Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PEF Operation
2.3. PEF Treatment
2.4. CTP Treatment
2.5. Sample Analysis
2.5.1. Microbiology
2.5.2. Scanning Electron Microscopy (SEM)
2.5.3. TOJ Quality
2.5.4. TOJ Composition
2.6. Statistical Analysis
3. Results and Discussion
3.1. Microbial Inactivation by PEF and CTP Treatments
3.2. Microbial Cell Morphology
3.3. TOJ Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortes, C.; Esteve, M.J.; Frigola, A. Color of orange juice treated by high intensity pulsed electric fields during refrigerated storage and comparison with pasteurized juice. Food Cont. 2008, 19, 151–158. [Google Scholar] [CrossRef]
- Donsi, G.; Ferrari, G.; Maresca, P. Pasteurization of fruit juices by means of a pulsed high pressure process. J. Food Sci. 2010, 75, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Donnell, C.P.O.; Muthukumarappan, K.; Cullen, P.J. Effect of low temperature sonication on orange juice quality parameters using response surface methodology. Food Bioprocess Technol. 2009, 2, 109–114. [Google Scholar] [CrossRef]
- Evrendilek, G.A.; Altuntas, J.; Sangun, M.K.; Zhang, H.Q. Apricot nectar processing by pulsed electric fields. Int. J. Food Proc. 2013, 16, 216–227. [Google Scholar] [CrossRef]
- Delso, C.; Martínez, J.M.; Cebrián, G.; Álvarez, I.; Raso, J. Understanding the occurrence of tailing in survival curves of Salmonella Typhimurium treated by pulsed electric fields. Bioelectrochemistry 2020, 135, 107580. [Google Scholar] [CrossRef]
- Ilkin, Y.S.; Aysegul, K.; Kivanc, A.; Buse, Y. The viability of Lactobacillus rhamnosus in orange juice fortified with nettle (Urtica dioica L.) and bioactive properties of the juice during storage. LWT-Food Sci. Technol. 2020, 118, 108707. [Google Scholar] [CrossRef]
- Mihindukulasuriya, S.D.F.; Jayaram, S.H. Release of electrode materials and changes in organoleptic profiles during the processing of liquid foods using pulse electric field treatment. IEEE Trans. Ind. Appl. 2020, 56, 711–717. [Google Scholar] [CrossRef]
- Salinas-Roca, B.; Elez-Martínez, P.; Welti-Chanes, J.; Martín-Belloso, O. Quality changes in mango juice treated by high-intensity pulsed electric fields throughout the storage. Food Bioprocess Technol. 2017, 10, 1970–1983. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, S.-L.; Li, J.-P.; Qu, C.; Sun, A.-D.; Qiao, X.-L. Design and optimization of a microchip operating at low-voltage pulsed electric field for juice sterilization. Food Bioprocess Technol. 2019, 12, 1696–1707. [Google Scholar] [CrossRef]
- Guo, M.; Jin, T.Z.; Geveke, D.J.; Fan, X.; Sites, J.E.; Wang, L. Evaluation of microbial stability, bioactive compounds, physicochemical properties, and consumer acceptance of pomegranate juice processed in a commercial scale pulsed electric field system. Food Bioprocess Technol. 2014, 7, 2112–2120. [Google Scholar] [CrossRef]
- Zulueta, A.; Barba, F.J.; Esteve, M.J.; Frigola, A. Changes in quality and nutritional parameters during refrigerated storage of an orange juice–milk beverage treated by equivalent thermal and non-thermal processes for mild pasteurization. Food Bioprocess Technol. 2013, 6, 2018–2030. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Lakka, A.; Palaiogiannis, D.; Pappas, V.M.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Pulsed electric field and Salvia officinalis L. leaves: A successful combination for the extraction of high value added compounds. Foods 2021, 10, 2014. [Google Scholar] [CrossRef]
- Nowacka, M.; Tappi, S.; Wiktor, A.; Rybak, K.; Miszczykowska, A.; Czyzewski, J.; Drozdzal, K.; Witrowa-Rajchert, D.; Tylewicz, U. The impact of pulsed electric field on the extraction of bioactive compounds from beetroot. Foods 2019, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Van Der Plancken, I.; Hendrickx, M.E.; Master, A.M. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes. Innov. Food Sci. Emerg. Technol. 2011, 12, 235–243. [Google Scholar] [CrossRef]
- Mosqueda-Melgar, J.; Raybaudi-Massilia, R.M.; Martín-Belloso, O. Microbiological shelf life and sensory evaluation of fruit juices treated by high-intensity pulsed electric fields and antimicrobials. Food Bioprod. Process. 2012, 90, 205–214. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Plaza, L.; Elez-Martínez, P.; De Ancos, B.; Martín-Belloso, O.; Cano, M.P. Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. J. Agric. Food Chem. 2005, 53, 4403–4409. [Google Scholar] [CrossRef]
- Timmermans, R.A.H.; Mastwijk, H.C.; Berendsen, L.B.J.M.; Nederhoff, A.L.; Matser, A.M.; Van Boekel, M.A.J.S.; Nierop Groot, M.N. Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. Int. J. Food Microbiol. 2019, 298, 63–73. [Google Scholar] [CrossRef]
- Agcam, E.; Akyildiz, A.; Akdemir Evrendilek, G. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem. 2014, 143, 354–361. [Google Scholar] [CrossRef]
- Yeom, H.W.; Streaker, C.B.; Zhang, Q.H.; Min, D.B. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J. Agric. Food Chem. 2000, 48, 4597–4605. [Google Scholar] [CrossRef]
- Kantala, C.; Supasin, S.; Intra, P.; Rattanadecho, P. Design and analysis of pulsed electric field processing for microbial inactivation (case study: Coconut juice). Sci Technol. Asia 2022, in press. [Google Scholar]
- Hutasoit, N.; Topa, S.H.; Javed, M.A.; Rashid, R.A.R.; Palombo, E.; Palanisamy, S. Antibacterial Efficacy of Cold-Sprayed Copper Coatings against Gram-Positive Staphylococcus aureus and Gram-Negative Escherichia coli. Materials 2021, 14, 6744. [Google Scholar] [CrossRef] [PubMed]
- Solomon, E.B.; Huang, L.; Sites, J.E.; Annous, B. Thermal inactivation of salmonella on cantaloupes using hot water. J. Food Sci. 2006, 71, M25–M30. [Google Scholar] [CrossRef]
- El-Hag, A.H.; Jayaram, S.H.; Rodriguez-Gonzalez, O.; Griffiths, M.W. The influence of size and shape of microorganism on pulsed electric field inactivation. IEEE Trans. Nanobiosci. 2011, 10, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.S.; Masterson, F.; Magee, T.R.A. Inactivation of E. coli K12 in apple juice by high voltage pulsed electric field. Eur. Food Res. Technol. 2003, 217, 434–437. [Google Scholar] [CrossRef]
- Lee, H.; Choi, S.; Kim, E.; Kim, Y.-N.; Lee, J.; Lee, D.-U. Effects of pulsed electric field and thermal treatments on microbial reduction, volatile composition, and sensory properties of orange juice, and their characterization by a principal component analysis. Appl. Sci. 2020, 11, 186. [Google Scholar] [CrossRef]
- Chittapun, S.; Jonjaroen, V.; Khumrangsee, K.; Charoenrat, T. C-phycocyanin extraction form two freshwater cyanobacteria by freeze thaw and pulsed electric field techniques to improve extraction efficiency and purity. Algal Res. 2020, 46, 101789. [Google Scholar] [CrossRef]
- Raso, J.; Frey, W.; Ferrari, G.; Pataro, G.; Knorr, D.; Teissie, J.; Miklavčič, D. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov. Food Sci. Emerg. Technol. 2016, 37, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Heldman, D.R. Introduction to Food Engineering, 4th ed.; Academic Press: Burlington, MA, USA, 2009; pp. 247–402. [Google Scholar]
- Ariza-Gracia, M.Á.; Cabello, M.P.; Cebrian, G.; Calvo, B.; Alvarez, I. Experimental and computational analysis of microbial inactivation in a solid by ohmic heating using pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2020, 65, 120440. [Google Scholar] [CrossRef]
- Grimi, N.; Mamouni, F.; Lebovka, N.; Vorobiev, E.; Vaxelaire, J. Impact of apple processing modes on extracted juice quality: Pressing assisted by pulsed electric fields. J. Food Eng. 2011, 103, 52–61. [Google Scholar] [CrossRef]
Parameters | Conditions |
---|---|
Electric field strength | 20–40 kV cm−1 |
Pulse number | 10–50 pulse |
Pulse width | 10 µs |
Pulse wave form | Exponential decay |
Frequency | 1 Hz |
Treatment time | 100–500 µs |
Pulse Number | Temperature (°C) | |||
---|---|---|---|---|
CTP Treatment | PEF Treatment (kV cm−1) | |||
20 | 30 | 40 | ||
0 (control) | ambient temperature (25.0 ± 2.00) | |||
10 | 26.1 ± 0.48 a | 28.9 ± 0.22 a | 35.6 ± 0.30 a | |
20 | 27.0 ± 0.45 b | 30.2 ± 0.62 b | 37.5 ± 0.35 b | |
30 | 68.2 ± 0.51 f | 27.8 ± 0.53 c | 31.7 ± 0.45 c | 39.1 ± 0.41 c |
40 | 28.6 ± 0.51 d | 34.0 ± 0.37 d | 41.6 ± 0.62 d | |
50 | 29.7 ± 0.50 e | 36.9 ± 0.75 e | 43.6 ± 0.52 e |
Ingredients (ppm) | Control | CTP | PEF (kV cm−1) at 40 Pulses | ||
---|---|---|---|---|---|
20 | 30 | 40 | |||
Vitamin C (×102) | 3.8 ± 0.34 d | 3.1 ± 0.13 a | 3.5 ± 0.36 b | 3.5 ± 0.33 b | 3.4 ± 0.35 b |
Sucrose (×103) | 48.6 ± 2.47 d | 37.4 ± 1.58 a | 43.1 ± 2.15 c | 42.1 ± 2.52 b,c | 41.8 ± 2.78 b |
Glucose (×103) | 34.9 ± 1.26 d | 28.3 ± 2.20 a | 31.9 ± 1.97 b | 32.1 ± 2.50 c | 32.0 ± 1.91 c |
Fructose (×103) | 38.2 ± 2.04 c | 30.5 ± 1.05 a | 34.4 ± 2.78 b | 34.3 ± 1.69 b | 34.1 ± 2.45 b |
Lithium | 23.4 ± 1.17 d | 19.2 ± 1.58 a | 21.8 ± 1.10 c | 22.2 ± 1.20 b,c | 20.9 ± 0.98 b |
Sodium | 48.6 ± 1.65 d | 41.2 ± 1.42 a | 45.7 ± 2.04 c | 45.4 ± 1.12 c | 44.7 ± 2.09 b |
Potassium (×102) | 14.7 ± 1.19 c | 11.9 ± 1.95 a | 13.5 ± 1.47 b | 13.7 ± 1.83 b | 13.1 ± 1.32 b |
Magnesium | 60.7 ± 1.26 c | 51.3 ± 2.11 a | 60.0 ± 1.01 c | 59.6 ± 2.63 c | 56.3 ± 1.81 b |
Calcium | 81.6 ± 2.25 b | 80.0 ± 1.67 a | 81.5 ± 2.08 b | 81.6 ± 1.14 b | 81.3 ± 1.89 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantala, C.; Supasin, S.; Intra, P.; Rattanadecho, P. Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice. Foods 2022, 11, 1102. https://doi.org/10.3390/foods11081102
Kantala C, Supasin S, Intra P, Rattanadecho P. Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice. Foods. 2022; 11(8):1102. https://doi.org/10.3390/foods11081102
Chicago/Turabian StyleKantala, Chatchawan, Supakiat Supasin, Panich Intra, and Phadungsak Rattanadecho. 2022. "Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice" Foods 11, no. 8: 1102. https://doi.org/10.3390/foods11081102
APA StyleKantala, C., Supasin, S., Intra, P., & Rattanadecho, P. (2022). Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice. Foods, 11(8), 1102. https://doi.org/10.3390/foods11081102