Quality Evaluation Indices for Soybean Oil in Relation to Cultivar, Application of N Fertiliser and Seed Inoculation with Bradyrhizobium japonicum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- soybean cultivars: Aldana (Plant Breeding Strzelce Sp. z o.o. IHAR group, Strzelce, Poland) and Annushka (Scientific Research Center of Soya Development ”AgeSoya” Sp. z o.o., Huta Krzeszowska, Poland), belonged to the very early maturity group,
- Initrogen fertilizer: 0, 30, 60 kg ∙ ha−1 N,
- bacterial inoculant (with symbiotic bacteria B. japonicum): control (without bacterial inoculation), HiStick® Soy (BASF, Littlehampton, UK), Nitragina (Institute of Soil Science and Plant Cultivation –State Research Institute, Puławy, Poland).
2.2. Weather Conditions
Years | Months | Mean for Apr–Sep | |||||
---|---|---|---|---|---|---|---|
Apr | May | Jun | Jul | Aug | Sep | ||
2016 | 1.86 (rh) * | 0.96 (d) | 0.43 (vd) | 2.59 (vh) | 1.25 (rd) | 0.89 (d) | 1.33 (o) |
2017 | 3.79 (eh) | 2.88 (vh) | 0.80 (d) | 0.80 (d) | 1.50 (o) | 2.94 (vh) | 2.12 (h) |
2018 | 0.42 (vd | 1.43 (o) | 0.94 (d) | 1.88 (rh) | 1.70 (rh) | 0.88 (d) | 1.21 (rd) |
2019 | 2.93 (vh) | 4.63 (eh) | 0.31 (ed) | 0.82 (d) | 1.47 (o) | 1.86 (rh) | 2.00 (rh) |
2.3. Analytical Methods
Indices | Calculation Formula | Application |
---|---|---|
Omega 3 | (C18:3n3 + C18:4n3 + C20:4n3 + C20:5n3 + C22:5n3 + C24:5n3 + C24:6n3 + C22:6n3) | |
Omega 6 | (C18:2n6 + C18:3n6+ C20:2, C20:3n6 +C20:4n6) | |
Omega 6/Omega 3 | ΣOmega 6/ΣOmega 3 | [55,56,57,58] |
MUFA/PUFA | ΣMUFA/ΣPUFA | [59] |
UFA/SFA | ΣUFA/ΣSFA | [32] |
PUFA/SFA | ΣPUFA/ΣSFA | [32,60] |
ALA/LA— α-Linolenic acid/Linoleic acid ratio | C18:3 n-3/C18:2 n-6 | [61] |
DFA—Index of desirable fatty acids | [29,62] | |
OFA—Sum of hypercholesterolemic fatty acids | [63] | |
HH—Hypocholesterolemic/Hypercholesterolemic ratio | (C18:1n-9 + C18:2n-6 + C20:4n-6 + C18:3n- 3 + C20:5n-3 + C22:5n-3 + C22:6n-3)/(C14:0 + C16:0) | [31,32,60,64,65,66,67] |
AI—Index of atherogenicity | [32,64,65,68,69,70,71] | |
TI—Index of thrombogenicity | [64,65,68,69,70,72] | |
CI—Consumer index | (C18:3+ C20:5+ C22:6) | [73] |
ODR—Oleic desaturation ratio | [74,75] | |
LDR—Linoleic desaturation ratio | [74,75] | |
COX—Calculated oxidizability value | [75,76,77,78] | |
S/P—Saturation fat index | (C14:0+C16:0+C18:0)/(MUFA+PUFA) | [68] |
OL/(LA+ALA) | 18: 1/(18:2+ C18:3) | [4] |
2.4. Statistical Analyses
3. Results and Discussion
3.1. Omega 3, Omega 6, Omega 6/Omega 3
3.2. MUFA, PUFA, UFA, SFA
3.3. ALA/LA
3.4. DFA, OFA, HH
3.5. AI, TI, CI
3.6. ODR, LDR, COX, S/P, OL/(LA + ALA)
3.7. OL/(LA + ALA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD-FAO. Agricultural Outlook 2016–2025. Available online: https://www.fao.org/documents/card/en/c/f0589695-58d9-425c-8be2-7dc065e5602f/ (accessed on 20 December 2021).
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cafaro La Menza, N.; Monzon, J.P.; Specht, J.E.; Grassini, P. Is soybean yield limited by nitrogen supply? Field Crops Res. 2017, 213, 204–212. [Google Scholar] [CrossRef]
- Carrera, C.S.; Dardanelli, J.L. Water deficit modulates the relationship between temperature and unsaturated fatty acid profile in soybean seed oil. Crop Sci. 2017, 57, 3179–3189. [Google Scholar] [CrossRef]
- Ali, N. Soybean processing and utilization. In The Soybean: Botany, Production and Uses; Singh, G., Ed.; CABI: Wallingford, UK, 2010; pp. 345–374. [Google Scholar] [CrossRef]
- Bennett, J.O.; Yu, O.; Heatherly, L.G.; Krishnan, H.B. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. J. Agric. Food Chem. 2004. 52, 7574–7579. [CrossRef]
- Cahoon, E.B. Genetic enhancement of soybean oil for industrial uses: Prospects and challenges. AgBioForum 2003, 6, 11–13. Available online: https://agbioforum.org/wp-content/uploads/2021/02/AgBioForum_6_12_11.pdf (accessed on 20 December 2021).
- Fernández-Marín, B.; Milla, R.; Martín-Robles, N.; Arc, E.; Kranner, I.; Becerril, J.M.; García-Plazaola, J.I. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biol. 2014, 14, 1599. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Liu, N.; Lu, W.; Wang, S.; Kan, H.; Zhang, Y.; Xu, L.; Chen, Y. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. J. Ecol. 2014, 102, 1072–1082. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.; Karathanos, V.T.; Hassapidou, M.; Andrikopoulos, N.K. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010, 121, 682–690. [Google Scholar] [CrossRef]
- Wilson, R.F. Seed composition. In Soybeans: Improvement, Production, and Uses, 3rd ed.; Boerma, H., Specht, J.E., Eds.; ASA: Madison, WI, USA, 2004; pp. 621–668. [Google Scholar]
- Wilk, M.; Ród, S.Ź.; Cennych, Ł.E.M.; Adników, S.K.Ł. Soya as a source of valuable nutrients / Soja źródłem cennych składników żywieniowych. Żywność. Nauk. Technol. Jakość. 2017, 2, 16–25. (In Polish) [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Vavra Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871. [Google Scholar] [CrossRef]
- Galgani, J.E.; Uauy, R.D.; Aguirre, C.A.; Díaz, E.O. Effect of the dietary fat quality on insulin sensitivity. Br. J. Nutr. 2008, 100, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Elmadfa, I.; Kornsteiner, M. Dietary fat intake—A global perspective. Ann. Nutr. Metab. 2009, 54, 8–14. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 2008, 110, 865–878. [Google Scholar] [CrossRef]
- Rochfort, S.; Panozzo, J. Phytochemicals for Health, the Role of Pulses. J. Agric. Food Chem. 2007, 55, 7981–7994. [Google Scholar] [CrossRef]
- Mathers, J.C. Pulses and carcinogenesis: Potential for the prevention of colon, breast and other cancers. Br. J. Nutr. 2002, 88, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Bazzano, L.A.; He, J.; Ogden, L.G.; Loria, C.; Vupputuri, S.; Myers, L.; Whelton, P.K. Legume consumption and risk of coronary heart disease in U.S. men and women: NHANES I Epidemiologic Follow-up Study. Arch. Intern. Med. 2001, 161, 2573–2578. [Google Scholar] [CrossRef] [Green Version]
- Villegas, R.; Gao, Y.T.; Yang, G.; Li, H.L.; Elasy, T.A.; Zheng, W.; Shu, X.O. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai women’s health study. Am. J. Clin. Nutr. 2008, 87, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Rizkalla, S.W.; Bellisle, F.; Slama, G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br. J. Nutr. 2002, 88, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Major, A.W. Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. Br. J. Nutr. 2002, 88, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A.; Thompson, A.M.; Tees, M.T.; Nguyen, C.H.; Winham, D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 94–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, J.O.; Krishnan, A.H.; Wiebold, W.J.; Krishnan, H.B. Positional effect on protein and oil content and composition of soybeans. J. Agric. Food Chem. 2003, 51, 6882–6886. [Google Scholar] [CrossRef] [PubMed]
- Hammond, E.G.; Johnson, L.A.; Su, C.; Wang, T.; White, P.J. Soybean Oil. In Bailey’s Industrial Oil and Fat Products, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 577–653. [Google Scholar]
- Bourre, J.M. Acides gras ω-3 et troubles psychiatriques. Med. Sci. 2005, 21, 216–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savary, S.; Trompier, D.; Andreoletti, P.; Le Borgne, F.; Demarquoy, J.; Lizard, G. Fatty Acids—Induced Lipotoxicity and Inflammation. Curr. Drug Metab. 2012, 13, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Batkowska, J.; Drabik, K.; Brodacki, A.; Czech, A.; Adamczuk, A. Fatty acids profile, cholesterol level and quality of table eggs from hens fed with the addition of linseed and soybean oil. Food Chem. 2021, 334, 127612. [Google Scholar] [CrossRef] [PubMed]
- Sinanoglou, V.J.; Batrinou, A.; Mantis, F.; Bizelis, I.; Miniadis-Meimaroglou, S. Lipid quality indices: Differentiation of suckling lamb and kid breeds reared by traditional sheep farming. Small Rumin. Res. 2013, 113, 1–10. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Karimian-Khosroshahi, N.; Hosseini, H.; Rezaei, M.; Khaksar, R.; Mahmoudzadeh, M. Effect of Different Cooking Methods on Minerals, Vitamins, and Nutritional Quality Indices of Rainbow Trout (Oncorhynchus mykiss). Int. J. Food Prop. 2016, 19, 2471–2480. [Google Scholar] [CrossRef]
- Department of Health. Nutritional aspects of cardiovascular disease. Report of the Cardiovascular Review Group Committee on Medical Aspects of Food Policy. Rep. Health Soc. Sub. J. 1994, 46, 1–186. [Google Scholar]
- Williams, C. Dietary fatty acids and human health. Ann. Zootech. 2000, 49, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Hao, X.; Thelen, K.D.; Robertson, G.P. Agronomic management system and precipitation effects on soybean oil and fatty acid profiles. Crop Sci. 2009, 49, 1049–1057. [Google Scholar] [CrossRef]
- Medic, J.; Atkinson, C.; Hurburgh, C.R., Jr. Current knowledge in soybean composition. JAOCS J. Am. Oil Chem. Soc. 2014, 91, 363–384. [Google Scholar] [CrossRef]
- Tamagno, S.; Aznar-Moreno, J.A.; Durrett, T.P.; Vara Prasad, P.V.; Rotundo, J.L.; Ciampitti, I.A. Dynamics of oil and fatty acid accumulation during seed development in historical soybean varieties. Field Crops Res. 2020, 248, 107719. [Google Scholar] [CrossRef]
- Szostak, B.; Głowacka, A.; Kasiczak, A.; Kiełtyka-Dadasiewicz, A.; Bąkowski, M. Nutritional value of soybeans and the yield of protein and fat depending on a cultivar and the level of nitrogen application. J. Elem. 2020, 25, 45–57. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Zhang, S.; Azam, M.; Shaibu, A.S.; Feng, Y.; Li, Y.; Tian, Y.; Hong, H.; Li, B.; Sun, J. Profiling of seed fatty acid composition in 1025 Chinese soybean accessions from diverse ecoregions. Crop J. 2020, 8, 635–644. [Google Scholar] [CrossRef]
- El-Shaarawi, A.F.I.; Sabh, A.Z.; Abou-Taleb, S.M.; Ghoniem, A.E. Effect of inorganic nitrogen and Bradyrhizobium japonicum inoculation on growth and yield of soybean. Aust. J. Basic Appl. Sci. 2011, 5, 436–447. [Google Scholar]
- Meghvansi, M.K.; Prasad, K.; Harwani, D.; Mahna, S.K. Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. Eur. J. Soil Biol. 2008, 44, 316–323. [Google Scholar] [CrossRef]
- Egamberdiyeva, D.; Qarshieva, D.; Davranov, K. The use of Bradyrhizobium to enhance growth and yield of soybean in calcareous soil in Uzbekistan. J. Plant Growth Regul. 2004, 23, 54–57. [Google Scholar] [CrossRef]
- Mulas, D.; García-Fraile, P.; Carro, L.; Ramírez-Bahena, M.H.; Casquero, P.; Velázquez, E.; González-Andrés, F. Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in Northern Spanish soils: Selection of native strains that replace conventional N fertilization. Soil Biol. Biochem. 2011, 43, 2283–2293. [Google Scholar] [CrossRef]
- Ortez, O.A.; Salvagiotti, F.; Enrico, J.M.; Prasad, P.V.V.; Armstrong, P.; Ciampitti, I.A. Exploring nitrogen limitation for historical and modern soybean genotypes. Agron. J. 2018, 110, 2080–2090. [Google Scholar] [CrossRef] [Green Version]
- Mourtzinis, S.; Kaur, G.; Orlowski, J.M.; Shapiro, C.A.; Lee, C.D.; Wortmann, C.; Holshouser, D.; Nafziger, E.D.; Kandel, H.; Niekamp, J.; et al. Soybean response to nitrogen application across the United States: A synthesis-analysis. Field Crops Res. 2018, 215, 74–82. [Google Scholar] [CrossRef]
- Silva, L.R.; Pereira, M.J.; Azevedo, J.; Gonçalves, R.F.; Valentão, P.; de Pinho, P.G.; Andrade, P.B. Glycine max (L.) Merr., Vigna radiata L. and Medicago sativa L. sprouts: A natural source of bioactive compounds. Food Res. Int. 2013, 50, 167–175. [Google Scholar] [CrossRef]
- Sharifi, R.S.; Abtahi, S.M.; Ghaseminejad, P. Integrated fertilization systems effects on yield, nodulation state and fatty acids composition of soybean (Glycine max). Indian J. Agric. Sci. 2016, 86, 1010–1015. Available online: https://www.researchgate.net/profile/Pejman-Ghaseminejad/publication/308199248_Integrated_fertilization_systems_effects_on_yield_nodulation_state_and_fatty_acids_composition_of_soybean_Glycine_max/links/600bf0e692851c13fe2e0332/Integrated-fertilization-systems-effects-on-yield-nodulation-state-and-fatty-acids-composition-of-soybean-Glycine-max.pdf (accessed on 28 December 2021).
- Seyed Sharifi, R. Application of biofertilizers and zinc increases yield, nodulation and unsaturated fatty acids of soybean. Zemdirb. -Agric. 2016, 103, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Monounsaturated fatty acids and cholesterol metabolism: Implications for dietary recommendations. J. Nutr. 1989, 119, 529–533. [Google Scholar] [CrossRef]
- Sogut, T. Rhizobium inoculation improves yield and nitrogen accumulation in soybean (Glycine max) cultivars better than fertiliser. N. Z. J. Crop Hortic. Sci. 2006, 34, 115–120. [Google Scholar] [CrossRef]
- Soil Science Division Staff. Soil Survey Manual; Ditzler, C., Scheffe, K., Monge, H.C., Eds.; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017; Available online: https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre50.pdf (accessed on 29 December 2021).
- World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; Volume 106, p. 203. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 17 December 2021).
- Szpunar-Krok, E.; Wondołowska-Grabowska, A.; Bobrecka-Jamro, D.; Jańczak-Pieniążek, M.; Kotecki, A.; Kozak, M. Effect of nitrogen fertilisation and inoculation with Bradyrhizobium japonicum on the fatty acid profile of soybean (Glycine max (L.) merrill) seeds. Agronomy 2021, 11, 941. [Google Scholar] [CrossRef]
- Skowera, B.; Jedrszczyk, E.; Kopcińska, J.; Ambroszczyk, A.M.; Kołton, A. The effects of hydrothermal conditions during vegetation period on fruit quality of processing tomatoes. Polish J. Environ. Stud. 2014, 23, 195–202. Available online: http://www.pjoes.com/The-Effects-of-Hydrothermal-Conditions-r-nduring-Vegetation-Period-on-Fruit-Quality,89183,0,2.html (accessed on 24 March 2021). (In Polish).
- Materac, E.; Marczyński, Z.; Bodek, K.H. The role of long-chain fatty acids omega-3 and omega-6 in human body / Rola kwasów tłuszczowych omega-3 i omega-6 w organizmie człowieka. Bromat. Chem. Toksykol. 2013, 46, 225–233. Available online: https://ptfarm.pl/pub/File/Bromatologia/2013/2/BR%202-2013%20-%20s.%20225-233.pdf (accessed on 28 December 2021). (In Polish).
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio: Health implications. OCL-Ol. Corps Gras Lipides 2010, 17, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Sands, D.C.; Morris, C.E.; Dratz, E.A.; Pilgeram, A.L. Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods. Plant Sci. 2009, 177, 377–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekaya, M.; Mechri, B.; Bchir, A.; Attia, F.; Cheheb, H.; Daassa, M.; Hammami, M. Effect of nutrient-based fertilisers of olive trees on olive oil quality. J. Sci. Food Agric. 2013, 93, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Tonial, I.B.; Oliveira, D.F.; Coelho, A.R.; Matsushita, M.; Coró, F.A.G.; De Souza, N.E.; Visentainer, J.V. Quantification of essential fatty acids and assessment of the nutritional quality indexes of lipids in tilapia alevins and juvenile tilapia fish (Oreochromis niloticus). J. Food Res. 2014, 3, 105. [Google Scholar] [CrossRef]
- Martelli, R.; Dalle Zotte, A.; Bonelli, A.; Lupi, P.; Franci, O.; Parisi, G. Macronutrient and fatty acid profiles of meagre (Argyrosomus regius) fillets as influenced by harvesting time and boiling. Ital. J. Anim. Sci. 2013, 12, 538–545. [Google Scholar] [CrossRef]
- Medeiros, E.; Queiroga, R.; Oliveira, M.; Medeiros, A.; Sabedot, M.; Bomfim, M.; Madruga, M. Fatty acid profile of cheese from dairy goats fed a diet enriched with castor, sesame and faveleira vegetable oils. Molecules 2014, 19, 992. [Google Scholar] [CrossRef] [Green Version]
- Winiarska-Mieczan, A.; Kwiecień, M.; Kwiatkowska, K.; Baranowska-Wójcik, E.; Szwajgier, D.; Zaricka, E. Fatty acid profile, antioxidative status and dietary value of the breast muscle of broiler chickens receiving glycine-Zn chelates. Anim. Prod. Sci. 2020, 60, 1095–1102. [Google Scholar] [CrossRef]
- Fernandes, C.E.; Vasconcelos, M.A.; Ribeiro, M. deA. ; Sarubbo, L.A.; Andrade, S.A.; Filho, A.B. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Rahmouni, N.; Pinto, D.C.G.A.; Santos, S.A.O.; Beghidja, N.; Silva, A.M.S. Lipophilic composition of Scabiosa stellata L.: An underexploited plant from Batna (Algeria). Chem. Pap. 2018, 72, 753–762. [Google Scholar] [CrossRef]
- Milczarek, A.; Osek, M.; Pachnik, M. Meat quality of broiler chickens fed mixtures with varied levels and varieties of faba bean. Acta Sci. Pol. Zootech. 2017, 15, 29–40. [Google Scholar] [CrossRef]
- Mekonnen, M.F.; Desta, D.T.; Alemayehu, F.R.; Kelikay, G.N.; Daba, A.K. Evaluation of fatty acid-related nutritional quality indices in fried and raw nile tilapia, (Oreochromis Niloticus), fish muscles. Food Sci. Nutr. 2020, 8, 4814–4821. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Canto, A.C.V.C.S.; Costa-Lima, B.R.C.; Suman, S.P.; Monteiro, M.L.G.; Marsico, E.T.; Conte-Junior, C.A.; Franco, R.M.; Salim, A.P.A.A.; Torrezan, R.; Silva, T.J.P. Fatty acid profile and bacteriological quality of caiman meat subjected to high hydrostatic pressure. LWT Food Sci. Technol. 2015, 63, 872–877. [Google Scholar] [CrossRef] [Green Version]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive compounds, nutritional quality and oxidative stability of cold-pressed camelina (Camelina sativa L.) oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef] [Green Version]
- Filip, S.; Hribar, J.; Vidrih, R. Influence of natural antioxidants on the formation of trans-fatty-acid isomers during heat treatment of sunflower oil. Eur. J. Lipid Sci. Technol. 2011, 113, 224–230. [Google Scholar] [CrossRef]
- Vučić, V.; Arsić, A.; Petrović, S.; Milanović, S.; Gurinović, M.; Glibetić, M. Trans fatty acid content in Serbian margarines: Urgent need for legislative changes and consumer information. Food Chem. 2015, 185, 437–440. [Google Scholar] [CrossRef]
- Chwastowska-Siwiecka, I.; Kaliniewicz, J.; Kondratowicz, J.; Skiepko, N. Effect of deep-freeze storage time and thawing method on profile of fatty acids in intramuscular fat of rabbit meat / Wpływ czasu zamrażalniczego przechowywania i metody rozmrażania na profil kwasów tłuszczowych tłuszczu śródmięśniowego mięsa króliczego. Zywn. Nauk. Technol. Jakość/Food. Sci. Technol. Qual. 2014, 4, 122–135. (In Polish) [Google Scholar] [CrossRef]
- Mondal, N.; Bhat, K.V.; Srivastava, P.S. Variation in fatty acid composition in Indian germplasm of sesame. J. Am. Oil Chem. Soc. 2010, 87, 1263–1269. [Google Scholar] [CrossRef]
- Herchi, W.; Bahashwan, S.; Sebei, K.; Ben Saleh, H.; Kallel, H.; Boukhchina, S. Effects of germination on chemical composition and antioxidant activity of flaxseed (Linum usitatissimum L) oil. Grasasy Aceites. 2015, 66, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Herchi, W.; Sakouhi, F.; Boukhchina, S.; Kallel, H.; Pepe, C. Changes in fatty acids, tocochromanols, carotenoids and chlorophylls content during flaxseed development. J. Am. Oil Chem. Soc. 2011, 88, 1011–1017. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Hammond, E.G. Analysis of Oleate, Linoleate and Linolenate Hydroperoxides in Oxidized Ester Mixtures. Lipids 1980, 15, 379–385. [Google Scholar] [CrossRef]
- Moknatjou, R.; Hajimahmoodi, M.; Toliyat, T.; Moghaddam, G.; Sadeghpour, O.; Monsef-Esfahani, H.; Shams-Ardekani, M.R. Effect of roasting on fatty acid profile of brown and yellow varieties of flaxseed (Linum usitatissimum L). Trop. J. Pharm. Res. 2015, 14, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. n-3 Fatty acids and cardiovascular disease: Evidence explained and mechanisms explored. Clin. Sci. 2004, 107, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makni, M.; Fetoui, H.; Garoui, M.; Gargouri, N.K.; Jaber, H.; Makni, J.; Boudawara, T.; Zeghal, N. Hypolipidemic and hepatoprotective seeds mixture diet rich in x-3 and x-6 fatty acids. Food Chem. Toxicol. 2010, 48, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. PUFA, inflammatory processes and rheumatoid arthritis. Proc. Nutr. Soc. 2008, 67, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Gazem, R.A.A.; Chandrashekariah, S.A. Omega fatty acids in health and disease: A review. J. Pharm. Res. 2014, 8, 1027–1044. Available online: https://www.academia.edu/14952628/Omega_Fatty_Acids_in_Health_and_Disease_A_Review (accessed on 29 December 2021).
- Bellaloui, N.; Smith, J.R.; Ray, J.D.; Gillen, A.M. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci. 2009, 49, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Yan, L.; Quigley, C.; Fickus, E.; Wei, H.; Chen, L.; Dong, F.; Araya, S.; Liu, J.; Hyten, D.; et al. Soybean BARCSoySNP6K: An assay for soybean genetics and breeding research. Plant J. 2020, 104, 800–811. [Google Scholar] [CrossRef]
- Sarr, P.S.; Okon, J.W.; Begoude, D.A.B.; Araki, S.; Ambang, Z.; Shibata, M.; Funakawa, S. Symbiotic N2-fixation estimated by the 15N tracer technique and growth of Pueraria phaseoloides (Roxb. ) Benth. inoculated with Bradyrhizobium strain in field conditions. Scientifica. 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.R.; Pereira, M.J.; Azevedo, J.; Mulas, R.; Velazquez, E.; Gonzalez-Andres, F.; Valentao, P.; Andrade, P.B. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds. Food Chem. 2013, 141, 3636–3648. Available online: http://fernando.gonzalez.unileon.es/articulos/FOOD_CHEM_141.pdf (accessed on 29 December 2021). [CrossRef]
- Carrera, C.; Martínez, M.J.; Dardanelli, J.; Balzarini, M. Water deficit effect on the relationship between temperature during the seed fill period and soybean seed oil and protein concentrations. Crop Sci. 2009, 49, 990–998. [Google Scholar] [CrossRef]
- Carrera, C.; Martínez, M.J.; Dardanelli, J.; Balzarini, M. Environmental variation and correlation of seed components in nontransgenic soybeans: Protein, oil, unsaturated fatty acids, tocopherols, and isoflavones. Crop Sci. 2011, 51, 800–809. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumari, P.; Trivedi, N.; Shukla, M.K.; Gupta, V.; Reddy, C.R.K.; Jha, B. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 2011, 23, 797–810. [Google Scholar] [CrossRef]
- Kim, K.D.; Kang, Y.; Kim, C. Application of genomic big data in plant breeding: Past, present, and future. Plants. 2020, 9, 1454. [Google Scholar] [CrossRef] [PubMed]
- Lapa, M.; Marques, C.C.; Alves, S.P.; Vasques, M.I.; Baptista, M.C.; Carvalhais, I.; Pereira, S.M.; Horta, A.E.M.; Bessa, R.J.B.; Pereira, R.M. Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition. Reprod. Domest. Anim. 2011, 46, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Tai, C.Y.; Chen, Y.C.; Chen, B.H. Effects of conjugated linoleic acid on the degradation and oxidation stability of model lipids during heating and illumination. Food Chem. 2001, 72, 199–206. [Google Scholar] [CrossRef]
- Azam, M.; Zhang, S.; Qi, J.; Abdelghany, A.M.; Shaibu, A.S.; Ghosh, S.; Feng, Y.; Huai, Y.; Gebregziabher, B.S.; Li, J.; et al. Profiling and associations of seed nutritional characteristics in Chinese and USA soybean cultivars. J. Food Compos. Anal. 2021, 98, 103803. [Google Scholar] [CrossRef]
- Kuryata, V.G.; Golunova, L.A.; Poprotska, I.V.; Khodanitska, O.O. Symbiotic nitrogen fixation of soybean-rhizobium complexes and productivity of soybean culture as affected by the retardant chlormequat chloride. Ukr. J. Ecol. 2019, 9, 5–13. Available online: https://www.ujecology.com/articles/symbiotic-nitrogen-fixation-of-soybeanrhizobium-complexes-and-productivity-of-soybean-culture-as-affected-by-the-retarda.pdf (accessed on 29 December 2021).
- Rahim, N.; Abbasi, M.K.; Hameed, S. Soybean seed quality characteristics in response to indigenous Bradyrhizobium inoculation and N fertilization in Kashmir-Pakistan. J. Am. Oil Chem. Soc. 2015, 92, 1165–1174. [Google Scholar] [CrossRef]
- Häusler, R.E.; Ludewig, F.; Krueger, S. Amino acids—A life between metabolism and signaling. Plant Sci. 2014, 229, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.; Liu, R.; Ramdath, D.D.; Liu, Q.; Hernandez, M.; Tsao, R. Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chem. 2014, 161, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Bellaloui, N.; Mengistu, A.; Kassem, M. Effects of genetics and environment on fatty acid stability in soybean. Food Nutr. Sci. 2013, 4, 165–175. [Google Scholar] [CrossRef] [Green Version]
Factors | Omega 3 (g∙100 g seeds−1) | Omega 6 (g∙100 g seeds−1) | Omega 6/Omega 3 | MUFA/PUFA | UFA/SFA | PUFA/SFA | ALA/LA |
---|---|---|---|---|---|---|---|
Cultivars | |||||||
Aldana | 9.00 a ± 0.69 | 52.5 a ± 1.62 | 5.86 ± 0.38 | 0.334 b ± 0.056 | 4.62 ± 0.61 | 3.46 ± 0.38 | 0.169 ± 0.012 |
Annushka | 9.25 b ± 0.74 | 53.5 b ± 1.48 | 5.81 ± 0.40 | 0.296 a ± 0.041 | 4.40 ± 0.48 | 3.39 ± 0.35 | 0.170 ± 0.012 |
Fertilisation (kg∙ha−1 N) | |||||||
0 | 9.08 ± 0.82 | 52.9 ± 1.70 | 5.87 ± 0.42 | 0.320 ± 0.061 | 4.56 ± 0.65 | 3.45 ± 0.41 | 0.169 ± 0.013 |
30 | 9.13 ± 0.65 | 52.9 ± 1.60 | 5.81 ± 0.35 | 0.314 ± 0.049 | 4.44 ± 0.57 | 3.38 ± 0.37 | 0.170 ± 0.012 |
60 | 9.17 ± 0.71 | 53.2 ± 1.62 | 5.82 ± 0.41 | 0.312 ± 0.047 | 4.53 ± 0.46 | 3.45 ± 0.31 | 0.170 ± 0.013 |
Inoculation | |||||||
Without inoculation | 9.12 ± 0.79 | 52.9 ± 1.63 | 5.83 ± 0.40 | 0.317 ± 0.061 | 4.47 ± 0.55 | 3.39 ± 0.33 | 0.170 ± 0.013 |
HiStick®Soy | 9.09 ± 0.72 | 53.0 ± 1.76 | 5.85 ± 0.38 | 0.318 ± 0.052 | 4.52 ± 0.54 | 3.43 ± 0.36 | 0.169 ± 0.012 |
Nitragina | 9.17 ± 0.68 | 53.1 ± 1.53 | 5.82 ± 0.41 | 0.312 ± 0.043 | 4.53 ± 0.61 | 3.45 ± 0.41 | 0.170 ± 0.013 |
Years | |||||||
2016 | 9.50 a ± 0.28 | 54.8 c ± 0.72 | 5.77 b ± 0.13 | 0.272 a ± 0.022 | 4.51 a ± 0.17 | 3.54 b ± 0.11 | 0.171 b ± 0.003 |
2017 | 8.62 a ± 0.30 | 52.4 ab ± 0.50 | 6.09 c ± 0.25 | 0.315 b ± 0.013 | 4.08 a ± 0.20 | 3.10 a ± 0.13 | 0.160 a ± 0.005 |
2018 | 8.42 b ± 0.47 | 51.6 a ± 1.86 | 6.15 c ± 0.31 | 0.386 c ± 0.049 | 5.07 b ± 0.77 | 3.65 b ± 0.52 | 0.160 a ± 0.009 |
2019 | 9.97 c ± 0.29 | 53.1 b ± 1.02 | 5.33 a ± 0.13 | 0.289 a ± 0.018 | 4.39 a ± 0.34 | 3.40 ab ± 0.27 | 0.186 c ± 0.005 |
Mean | 9.13 ± 0.72 | 53.0 ± 1.62 | 5.83 ± 0.39 | 0.315 ± 0.052 | 4.51 ± 0.56 | 3.54 ± 0.11 | 0.169 ± 0.012 |
Significances | |||||||
Cultivar | * | ** | NS | *** | NS | NS | NS |
Fertilisation | NS | NS | NS | NS | NS | NS | NS |
Inoculation | NS | NS | NS | NS | NS | NS | NS |
Years | *** | *** | *** | *** | *** | ** | *** |
Cultivar | Year | Omega 3 (g∙100 g seeds−1) | Omega 6 (g∙100 g seeds−1) | Omega 6/ Omega 3 | MUFA/PUFA | UFA/SFA | PUFA/SFA | ALA/LA |
---|---|---|---|---|---|---|---|---|
Aldana | 2016 | 9.30 bc ± 0.20 | 54.2 ± 0.34 | 5.83 b ± 0.13 | 0.293 bc ± 0.007 | 4.60 ± 0.13 | 3.56 ± 0.10 | 0.170 bc ±0.003 |
2017 | 8.36 a ± 0.11 | 52.6 ± 0.53 | 6.30 c ± 0.12 | 0.324 cd ± 0.009 | 4.21 ± 0.17 | 3.18 ± 0.12 | 0.155 a ± 0.002 | |
2018 | 8.53 a ± 0.60 | 50.6 ± 1.67 | 5.94 b ± 0.28 | 0.420 e ± 0.039 | 5.33 ± 0.83 | 3.76 ± 0.59 | 0.166 b ± 0.008 | |
2019 | 9.82 cd ± 0.30 | 52.6 ± 0.94 | 5.36 a ± 0.17 | 0.301 bc ± 0.017 | 4.33 ± 0.25 | 3.33 ± 0.20 | 0.186 d ± 0.006 | |
Annushka | 2016 | 9.69 cd ± 0.18 | 55.4 ± 0.39 | 5.71 b ± 0.11 | 0.252 a ± 0.005 | 4.41 ± 0.16 | 3.53 ± 0.12 | 0.173 c ± 0.002 |
2017 | 8.87 ab ± 0.17 | 52.2 ± 0.40 | 5.88 b ± 0.14 | 0.306 bc ± 0.009 | 3.95 ± 0.14 | 3.03 ± 0.09 | 0.165 b ± 0.002 | |
2018 | 8.31 a ± 0.31 | 52.7 ± 1.38 | 6.35 c ± 0.18 | 0.352 d ±0.030 | 4.80 ± 0.64 | 3.55 ± 0.45 | 0.154 a ± 0.004 | |
2019 | 10.12 d ± 0.21 | 53.7 ± 0.83 | 5.31 a ± 0.08 | 0.277 ab ±0.006 | 4.44 ± 0.41 | 3.48 ± 0.31 | 0.187 d ±0.003 | |
Significances | ||||||||
Cultivar x Years | * | NS | *** | * | NS | NS | * |
Factors | DFA | OFA | HH | AI | TI | CI |
---|---|---|---|---|---|---|
Cultivars | ||||||
Aldana | 85.2 ± 1.69 | 13.0 ± 1.37 | 6.63 ± 1.01 | 0.166 ± 0.021 | 0.434 ± 0.047 | 9.07 a ± 0.67 |
Annushka | 84.6 ± 1.58 | 13.5 ± 1.37 | 6.36 ± 0.84 | 0.173 ± 0.022 | 0.452 ± 0.046 | 9.31 b ± 0.75 |
Fertilisation (kg∙ha−1 N) | ||||||
0 | 85.1 ± 1.87 | 13.1 ± 1.59 | 6.63 ± 1.17 | 0.167 ± 0.024 | 0.440 ± 0.054 | 9.15 ± 0.81 |
30 | 84.6 ± 1.70 | 13.5 ± 1.53 | 6.37 ± 0.95 | 0.173 ± 0.024 | 0.450 ± 0.052 | 9.19 ± 0.65 |
60 | 85.0 ± 1.37 | 13.2 ± 0.97 | 6.48 ± 0.62 | 0.168 ± 0.016 | 0.440 ± 0.034 | 9.23 ± 0.71 |
Inoculation | ||||||
Without inoculation | 84.8 ± 1.63 | 13.5 ± 1.38 | 6.35 ± 0.85 | 0.173 ± 0.022 | 0.450 ± 0.050 | 9.18 ± 0.79 |
HiStick®Soy | 85.0 ± 1.58 | 13.1 ± 1.37 | 6.56 ± 0.98 | 0.168 ± 0.021 | 0.440 ± 0.045 | 9.16 ± 0.72 |
Nitragina | 85.0 ± 1.79 | 13.1 ± 1.41 | 6.57 ± 0.98 | 0.168 ± 0.022 | 0.439 ± 0.047 | 9.24 ± 0.67 |
Years | ||||||
2016 | 85.0 b ± 0.54 | 13.7 b ± 0.41 | 6.22 a ± 0.22 | 0.174 ab ± 0.007 | 0.450 b ± 0.016 | 9.59 b ± 0.27 |
2017 | 83.7 a ± 0.74 | 13.7 b ± 0.52 | 6.10 a ± 0.27 | 0.181 b ± 0.009 | 0.481 b ± 0.014 | 8.72 a ± 0.32 |
2018 | 86.2 b ± 2.31 | 12.2 a ± 2.13 | 7.30 b ± 1.44 | 0.154 a ± 0.032 | 0.413 a ± 0.070 | 8.46 a ± 0.47 |
2019 | 84.7 ab ± 1.29 | 13.4 ab ± 1.15 | 6.36 a ± 0.69 | 0.169 ab ± 0.017 | 0.429 a ± 0.032 | 10.00 c ± 0.28 |
Mean | 84.9 ± 1.65 | 13.3 ± 1.38 | 6.50 ± 0.93 | 0.169 ± 0.021 | 0.443 ± 0.047 | 9.19 ± 0.72 |
Significances | ||||||
Cultivar | NS | NS | NS | NS | NS | * |
Fertilisation | NS | NS | NS | NS | NS | NS |
Inoculation | NS | NS | NS | NS | NS | NS |
Years | ** | * | ** | ** | ** | *** |
Cultivar | Year | DFA | OFA | HH | AI | TI | CI |
---|---|---|---|---|---|---|---|
Aldana | 2016 | 85.2 ± 0.46 | 13.4 ± 0.30 | 6.36 ± 0.17 | 0.170 ± 0.006 | 0.442 ± 0.013 | 9.39 c ± 0.20 |
2017 | 84.1 ± 0.71 | 13.4 ± 0.30 | 6.30 ± 0.19 | 0.177 ± 0.008 | 0.473 ± 0.009 | 8.45 ab ± 0.13 | |
2018 | 86.9 ± 2.35 | 11.6 ± 2.08 | 7.74 ± 1.55 | 0.145 ± 0.031 | 0.383 ± 0.064 | 8.59 ab ± 0.58 | |
2019 | 84.5 ± 0.93 | 13.8 ± 0.64 | 6.13 ± 0.34 | 0.173 ± 0.011 | 0.437 ± 0.022 | 9.85 cd ± 0.29 | |
Annushka | 2016 | 84.7 ± 0.51 | 13.9 ± 0.33 | 6.08 ± 0.17 | 0.178 ± 0.006 | 0.459 ± 0.015 | 9.79 cd ± 0.18 |
2017 | 83.3 ± 0.60 | 14.1 ± 0.40 | 5.91 ± 0.20 | 0.186 ± 0.007 | 0.488 ± 0.015 | 8.99 b ± 0.20 | |
2018 | 85.5 ± 2.19 | 12.8 ± 2.13 | 6.86 ± 1.25 | 0.162 ± 0.032 | 0.442± 0.067 | 8.33 a ± 0.33 | |
2019 | 85.0 ± 1.58 | 13.1 ± 1.44 | 6.59 ± 0.88 | 0.164 ± 0.022 | 0.420 ± 0.040 | 10.15 d ± 0.19 | |
Significances | |||||||
Cultivar x Years | NS | NS | NS | NS | NS | * |
Factors | ODR | LDR | COX | S/P | OL/(LA + ALA) |
---|---|---|---|---|---|
Cultivars | |||||
Aldana | 75.4 a ± 3.01 | 14.6 ± 0.85 | 7.51a ± 0.26 | 0.198 a ± 0.020 | 0.328 b ± 0.056 |
Annushka | 77.5 b ± 2.38 | 14.6 ± 0.90 | 7.63 b ± 0.28 | 0.208 b ± 0.020 | 0.291 a ± 0.041 |
Fertilisation (kg∙ha−1 N) | |||||
0 | 76.2 ± 3.33 | 14.6 ± 0.89 | 7.59 ± 0.24 | 0.198 a ± 0.026 | 0.314 ± 0.060 |
30 | 76.6 ± 2.80 | 14.6 ± 0.83 | 7.59 ± 0.27 | 0.204 ab ± 0.019 | 0.308 ± 0.050 |
60 | 76.6 ± 2.66 | 14.6 ± 0.92 | 7.53 ± 0.32 | 0.207 b ± 0.015 | 0.307 ± 0.047 |
Inoculation | |||||
Without inoculation | 76.4 ± 3.36 | 14.6 ± 0.91 | 7.59 ± 0.21 | 0.208 b ± 0.020 | 0.311 ± 0.061 |
HiStick®Soy | 76.3 ± 2.94 | 14.6 ± 0.84 | 7.56 ± 0.33 | 0.198 a ± 0.023 | 0.312 ± 0.052 |
Nitragina | 76.7 ± 2.47 | 14.6 ± 0.89 | 7.57 ± 0.29 | 0.203 ab ± 0.017 | 0.306 ± 0.043 |
Years | |||||
2016 | 79.0 c ± 1.36 | 14.8 b ± 0.22 | 7.83 b ± 0.11 | 0.206 b ± 0.007 | 0.267 a ± 0.022 |
2017 | 76.5 b ± 0.75 | 14.0 a ± 0.42 | 7.39 a ± 0.06 | 0.214 c ± 0.009 | 0.308 b ± 0.013 |
2018 | 72.5 a ± 2.52 | 13.9 a ± 0.65 | 7.30 a ± 0.24 | 0.185 a ± 0.029 | 0.381 c ± 0.048 |
2019 | 77.9 c ± 1.06 | 15.8 c ± 0.33 | 7.77 b ± 0.15 | 0.207 bc ± 0.015 | 0.284 a ± 0.018 |
Mean | 76.5 ± 2.91 | 14.6 ± 0.87 | 7.57 ± 0.28 | 0.203 ± 0.020 | 0.310 ± 0.052 |
Sifnificances | |||||
Cultivar | *** | NS | ** | *** | *** |
Fertilisation | NS | NS | NS | ** | NS |
Inoculation | NS | NS | NS | ** | NS |
Year | *** | *** | *** | *** | *** |
Cultivar | Year | ODR | LDR | COX | S/P | OL/(LA+ALA) |
---|---|---|---|---|---|---|
Aldana | 2016 | 77.7 cd ± 0.45 | 14.7 bc ± 0.25 | 7.74 ± 0.06 | 0.201 bc ± 0.004 | 0.287 bc ± 0.007 |
2017 | 76.0 bc ± 0.53 | 13.6 a ± 0.13 | 7.36 ± 0.07 | 0.206 bc ± 0.004 | 0.317 cd ± 0.009 | |
2018 | 70.7 a ± 1.98 | 14.4 b ± 0.54 | 7.26 ± 0.28 | 0.174 a ± 0.027 | 0.415 e ± 0.039 | |
2019 | 77.2 cd ± 1.04 | 15.7 d ± 0.42 | 7.69 ± 0.13 | 0.211 cd ± 0.010 | 0.296 bc ± 0.017 | |
Annushka | 2016 | 80.2 e ± 0.36 | 14.9 c ± 0.15 | 7.92 ± 0.06 | 0.211 cd ± 0.006 | 0.247 a ± 0.006 |
2017 | 77.0 cd ± 0.55 | 14.4 b ± 0.14 | 7.41 ± 0.05 | 0.222 d ± 0.005 | 0.299 bc ± 0.009 | |
2018 | 74.3 b ± 1.60 | 13.4 a ± 0.29 | 7.35 ± 0.20 | 0.196 b ± 0.029 | 0.347 d ± 0.030 | |
2019 | 78.6 de ± 0.36 | 15.8 d ± 0.22 | 7.85 ± 0.12 | 0.203 bc ± 0.019 | 0.272 ab ± 0.006 | |
Significances | ||||||
Cultivar x Years | * | *** | NS | *** | * |
Cultivar | Inoculation | ODR | LDR | COX | S/P | OL/(LA+ALA) |
---|---|---|---|---|---|---|
Aldana | Without inoculation | 75.2 ± 3.83 | 14.5 ± 0.99 | 7.55 ab ± 0.18 | 0.199 ab ± 0.022 | 0.334 ± 0.072 |
HiStick® Soy | 75.3 ± 2.91 | 14.5 ± 0.68 | 7.54 ab ± 0.32 | 0.193 a ± 0.023 | 0.330 ± 0.053 | |
Nitragina | 75.7 ± 2.36 | 14.7 ± 0.92 | 7.45 a ±0.28 | 0.203 a ± 0.015 | 0.322 ± 0.042 | |
Annushka | Without inoculation | 77.7 ± 2.34 | 14.7 ± 0.86 | 7.63 b ± 0.24 | 0.218 c ± 0.014 | 0.289 ± 0.040 |
HiStick® Soy | 77.3 ± 2.70 | 14.6 ± 1.00 | 7.58 ab ± 0.36 | 0.203 ab ± 0.022 | 0.294 ± 0.047 | |
Nitragina | 77.6 ± 2.30 | 14.5 ± 0.90 | 7.69 b ± 0.25 | 0.203 ab ± 0.019 | 0.290 ± 0.039 | |
Sifnificances | ||||||
Cultivar x Inoculation | NS | NS | * | ** | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpunar-Krok, E.; Wondołowska-Grabowska, A. Quality Evaluation Indices for Soybean Oil in Relation to Cultivar, Application of N Fertiliser and Seed Inoculation with Bradyrhizobium japonicum. Foods 2022, 11, 762. https://doi.org/10.3390/foods11050762
Szpunar-Krok E, Wondołowska-Grabowska A. Quality Evaluation Indices for Soybean Oil in Relation to Cultivar, Application of N Fertiliser and Seed Inoculation with Bradyrhizobium japonicum. Foods. 2022; 11(5):762. https://doi.org/10.3390/foods11050762
Chicago/Turabian StyleSzpunar-Krok, Ewa, and Anna Wondołowska-Grabowska. 2022. "Quality Evaluation Indices for Soybean Oil in Relation to Cultivar, Application of N Fertiliser and Seed Inoculation with Bradyrhizobium japonicum" Foods 11, no. 5: 762. https://doi.org/10.3390/foods11050762
APA StyleSzpunar-Krok, E., & Wondołowska-Grabowska, A. (2022). Quality Evaluation Indices for Soybean Oil in Relation to Cultivar, Application of N Fertiliser and Seed Inoculation with Bradyrhizobium japonicum. Foods, 11(5), 762. https://doi.org/10.3390/foods11050762