Toxicity, Antioxidant Activity, and Phytochemicals of Basil (Ocimum basilicum L.) Leaves Cultivated in Southern Punjab, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material
2.2. Chemicals and Equipment
2.3. Preparation of O. basilicum Extracts
2.4. Brine Shrimp Lethality Test
2.5. Preparation of O. basilicum Leaf Extracts Using Different Solvents
2.6. Phytochemical Analysis of O. basilicum Leaf Extracts
2.6.1. Qualitative Analysis of Phytochemicals
2.6.2. Determination of Total Phenolic and Total Flavonoid Content
2.7. Determination of Radical Scavenging Activity
2.7.1. DPPH Radical Scavenging Activity
2.7.2. Ferric Reducing Antioxidant Power (FRAP)
2.7.3. Hydrogen Peroxide Scavenging Activity
2.8. Characterization of Phenolic Compounds by LC-ESI-MS-MS
2.9. Statistical Analysis
3. Results and Discussion
3.1. Cytotoxicity of O. basilicum Water Extracts
3.2. Qualitative Phytochemical Screening of O. basilicum Extracts
3.3. Total Phenolic Content, Total Flavonoid Content, and Tannin Content of O. basilicum Extracts
3.4. Antioxidant Potential of O. basilicum Extracts
3.5. LC-ESI-MS/MS Phenolic Compound Identification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranjha, M.M.A.N.; Amjad, S.; Ashraf, S.; Khawar, L.; Safdar, M.N.; Jabbar, S.; Nadeem, M.; Mahmood, S.; Murtaza, M.A. Extraction of polyphenols from apple and pomegranate peels employing different extraction techniques for the development of functional date bars. Int. J. Fruit Sci. 2020, 20, 1201–1221. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; Guerra, J.M.; Sarubbo, L.A. Biosurfactants: Production and application prospects in the food industry. Biotechnol. Progress. 2020, 36, 3030–3038. [Google Scholar] [CrossRef]
- Tortosa, V.; Pietropaolo, V.; Brandi, V.; Macari, G.; Pasquadibisceglie, A.; Polticelli, F. Computational methods for the identification of molecular targets of toxic food additives. Butylated hydroxytoluene as a case study. Molecules 2020, 25, 2229. [Google Scholar] [CrossRef] [PubMed]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Rubab, S.; Hussain, I.; Khan, B.A.; Unar, A.A.; Abbas, K.A.; Khichi, Z.H.; Khan, H. Biomedical Description of Ocimum basilicum L. J. Islamic Int. Med. Coll. 2017, 12, 59–67. [Google Scholar]
- Janick, J.; Simon, J.E. Advances in New Crops; Timber Press: Portland, OR, USA, 1990; pp. 484–489. [Google Scholar]
- Ch, M.A.; Naz, S.B.; Sharif, A.; Akram, M.; Saeed, M.A. Biological and pharmacological properties of the sweet basil (Ocimum basilicum). J. Pharm. Res. Int. 2015, 7, 330–339. [Google Scholar] [CrossRef]
- Purushothaman, B.; Srinivasan, R.P.; Suganthi, P.; Ranganathan, B.; Gimbun, J.; Shanmugam, K. A comprehensive review on Ocimum basilicum. J. Nat. Remedies 2018, 18, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Majdi, C.; Pereira, C.; Dias, M.I.; Calhelha, R.C.; Alves, M.J.; Rhourri-Frih, B.; Charrouf, Z.; Barros, L.; Amaral, J.S.; Ferreira, I.C. Phytochemical characterization and bioactive properties of cinnamon basil (Ocimum basilicum cv.‘Cinnamon’) and lemon basil (Ocimum× citriodorum). Antioxidants 2020, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- Takwa, S.; Caleja, C.; Barreira, J.C.; Soković, M.; Achour, L.; Barros, L.; Ferreira, I.C. Arbutus unedo L. and Ocimum basilicum L. as sources of natural preservatives for food industry: A case study using loaf bread. LWT-Food Sci. Technol. 2018, 88, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Eftekhar, N.; Moghimi, A.; Mohammadian, R.N.; Saadat, S.; Boskabady, M. Immunomodulatory and anti-inflammatory effects of hydro-ethanolic extract of Ocimum basilicum leaves and its effect on lung pathological changes in an ovalbumin-induced rat model of asthma. BMC Complement. Altern. Med. 2019, 19, 349. [Google Scholar] [CrossRef] [PubMed]
- Kheradmandpour, M.; Aminifar, S.A.; Dianat, M. The effect of hydro-alcoholic extract of Ocimum basilicum on CaCl2-induced cardiac Arrhythmias in rats. Jentashapir J. Cell Mol. Biol. 2020, 11, e110309. [Google Scholar] [CrossRef]
- Al-Subhi, L. Two cultivars of Ocimum basilicum leaves extracts attenuate streptozotocin-mediated oxidative stress in diabetic Rrats. Pak. J. Biol. Sci. 2020, 23, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. Int. J. Food Prop. 2020, 23, 1961–1970. [Google Scholar] [CrossRef]
- Seyed, M.A.; Ayesha, S.; Azmi, N.; Al-Rabae, F.M.; Al-Alawy, A.I.; Al-Zahrani, O.R.; Hawsawi, Y. The neuroprotective attribution of Ocimum basilicum: A review on the prevention and management of neurodegenerative disorders. Future J. Pharm. Sci. 2021, 7, 139. [Google Scholar] [CrossRef]
- Monga, J.; Sharma, M.; Tailor, N.; Ganesh, N. Antimelanoma and radioprotective activity of alcoholic aqueous extract of different species of Ocimum in C57BL mice. Pharm. Biol. 2011, 49, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Saraf, A.; Sankhala, S. Simultaneous determination of rutin and quercetin in different parts of Tecomella undulata (seem): An endangered medicinal plant. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 434–439. [Google Scholar]
- Ghasemzadeh, A.; Ashkani, S.; Baghdadi, A.; Pazoki, A.; Jaafar, H.Z.; Rahmat, A. Improvement in flavonoids and phenolic acids production and pharmaceutical quality of sweet basil (Ocimum basilicum L.) by ultraviolet-B irradiation. Molecules 2016, 21, 1203. [Google Scholar] [CrossRef] [Green Version]
- Miele, M.; Dondero, R.; Ciarallo, G.; Mazzei, M. Methyleugenol in Ocimum basilicum L. Cv. genovese gigante. J. Agric. Food Chem. 2021, 49, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Zahran, E.M.; Abdelmohsen, U.R.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S. Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochem. Rev. 2020, 19, 907–953. [Google Scholar] [CrossRef]
- Sestili, P.; Ismail, T.; Calcabrini, C.; Guescini, M.; Catanzaro, E.; Turrini, E.; Fimognari, C. The potential effects of Ocimum basilicum on health: A review of pharmacological and toxicological studies. Expert Opin. Drug Metab. Toxicol. 2018, 14, 679–692. [Google Scholar] [CrossRef]
- Touiss, I.; Khatib, S.; Bekkouch, O.; Amrani, S.; Harnafi, H. Phenolic extract from Ocimum basilicum restores lipid metabolism in Triton WR-1339-induced hyperlipidemic mice and prevents lipoprotein-rich plasma oxidation. Food Sci. Hum. Wellness 2017, 6, 28–33. [Google Scholar] [CrossRef]
- Samson, J.; Sheeladevi, R.; Ravindran, R. Oxidative stress in brain and antioxidant activity of Ocimum sanctum in noise exposure. Neurotoxicology 2007, 28, 679–685. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef]
- Anwar, F.; Hussain, A.I.; Sherazi, S.T.H.; Bhanger, M.I. Changes in composition and antioxidant and antimicrobial activities of essential oil of fennel (Foeniculum vulgare Mill.) fruit at different stages of maturity. J. Herbs Spices Med. Plants 2009, 15, 187–202. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Subhan, F.; Khan, M.A.; Ahmad, W.; Ali, G.; Imran, M.; Ahmad, S. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L. show high anti-angiogenic, anti-tumor, brine shrimp, and fibroblast NIH/3T3 cell line cytotoxicity. Front. Pharmacol. 2016, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Kokate, C.; Purohit, A.; Gokhale, S. Carbohydrate and derived Products, drugs containing glycosides, drugs containing tannins, lipids and protein alkaloids. In Text Book of Pharmacognosy; Atithi Books; Sathya Publishers: New Delhi, India, 2001; pp. 133–166. [Google Scholar]
- Hossain, M.A.; Shah, M.D. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arab. J. Chem. 2015, 8, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Oriakhi, K.; Oikeh, E.I.; Ezeugwu, N.; Anoliefo, O.; Aguebor, O.; Omoregie, E.S. Comparative antioxidant activities of extracts of Vernonia amygdalina and Ocimum gratissimum leaves. J. Agric. Sci. 2014, 6, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Polshettiwar, S.A.; Ganjiwale, R.O.; Wadher, S.J.; Yeole, P.G. Spectrophotometric estimation of total tannins in some ayurvedic eye drops. Indian J. Pharma. Sci. 2007, 69, 574–576. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Mudalip, S.A.; Olalere, O.A. Effect of drying methods on the free radicals scavenging activity of Vernonia amygdalina growing in Malaysia. J. King Saud Univ. Sci. 2019, 31, 495–499. [Google Scholar] [CrossRef]
- Zahin, M.; Aqil, F.; Ahmad, I. Broad spectrum antimutagenic activity of antioxidant active fraction of Punica granatum L. peel extracts. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2010, 703, 99–107. [Google Scholar] [CrossRef]
- Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef]
- Steinmann, D.; Ganzera, M. Recent advances on HPLC/MS in medicinal plant, analysis. J. Pharm. Biomed. Anal. 2011, 55, 744–757. [Google Scholar] [CrossRef]
- Ramachandran, S.; Vamsikrishna, M.; Gowthami, K.V.; Heera, B.; Dhanaraju, M.D. Assessment of cytotoxic activity of Agave cantula using Brine Shrimp (Artemia salina) lethality assay. Asian J. Sci. Res. 2011, 4, 90–94. [Google Scholar] [CrossRef]
- Gadir, S.A. Assessment of bioactivity of some Sudanese medicinal plants using brine shrimp (Artemia salina) lethality assay. J. Chem. Pharm. Res. 2012, 4, 5145–5148. [Google Scholar]
- Khan, I.; Ahmad, K.; Khalil, A.T.; Khan, J.; Khan, Y.A.; Saqib, M.S.; Umar, M.N.; Ahmad, H. Evaluation of antileishmanial, antibacterial and brine shrimp cytotoxic potential of crude methanolic extract of Herb Ocimum basilicum (Lamacea). World J. Tradit. Chin. Med. 2015, 35, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Gebrehiwot, H.; Bachetti, R.K.; Dekebo, A. Chemical composition and antimicrobial activities of leaves of sweet basil (Ocimum basilicum L.) herb. Int. J. Basic Clin. Pharmacol. 2015, 4, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Hamad, G.M.; Darwish, A.M.; Abu-Serie, M.M.; El Sohaimy, S.A. Antimicrobial, antioxidant and anti-inflammatory characteristics of combination (Cassia fistula and Ocimum basilicum) extract as natural preservative to control & prevent food contamination. J. Food Nutr. Res. 2017, 5, 771–780. [Google Scholar]
- Sanni, S.; Onyeyili, P.A.; Sanni, F.S. Phytochemical analysis, elemental determination and some in vitro antibacterial activity of Ocimum basilicum L. leaf extracts. Res. J. Phytochem. 2008, 2, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Irshad, S. Phytochemical screening and antibacterial activities of essential oil, ethanolic and methanolic extracts of Ocimum basillicum L. Pak. J. Biochem. Mol. Biol. 2016, 49, 36–39. [Google Scholar]
- Das, S.; Barman, S.; Teron, R.; Bhattacharya, S.S.; Kim, K.H. Secondary metabolites and anti-microbial/anti-oxidant profiles in Ocimum spp.: Role of soil physico-chemical characteristics as eliciting factors. Environ. Res. 2020, 188, 109749. [Google Scholar] [CrossRef]
- Daniel, V.N.; Daniang, I.E.; Nimyel, N.D. Phytochemical analysis and mineral elements composition of Ocimum basilicum obtained in JOS metropolis, plateau state, Nigeria. Int. J. Eng. Sci. Technol. 2011, 11, 161–165. [Google Scholar]
- Nguyen, V.T.; Nguyen, N.Q.; Thi, N.Q.N.; Thi, C.Q.N.; Truc, T.T.; Nghi, P.T.B. Studies on chemical, polyphenol content, flavonoid content, and antioxidant activity of sweet basil leaves (Ocimum basilicum L.). In Proceedings of the IOP Conference Serie Materials Science and Engineerings, 2nd International Conference on Innovative Technology, Pekan Pahang, Malaysia, 22–23 December 2020. [Google Scholar]
- Vlase, L.; Benedec, D.; Hanganu, D.; Damian, G.; Csillag, I.; Sevastre, B.; Mot, A.C.; Silaghi-Dumitrescu, R.; Tilea, I. Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef]
- Naidu, J.R.; Ismail, R.B.; Sasidharan, S. Chemical profiling and antioxidant activity of Thai basil (Ocimum basilicum). J. Essent. Oil-Bear. Plants. 2016, 19, 750–755. [Google Scholar] [CrossRef]
- Kim, H.J.; Chen, F.; Wang, X.; Rajapakse, N.C. Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 2006, 54, 2327–2332. [Google Scholar] [CrossRef]
- Shiga, T.; Shoji, K.; Shimada, H.; Hashida, S.N.; Goto, F.; Yoshihara, T. Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L. Plant Biotechnol. 2009, 26, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Harnafi, H.; Caid, H.S.; el Houda Bouanani, N.; Aziz, M.; Amrani, S. Hypolipemic activity of polyphenol-rich extracts from Ocimum basilicum in Triton WR-1339-induced hyperlipidemic mice. Food Chem. 2008, 108, 205–212. [Google Scholar] [CrossRef]
- Tewari, D.; Pandey, H.K.; Sah, A.N.; Meena, H.; Chander, V.; Singh, R.; Singh, P. Phytochemical, antioxidant and antidepressant evaluation of Ocimum basilicum, O. tenuiflorum, O. kilimandscharicum grown in India. J. Biol. Act. Prod. Nat. 2015, 5, 120–131. [Google Scholar]
- Lim, C.S.H.; Lim, S.L. Ferric reducing capacity versus ferric reducing antioxidant power for measuring total antioxidant capacity. Lab. Med. 2013, 44, 51–55. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Attia, F.A.; Liu, Z.; Li, C.; Wei, J.; Kang, W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci. Hum. Wellness 2019, 8, 299–305. [Google Scholar] [CrossRef]
- Siti Mahirah, Y.; Rabeta, M.S.; Antora, R.A. Effects of different drying methods on the proximate composition and antioxidant activities of Ocimum basilicum leaves. Food Res. 2018, 2, 421–428. [Google Scholar]
- Sekar, K.; Thangaraj, S.; Babu, S.S.; Harisaranraj, R.; Suresh, K. Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum basilicum. J. Phytol. 2009, 1, 408–413. [Google Scholar]
- Wang, X.; Tong, H.; Chen, F.; Gangemi, J.D. Chemical characterization and antioxidant evaluation of muscadine grape pomace extract. Food Chem. 2010, 123, 1156–1162. [Google Scholar] [CrossRef]
- Zhang, H.M.; Zhao, L.; Li, H.; Xu, H.; Chen, W.W.; Tao, L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 2014, 11, 92. [Google Scholar] [PubMed]
- Choi, E.M.; Suh, K.S.; Lee, Y.S. Liquiritigenin restores osteoblast damage through regulating oxidative stress and mitochondrial dysfunction. Phytother Res. 2014, 28, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, M.; Kim, H.; Lee, Y.; Lee, Y.I. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from radix glycyrrhizae in human health and disease models. Front. Aging Neurosci. 2018, 10, 348–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, P.; Kumar, M.; Singh, B.; Kumar, S.; Kaur, S. Amelioration of oxidative stress induced by oxidative mutagens and COX-2 inhibitory activity of umbelliferone isolated from Glycyrrhiza glabra L. Asian Pac. J. Trop. Biomed. 2012, 2, 120–126. [Google Scholar] [CrossRef]
- Rahman, H.; Khan, I.; Hussain, A.; Shahat, A.A.; Tawab, A.; Qasim, M.; Adnan, M.; Al-Said, M.S.; Ullah, R.; Khan, S.N. Glycyrrhiza glabra HPLC fractions: Identification of aldehydo isoophiopogonone and liquirtigenin having activity against multidrug resistant bacteria. BMC Complement. Altern. Med. 2018, 18, 140. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Yin, P.; Ma, C.; Liu, Y. Method development and validation for pharmacokinetic and tissue distributions of ellagic acid using ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Molecules 2014, 19, 18923–18935. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, Q.; Wang, X.; Yang, J.; Wang, Q. Qualitative analysis and simultaneous quantification of phenolic compounds in the aerial parts of Salvia miltiorrhiza by HPLC-DAD and ESI/MSn. Phytochem. Anal. 2011, 22, 247–257. [Google Scholar] [CrossRef]
- Riaz, M.; Rasool, N.; Iqbal, M. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis of Russelia equisetiformis extract. Bulg. Chem. Commun. 2017, 49, 354–359. [Google Scholar]
Test | Method | Observation | Constituents |
---|---|---|---|
Wagner’s Test | Extract (2 mL; 2 g/20 mL) + 1% HCL (1 mL) + Wagner’s reagent (0.5 mL) | Cream, reddish brown precipitate | Alkaloids |
Ferric Chloride Test | Extract (2 mL; 0.5 g/5 mL) + 10% FeCl3 (few drops) | Dark brown or blackish red color | Flavonoids |
Folin–Ciocalteu reagent Test | Extract (1 mL; 0.5 g/5 mL) + Folin–Ciocalteu reagent (0.5 mL) + aqueous sodium (few drops) | Gray or black color | Phenols |
Froth Test | Extract (1 mL; 0.5 g/5 mL) + water (5 mL) | Copious lather formation | Saponins |
Salkowki’s Test | Extract (1 mL; 0.2 g/2 mL) + chloroform (1 mL) + conc. H2SO4 (few drops) | Brown ring formation | Steroids |
Ferric Chloride Test | Extract (1 mL; 0.5 g/10 mL) + 5% FeCl3 (3 drops) | Greenish brown, blue green or blue-black color | Tannins |
Salkowki’s Test | Extract (2 mL; 0.5 g/5 mL) + chloroform (1 mL) + conc. H2SO4 (2 mL) | Red brownish precipitate | Terpenoids |
Growth Stage (GS) | Percentage of Mortality at Various Concentrations of Extract | ||
---|---|---|---|
10 µg/mL | 100 µg/mL | 1000 µg/mL | |
GS-1 | 6.66 ± 0.02 | 10.0 ± 1.80 | 26.7 ± 3.34 |
GS-2 | 6.66 ± 0.03 | 6.66 ± 0.34 | 8.91 ± 0.10 |
GS-3 | 13.3 ± 0.33 | 13.3 ± 0.67 | 16.7 ± 0.34 |
Etoposide (standard) | 73.2 ± 0.21 | 100 ± 0.01 | 100 ± 0.01 |
Extract | Alkaloids | Flavonoids | Phenols | Steroid | Saponins | Tannins | Terpenoids | Glycosides |
---|---|---|---|---|---|---|---|---|
n-Hexane | − | + | + | + | + | + | + | + |
Ethanol | − | + | + | + | + | + | − | − |
Water | + | + | + | + | − | + | + | + |
Dichloromethane | − | + | + | + | − | + | − | + |
Average Mass (m/z) | Rt. (min) | ESI-MS/MS (Positive Mode) | Identification | Molecular Formula | References |
---|---|---|---|---|---|
256 | 4.21 | 255, 237 | Liquiritigenin | C15H12O4 | [59] |
301 | 5.06 | 301, 286.08, 283, 258, 231.17, 186 | Ellagic acid | C14H6O8 | [60] |
359 | 2.30 | 359.33, 344.08, 331.17, 315, 229.08, 197, 161 | Rosmarinic acid | C18H16O8 | [61] |
290 | 12.55 | 291.25, 273, 247.25 | Catechin | C15H14O6 | [62] |
161 | 1.27 | 161.08, 133 | Umbelliferone | C9H6O3 | [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadeem, H.R.; Akhtar, S.; Sestili, P.; Ismail, T.; Neugart, S.; Qamar, M.; Esatbeyoglu, T. Toxicity, Antioxidant Activity, and Phytochemicals of Basil (Ocimum basilicum L.) Leaves Cultivated in Southern Punjab, Pakistan. Foods 2022, 11, 1239. https://doi.org/10.3390/foods11091239
Nadeem HR, Akhtar S, Sestili P, Ismail T, Neugart S, Qamar M, Esatbeyoglu T. Toxicity, Antioxidant Activity, and Phytochemicals of Basil (Ocimum basilicum L.) Leaves Cultivated in Southern Punjab, Pakistan. Foods. 2022; 11(9):1239. https://doi.org/10.3390/foods11091239
Chicago/Turabian StyleNadeem, Hafiz Rehan, Saeed Akhtar, Piero Sestili, Tariq Ismail, Susanne Neugart, Muhammad Qamar, and Tuba Esatbeyoglu. 2022. "Toxicity, Antioxidant Activity, and Phytochemicals of Basil (Ocimum basilicum L.) Leaves Cultivated in Southern Punjab, Pakistan" Foods 11, no. 9: 1239. https://doi.org/10.3390/foods11091239