 c | 14.29 a | 15.54 b | 0.578 | *** |
C16:1n-7 | 1.69 b | 1.52 a | 1.86 c | 0.032 | *** |
C17:0 | 0.34 b | 0.16 a | 0.16 a | 0.013 | *** |
C18:0 | 11.70 c | 5.99 b | 5.00 a | 0.454 | *** |
9t-C18:1 | 0.07 b | 0.04 a | 0.05 a b | 0.006 | * |
11t-C18:1 | 0.09 | 0.07 | 0.05 | 0.008 | ns |
C18:1n-9 | 33.10 b | 26.03 a | 40.30 c | 0.955 | *** |
C18:1n-7 | 2.72 a | 2.58 a | 3.35 b | 0.065 | *** |
C18:2n-6 | 13.44 a | 31.15 c | 19.25 b | 1.144 | *** |
C18:3n-3 | 0.66 a | 5.78 b | 0.48 a | 0.375 | *** |
9c,11t-C18:2 (CLA) | 0.12 c | 0.10 b | 0.09 a | 0.002 | *** |
C20:0 | 0.19 c | 0.13 a | 0.15 b | 0.004 | *** |
C20:1n-9 | 0.72 c | 0.42 a | 0.45 b | 0.021 | *** |
C20:2n-6 | 0.59 c | 0.28 b | 0.25 a | 0.023 | *** |
C20:3n-6 | 0.17 b | 0.14 a | 0.15 a | 0.002 | *** |
C20:4n-6 | 0.58 a | 0.75 b | 0.75 b | 0.021 | *** |
C20:3n-3 | 0.11 b | 0.04 a | 0.04 a | 0.005 | *** |
C20:5n-3 (EPA) | 0.03 a | 0.08 b | 0.09 c | 0.004 | *** |
C22:5n-3 (DPA) | 0.20 a | 0.22 b | 0.21 a b | 0.003 | * |
C22:6n-3 (DHA) | 0.06 a | 1.29 b | 1.43 c | 0.094 | *** |
SFA | 36.21 b | 21.73 a | 22.09 a | 1.062 | *** |
MUFA | 38.43 b | 30.70 a | 46.10 c | 1.044 | *** |
PUFA | 15.99 a | 39.85 c | 22.77 b | 1.555 | *** |
n-3 | 1.06 a | 7.41 c | 2.25 b | 0.422 | *** |
n-6 | 14.81 a | 32.34 c | 20.43 b | 1.139 | *** |
LC n-3 | 0.29 a | 1.58 b | 1.73 c | 0.099 | *** |
n-6/n-3 | 13.93 c | 4.38 a | 9.10 b | 0.589 | *** |
PUFA/SFA | 0.44 a | 1.87 c | 1.04 b | 0.093 | *** |
TI | 1.18 c | 0.39 a | 0.53 b | 0.052 | *** |
AI | 0.50 c | 0.25 a | 0.27 b | 0.017 | *** |
h/H | 2.15 a | 4.44 c | 3.94 b | 0.154 | *** |
Most Favourite Sample | Least Favourite Sample | ||
---|---|---|---|
Appearance | CON(88) | T2 (80) | T1(60) |
Cooked odour | T2 (85) | CON(73) | T1(70) |
Firmness | T2 (91) | CON(78) | T1(59) |
Juiciness | T2 (86) | CON(74) | T1(68) |
Fatty character | T2 (92) | CON(75) | |
CON(75) | T1(61) | ||
Flavour | T2 (94) | ||
CON(75) | T1(59) | ||
Global preference | T2 (97) | ||
CON(71) | T1(60) | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foggiaro, D.; Domínguez, R.; Pateiro, M.; Cittadini, A.; Munekata, P.E.S.; Campagnol, P.C.B.; Fraqueza, M.J.; De Palo, P.; Lorenzo, J.M. Use of Healthy Emulsion Hydrogels to Improve the Quality of Pork Burgers. Foods 2022, 11, 596. https://doi.org/10.3390/foods11040596
Foggiaro D, Domínguez R, Pateiro M, Cittadini A, Munekata PES, Campagnol PCB, Fraqueza MJ, De Palo P, Lorenzo JM. Use of Healthy Emulsion Hydrogels to Improve the Quality of Pork Burgers. Foods. 2022; 11(4):596. https://doi.org/10.3390/foods11040596
Chicago/Turabian StyleFoggiaro, Danila, Rubén Domínguez, Mirian Pateiro, Aurora Cittadini, Paulo E. S. Munekata, Paulo C. B. Campagnol, Maria João Fraqueza, Pasquale De Palo, and José M. Lorenzo. 2022. "Use of Healthy Emulsion Hydrogels to Improve the Quality of Pork Burgers" Foods 11, no. 4: 596. https://doi.org/10.3390/foods11040596
APA StyleFoggiaro, D., Domínguez, R., Pateiro, M., Cittadini, A., Munekata, P. E. S., Campagnol, P. C. B., Fraqueza, M. J., De Palo, P., & Lorenzo, J. M. (2022). Use of Healthy Emulsion Hydrogels to Improve the Quality of Pork Burgers. Foods, 11(4), 596. https://doi.org/10.3390/foods11040596