Characterization and Quantitative Comparison of Key Aroma Volatiles in Fresh and 1-Year-Stored Keemun Black Tea Infusions: Insights to Aroma Transformation during Storage
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples and Chemicals
2.2. Isolation of Tea Volatiles
2.3. Fractionation of Acidic and Neutral-Basic Tea Volatiles
2.4. Gas Chromatography–Olfactometry–Mass Spectrometry
2.5. Aroma Extract Dilution Analysis
2.6. Identification of Aroma Volatiles
2.7. Descriptive Sensory Analysis of KBT
2.8. Quantitation of Odor-Active Compounds through Standard Addition
2.9. Calculation of Odor Activity Values
2.10. Addition Test
3. Results and Discussion
3.1. DSA Results for FKBT and 1Y-KBT
3.2. Aroma Volatiles in FKBT and 1Y-KBT
3.3. Quantitative Differences between FKBT and 1Y-KBT
3.4. Additional Test to Understand Aroma Transformation during Storage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Q.; Jin, H.; Gao, J.; Ning, J.; Yang, X.; Xia, T. Investigating volatile compounds’ contributions to the stale odour of green tea. Int. J. Food Sci. Technol. 2020, 55, 1606–1616. [Google Scholar] [CrossRef]
- Zhu, Y.; Kang, S.; Yan, H.; Lv, H.-P.; Zhang, Y.; Lin, Z. Enantiomeric distributions of volatile lactones and terpenoids in white teas stored for different durations. Food Chem. 2020, 320, 126632. [Google Scholar] [CrossRef]
- Xu, S.; Zeng, X.; Wu, H.; Shen, S.; Yang, X.; Deng, W.-W.; Ning, J. Characterizing volatile metabolites in raw Pu’er tea stored in wet-hot or dry-cold environments by performing metabolomic analysis and using the molecular sensory science approach. Food Chem. 2021, 350, 129186. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Miao, A.; Cao, J.; Wang, W.; Chen, W.; Pang, S.; He, X.; Ma, C. Study on the effects of rapid aging technology on the aroma quality of white tea using GC-MS combined with chemometrics: In comparison with natural aged and fresh white tea. Food Chem. 2018, 265, 189–199. [Google Scholar] [CrossRef]
- Meng, T.; Zhipeng, X.; Ai, H.; Jiayu, C.; Tianji, Y.; Zhengquan, L. Effect of 1–20 years storage on volatiles and aroma of Keemun congou black tea by solvent extraction-solid phase extraction-gas chromatography-mass spectrometry. LWT 2021, 136, 110278. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef]
- Tatsu, S.; Matsuo, Y.; Nakahara, K.; Hofmann, T.; Steinhaus, M. Key Odorants in Japanese Roasted Barley Tea (Mugi-Cha)—Differences between Roasted Barley Tea Prepared from Naked Barley and Roasted Barley Tea Prepared from Hulled Barley. J. Agric. Food Chem. 2020, 68, 2728–2737. [Google Scholar] [CrossRef] [PubMed]
- Schuh, C.; Schieberle, P. Characterization of the Key Aroma Compounds in the Beverage Prepared from Darjeeling Black Tea: Quantitative Differences between Tea Leaves and Infusion. J. Agric. Food Chem. 2006, 54, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.P.; Zhang, Y.; Dai, W.D.; Guo, L.; Tan, J.F.; Peng, Q.H.; et al. Identification and quantification of key odorants in the world’s four most famous black teas. Food Res. Int 2019, 121, 73–83. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, H.; Niu, Y.; Liu, Q.; Zhu, J.; Chen, H.; Ma, N. Characterization of aroma compositions in different Chinese congou black teas using GC-MS and GC-O combined with partial least squares regression. Flavour Fragr. J. 2017, 32, 265–276. [Google Scholar] [CrossRef]
- Mao, S.; Lu, C.; Li, M.; Ye, Y.; Wei, X.; Tong, H. Identification of key aromatic compounds in Congou black tea by partial least-square regression with variable importance of projection scores and gas chromatography-mass spectrometry/gas chromatography-olfactometry. J. Sci. Food Agric. 2018, 98, 5278–5286. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, D.; Jiang, H.; Sun, H.; Zhang, C.; Zhao, H.; Li, X.; Yan, F.; Chen, C.; Xu, Z. Aroma characterization of Hanzhong black tea (Camellia sinensis) using solid phase extraction coupled with gas chromatography-mass spectrometry and olfactometry and sensory analysis. Food Chem. 2019, 274, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, H.; Qu, D.; Yan, F.; Jin, W.; Jiang, H.; Chen, C.; Zhang, Y.; Li, C.; Xu, Z. Identification and characterization of key aroma compounds in Chinese high altitude and northernmost black tea (Camellia sinensis) using distillation extraction and sensory analysis methods. Flavour Fragr. J. 2020, 35, 666–673. [Google Scholar] [CrossRef]
- Baba, R.; Nakamura, M.; Kumazawa, K. Identification of the Potent Odorants Contributing to the Characteristic Aroma of Darjeeling Black Tea Infusion. Nippon Shokuhin Kagaku Kogaku Kaishi 2017, 64, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Guth, H.; Grosch, W. Identification of potent odourants in static headspace samples of green and black tea powders on the basis of aroma extract dilution analysis (AEDA). Flavour Fragr. J. 1993, 8, 173–178. [Google Scholar] [CrossRef]
- Flaig, M.; Qi, S.C.; Wei, G.; Yang, X.; Schieberle, P. Characterisation of the key aroma compounds in a Longjing green tea infusion (Camellia sinensis) by the sensomics approach and their quantitative changes during processing of the tea leaves. Eur. Food Res. Technol. 2020, 246, 2411–2425. [Google Scholar] [CrossRef]
- Flaig, M.; Qi, S.; Wei, G.; Yang, X.; Schieberle, P. Characterization of the Key Odorants in a High-Grade Chinese Green Tea Beverage (Camellia sinensis; Jingshan cha) by Means of the Sensomics Approach and Elucidation of Odorant Changes in Tea Leaves Caused by the Tea Manufacturing Process. J. Agric. Food Chem. 2020, 68, 5168–5179. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Yu, D.; Shu, C.; Chen, H.; Wang, H.; Xiao, Z. Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS. J. Agric. Food Chem. 2015, 63, 7499–7510. [Google Scholar] [CrossRef]
- Schieberle, P.; Molyneux, R.J. Quantitation of sensory-active and bioactive constituents of food: A Journal of Agricultural and Food Chemistry perspective. J. Agric. Food Chem. 2012, 60, 2404–2408. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.-B.; Xiang, X.-F.; Qian, X.; Wang, J.-M.; Ling, M.-Q.; Zhu, B.-Q.; Liu, T.; Sun, L.-B.; Shi, Y.; Reynolds, A.G.; et al. Characterization and differentiation of key odor-active compounds of ‘Beibinghong’ icewine and dry wine by gas chromatography-olfactometry and aroma reconstitution. Food Chem. 2019, 287, 186–196. [Google Scholar] [CrossRef]
- Neiens, S.D.; Steinhaus, M. Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris. J. Agric. Food Chem. 2018, 66, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Sefton, M.A.; Skouroumounis, G.K.; Elsey, G.M.; Taylor, D.K. Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and beverages. J. Agric. Food Chem. 2011, 59, 9717–9746. [Google Scholar] [CrossRef] [PubMed]
- Pineau, B.; Barbe, J.-C.; Van Leeuwen, C.; Dubourdieu, D. Which Impact for β-Damascenone on Red Wines Aroma? J. Agric. Food Chem. 2007, 55, 4103–4108. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Yu, W.; Cao, C.; Yuan, X.; Qiu, J.; Kong, F.; Wu, J. Comparison of Potent Odorants in Raw and Ripened Pu-Erh Tea Infusions Based on Odor Activity Value Calculation and Multivariate Analysis: Understanding the Role of Pile Fermentation. J. Agric. Food Chem. 2019, 67, 13139–13149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lv, H.P.; Shao, C.Y.; Kang, S.; Zhang, Y.; Guo, L.; Dai, W.D.; Tan, J.F.; Peng, Q.H.; Lin, Z. Identification of key odorants responsible for chestnut-like aroma quality of green teas. Food Res. Int. 2018, 108, 74–82. [Google Scholar] [CrossRef]
Name | CAS | Quantifier Ion | Qualifier Ions |
---|---|---|---|
Dimethyl sulfide | 75-18-3 | 62 | 62; 47; 61 |
2-Methyl-propanal | 78-84-2 | 72 | 43; 41; 72 |
3-Methyl-Butanal | 590-86-3 | 44 | 44; 41; 43 |
2-Methyl-Butanal | 96-17-3 | 57 | 57; 58; 41 |
Dimethyl disulfide | 624-92-0 | 94 | 94; 79; 45 |
Hexanal | 66-25-1 | 56 | 56; 44; 41 |
Methional | 3268-49-3 | 48 | 48; 104; 47 |
Dimethyl trisulfide | 3658-80-8 | 126 | 126; 79; 45 |
Benzeneacetaldehyde | 122-78-1 | 91 | 91; 120; 92 |
Linalool | 78-70-6 | 71 | 71; 93; 55 |
Phenylethyl alcohol | 60-12-8 | 91 | 91; 92; 122 |
(E,Z)-2,6-Nonadienal | 557-48-2 | 69 | 41; 70; 69 |
(E)-2-Nonenal | 18829-56-6 | 70 | 70; 43; 55 |
Benzoic acid | 65-85-0 | 105 | 105; 122; 77 |
(Z)-Linalool oxide (pyranoid) | 14009-71-3 | 68 | 68; 94; 59 |
Neral | 106-26-3 | 69 | 69; 41; 39 |
Geraniol | 106-24-1 | 69 | 69; 41; 68 |
δ-Octalactone | 698-76-0 | 99 | 99; 71; 42 |
Eugenol | 97-53-0 | 164 | 164; 103; 149 |
β-Damascenone | 23726-93-4 | 69 | 69; 121; 190 |
Vanillin | 121-33-5 | 151 | 151; 152; 81 |
Coumarin | 91-64-5 | 146 | 146; 118; 90 |
δ-Decalactone | 705-86-2 | 70 | 99; 71; 70 |
Dihydroactinidiolide | 15356-74-8 | 111 | 111; 109; 43 |
Raspberry ketone | 5471-51-2 | 107 | 107; 43; 164 |
(Z)-Methyl epijasmonate | 39924-52-2 | 224 | 83; 151; 224 |
Herniarin | 531-59-9 | 176 | 176; 148; 133 |
(A) | ||||||||
---|---|---|---|---|---|---|---|---|
Name a | CAS | RI | Description | Fraction b | FD c | |||
DB-5MS | DB-WAX | FKBT | 1Y-KBT | |||||
Hexanal | 66-25-1 | 800 | 1076 | Green | NBF, AF | 16 | 8 | |
Methional | 3268-49-3 | 902 | 1459 | Sweet | NBF | 16 | 2 | |
Benzeneacetaldehyde | 122-78-1 | 1042 | 1649 | Floral | NBF | 64 | 64 | |
Linalool | 78-70-6 | 1100 | 1551 | Floral | NBF | 128 | 128 | |
Phenylethyl alcohol | 60-12-8 | 1110 | 1918 | Floral | NBF, AF | 256 | 256 | |
(E, Z)-2,6-Nonadienal | 557-48-2 | 1152 | 1588 | Cucumber | NBF | 16 | 16 | |
(E)-2-Nonenal | 18829-56-6 | 1157 | 1165 | Leather | NBF, AF | 32 | 32 | |
Benzoic acid | 65-85-0 | 1165 | 2443 | Leather | NBF, AF | 8 | 32 | |
(Z)-Linalool oxide (pyranoid) | 14009-71-3 | 1174 | 1766 | Herbal | NBF | 8 | 32 | |
Benzeneacetic acid | 103-82-2 | 1244 | 2570 | Floral | AF | 8 | 32 | |
Neral | 106-26-3 | 1237 | 1684 | Cucumber | NBF | 64 | 64 | |
Geraniol | 106-24-1 | 1249 | 1851 | Floral | NBF | 512 | 128 | |
δ-Octalactone | 698-76-0 | 1278 | 1973 | Sweet | NBF | 16 | 8 | |
Eugenol | 97-53-0 | 1349 | 2177 | Dried orange peel | NBF | 64 | 256 | |
β-Damascenone | 23726-93-4 | 1379 | 1378 | Sweet | NBF, AF | 512 | 1024 | |
Vanillin | 121-33-5 | 1393 | 2578 | Sweet | AF | 128 | 64 | |
Coumarin | 91-64-5 | 1435 | 2467 | Sweet | NBF, AF | 256 | 256 | |
δ-Decalactone | 705-86-2 | 1491 | 2234 | Coconut | NBF | 64 | 64 | |
Raspberry ketone | 5471-51-2 | 1548 | 3003 | Sweet | AF | 256 | 256 | |
(Z)-Methyl epijasmonate | 39924-52-2 | 1672 | 2354 | Floral | NBF | 64 | 32 | |
Herniarin | 531-59-9 | 1724 | 2948 | Sweet | NBF, AF | 128 | 128 | |
(B) | ||||||||
Name a | CAS | RI (DB-5) | Description | FKBT d | 1Y-KBT | |||
Dimethyl sulfide | 75-18-3 | 518 | Cooked corn | √ | × | |||
2-Methyl-propanal | 78-84-2 | 551 | Malty | √ | √ | |||
3-Methyl-butanal | 590-86-3 | 647 | Malty | √ | √ | |||
2-Methyl-butanal | 96-17-3 | 657 | Malty | √ | √ | |||
Dimethyl trisulfide | 3658-80-8 | 965 | Stinking | √ | √ |
(A) | |||||
---|---|---|---|---|---|
Name | CAS | Concentration (μg/L) | Ratios (FKBT:1Y-KBT) | ||
FKBT | 1Y-KBT | ||||
Dimethyl sulfide | 75-18-3 | 379 | 37 | 10.4 | |
2-Methyl-propanal | 78-84-2 | 584 | 145 | 4.0 | |
3-Methyl-Butanal | 590-86-3 | 715 | 65 | 10.9 | |
2-Methyl-Butanal | 96-17-3 | 824 | 108 | 7.6 | |
Dimethyl disulfide | 624-92-0 | 0.87 | 0.11 | 7.9 | |
Hexanal | 66-25-1 | 135 | 32 | 4.2 | |
Methional | 3268-49-3 | 4.2 | 1.0 | 4.1 | |
Dimethyl trisulfide | 3658-80-8 | 0.14 | 0.06 | 2.4 | |
Benzeneacetaldehyde | 122-78-1 | 511 | 445 | 1.1 | |
Linalool | 78-70-6 | 149 | 59 | 2.5 | |
Phenylethyl alcohol | 60-12-8 | 416 | 519 | 0.8 | |
(E,Z)-2,6-nonadienal | 557-48-2 | 1.5 | 0.8 | 1.9 | |
(E)-2-Nonenal | 18829-56-6 | 0.70 | 0.37 | 1.9 | |
Benzoic acid | 65-85-0 | 9.9 | 31 | 0.3 | |
(Z)-Linalool oxide (pyranoid) | 14009-71-3 | 620 | 344 | 1.8 | |
Benzeneacetic acid | 103-82-2 | 4.8 | 21 | 0.2 | |
Neral | 106-26-3 | 4.2 | 2.2 | 1.9 | |
Geraniol | 106-24-1 | 311 | 138 | 2.2 | |
δ-Octalactone | 698-76-0 | 13 | 13 | 0.9 | |
Eugenol | 97-53-0 | 0.52 | 0.73 | 0.7 | |
β-Damascenone | 23726-93-4 | 0.25 | 0.43 | 0.6 | |
Vanillin | 121-33-5 | 10 | 12 | 0.9 | |
Coumarin | 91-64-5 | 28 | 17 | 1.7 | |
δ-Decalactone | 705-86-2 | 4.5 | 2.2 | 2.0 | |
Dihydroactinidiolide | 15356-74-8 | 23 | 40 | 0.6 | |
Raspberry ketone | 5471-51-2 | 0.29 | 0.90 | 0.3 | |
(Z)-Methyl epijasmonate | 39924-52-2 | 2.8 | 0.56 | 5.1 | |
Herniarin | 531-59-9 | 19 | 21 | 0.9 | |
(B) | |||||
Name | CAS | OAV | |||
FKBT | 1Y-KBT | ||||
Dimethyl sulfide | 75-18-3 | 1264 | 122 | ||
3-Methyl-Butanal | 590-86-3 | 595 | 54 | ||
2-Methyl-propanal | 78-84-2 | 307 | 76 | ||
Linalool | 78-70-6 | 257 | 102 | ||
2-Methyl-Butanal | 96-17-3 | 187 | 25 | ||
Geraniol | 106-24-1 | 97 | 43 | ||
Benzeneacetaldehyde | 122-78-1 | 81 | 71 | ||
β-Damascenone | 23726-93-4 | 61 | 108 | ||
(E,Z)-2,6-Nonadienal | 557-48-2 | 49 | 26 | ||
Dimethyl trisulfide | 3658-80-8 | 14 | 6 | ||
Hexanal | 66-25-1 | 14 | 3 | ||
Methional | 3268-49-3 | 10 | 2 | ||
Coumarin | 91-64-5 | 3 | 2 | ||
(E)-2-Nonenal | 18829-56-6 | 2 | 1 | ||
(Z)-Methyl epijasmonate | 39924-52-2 | 1 | <1 | ||
Dimethyl disulfide | 624-92-0 | <1 | <0.1 | ||
Phenylethyl alcohol | 60-12-8 | <1 | <1 | ||
Vanillin | 121-33-5 | <1 | <1 | ||
Eugenol | 97-53-0 | <1 | <1 | ||
δ-Decalactone | 705-86-2 | <1 | <0.1 | ||
δ-Octalactone | 698-76-0 | <1 | <1 | ||
(Z)-Linalool oxide (pyranoid) | 14009-71-3 | <1 | <0.1 | ||
Benzoic acid | 65-85-0 | <1 | <1 | ||
Dihydroactinidiolide | 15356-74-8 | <0.1 | <0.1 | ||
Neral | 106-26-3 | <0.1 | <0.1 | ||
Raspberry ketone | 5471-51-2 | <0.1 | <0.1 | ||
Herniarin | 531-59-9 | <0.1 | <0.1 | ||
Benzeneacetic acid | 103-82-2 | <0.1 | <0.1 |
Added Compounds a | Correct Answers/Panelists b | p Value c | Significant Level d | Difference Description |
---|---|---|---|---|
3-Methyl butanal | 11/12 | 0.000 | *** | More fresh, less woody |
Dimethyl sulfide | 10/12 | 0.001 | ** | More fresh, less woody |
Benzeneacetaldehyde | 9/11 | 0.001 | ** | More floral, less woody |
(E,Z)-2,6-Nonadienal | 9/11 | 0.001 | ** | More fresh, less woody |
(E)-2-Nonenal | 7/10 | 0.020 | * | More fatty, less woody |
Linalool | 7/11 | 0.039 | * | More floral, less woody |
β-Damascenone (+50%) | 7/11 | 0.039 | * | Sweeter, less woody |
Methional | 7/11 | 0.039 | * | Sweeter, less woody |
Geraniol | 7/11 | 0.039 | * | More floral, less woody |
2-Methyl-propanal | 6/12 | 0.178 | - | - |
Hexanal | 5/10 | 0.213 | - | - |
Coumarin | 5/10 | 0.213 | - | - |
2-Methyl butanal | 4/10 | 0.441 | - | - |
Dimethyl trisulfide | 4/10 | 0.441 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, M.; Guo, W.; Zhang, W.; Liu, Z. Characterization and Quantitative Comparison of Key Aroma Volatiles in Fresh and 1-Year-Stored Keemun Black Tea Infusions: Insights to Aroma Transformation during Storage. Foods 2022, 11, 628. https://doi.org/10.3390/foods11050628
Tao M, Guo W, Zhang W, Liu Z. Characterization and Quantitative Comparison of Key Aroma Volatiles in Fresh and 1-Year-Stored Keemun Black Tea Infusions: Insights to Aroma Transformation during Storage. Foods. 2022; 11(5):628. https://doi.org/10.3390/foods11050628
Chicago/Turabian StyleTao, Meng, Wenli Guo, Wenjun Zhang, and Zhengquan Liu. 2022. "Characterization and Quantitative Comparison of Key Aroma Volatiles in Fresh and 1-Year-Stored Keemun Black Tea Infusions: Insights to Aroma Transformation during Storage" Foods 11, no. 5: 628. https://doi.org/10.3390/foods11050628