Rapid Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering and Coupled Chemometric Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Ag-NPs @PAN-Nanohump Array Film
2.3. SERS Measurement
2.4. Preparation of Apple Samples
2.5. HPLC-MS Measurement
2.6. Specificity and Selectivity of the Ag-NPs @PAN-Nanohump-Array Film
2.7. Data Analysis
3. Results and Discussion
3.1. Characterization of the Prepared Ag-NPs @PAN-Nanohump Array Film
3.2. Determination of Carbendazim with Ag-NPs @PAN-Nanohump Array Film
3.3. Model Results
3.4. Specificity and Selectivity
3.5. Detection of Carbendazim in Apple Samples
3.6. Comparison with LC-MS Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.P.; Lu, R.F.; Chen, K.J. Detection of internal defect of apples by a multichannel Vis/NIR spectroscopic system. Postharvest Biol. Technol. 2020, 161, 111065. [Google Scholar] [CrossRef]
- El Hawari, K.; Mokh, S.; Al Iskandarani, M.; Halloum, W.; Jaber, F. Pesticide residues in Lebanese apples and health risk assessment. Food Addit. Contam. Part B-Surveill. 2019, 12, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.; Yang, H.; Wang, X.; Xue, C.; Jiang, J.; Hong, Q. Potential effects of Rhodococcus qingshengii strain djl-6 on the bioremediation of carbendazim-contaminated soil and the assembly of its microbiome. J. Hazard. Mater. 2021, 414, 125496. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Lian, S.; Dong, X.L.; Wang, C.X.; Li, B.H.; Li, P.L. Analysis of the dissipation kinetics of thiophanate-methyl and its metabolite carbendazim in apple leaves using a modified QuEChERS-UPLC-MS/MS method. Biomed. Chromatogr. 2019, 33, e4394. [Google Scholar] [CrossRef]
- Yao, Y.; Wen, Y.; Zhang, L.; Wang, Z.; Zhang, H.; Xu, J. Electrochemical recognition and trace-level detection of bactericide carbendazim using carboxylic group functionalized poly(3,4-ethylenedioxythiophene) mimic electrode. Anal. Chim. Acta 2014, 831, 38–49. [Google Scholar] [CrossRef]
- Gray, L.E.; Ostby, J.; Linder, R.; Goldman, J.; Rehnberg, G.; Cooper, R. Carbendazim-induced alterations of reproductive development and function in the rat and hamster. Fundam. Appl. Toxicol. 1990, 15, 281–297. [Google Scholar] [CrossRef]
- Chen, X.; Lin, M.; Sun, L.; Xu, T.; Lai, K.; Huang, M.; Lin, H. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Food Chem. 2019, 293, 271–277. [Google Scholar] [CrossRef]
- Almutairi, M.; Alsaleem, T.; Al Herbish, H.; Al Sayari, A.A.; Alowaifeer, A.M. LC-MS/MS and GC-MS/MS analysis of pesticide residues in Ecuadorian and Filipino Cavendish bananas imported into Saudi Arabia. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2021, 38, 1376–1385. [Google Scholar] [CrossRef]
- Lee, H.S.; Rahman, M.M.; Chung, H.S.; Kabir, H.; Yoon, K.-S.; Cho, S.-K.; Abd El-Aty, A.M.; Shim, J.-H. An effective methodology for simultaneous quantification of thiophanate-methyl, and its metabolite carbendazim in pear, using LC-MS/MS. J. Chromatogr. B 2018, 1095, 1–7. [Google Scholar] [CrossRef]
- Singh, S.B.; Foster, G.D.; Khan, S.U. Microwave-Assisted Extraction for the Simultaneous Determination of Thiamethoxam, Imidacloprid, and Carbendazim Residues in Fresh and Cooked Vegetable Samples. J. Agric. Food Chem. 2004, 52, 105–109. [Google Scholar] [CrossRef]
- Liu, H.R.; Wang, Y.W.; Fu, R.J.; Zhou, J.; Liu, Y.L.; Zhao, Q.Y.; Yao, J.J.; Cui, Y.L.; Wang, C.Q.; Jiao, B.N.; et al. A multicolor enzyme-linked immunoassay method for visual readout of carbendazim. Anal. Methods 2021, 13, 4256–4265. [Google Scholar] [CrossRef]
- Pan, T.-T.; Guo, M.-T.; Guo, W.; Lu, P.; Hu, D.-Y. A Sensitive SERS Method for Determination of Pymetrozine in Apple and Cabbage Based on an Easily Prepared Substrate. Foods 2021, 10, 1874. [Google Scholar] [CrossRef]
- Furini, L.N.; Sanchez-Cortes, S.; López-Tocón, I.; Otero, J.C.; Aroca, R.F.; Constantino, C.J.L. Detection and quantitative analysis of carbendazim herbicide on Ag nanoparticles via surface-enhanced Raman scattering. J. Raman Spectrosc. 2015, 46, 1095–1101. [Google Scholar] [CrossRef]
- He, J.; Li, H.; Zhang, L.; Zhi, X.; Li, X.; Wang, X.; Feng, Z.; Shen, G.; Ding, X. Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea. Food Chem. 2021, 339, 128085. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, N.; Han, C.; Chen, Z.; Zhai, X.; Li, Z.; Zheng, K.; Zhu, J.; Wang, X.; Zou, X.; et al. Competitive immunosensor for sensitive and optical anti-interference detection of imidacloprid by surface-enhanced Raman scattering. Food Chem. 2021, 358, 129898. [Google Scholar] [CrossRef]
- Filipec, S.V.; Valinger, D.; Mikac, L.; Ivanda, M.; Kljusurić, J.G.; Janči, T. Influence of Sample Matrix on Determination of Histamine in Fish by Surface Enhanced Raman Spectroscopy Coupled with Chemometric Modelling. Foods 2021, 10, 1767. [Google Scholar] [CrossRef]
- Pan, H.; Ahmad, W.; Jiao, T.; Zhu, A.; Ouyang, Q.; Chen, Q. Label-free Au NRs-based SERS coupled with chemometrics for rapid quantitative detection of thiabendazole residues in citrus. Food Chem. 2021, 375, 131681. [Google Scholar] [CrossRef]
- Li, Z.; Meng, G.; Huang, Q.; Hu, X.; He, X.; Tang, H.; Wang, Z.; Li, F. Ag Nanoparticle-Grafted PAN-Nanohump Array Films with 3D High-Density Hot Spots as Flexible and Reliable SERS Substrates. Small 2015, 11, 5452–5459. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–531. [Google Scholar] [CrossRef] [Green Version]
- Porep, J.U.; Kammerer, D.R.; Carle, R. On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci. Technol. 2015, 46, 211–230. [Google Scholar] [CrossRef]
- Li, M.; Feng, Y.; Yu, Y.; Zhang, T.; Yan, C.; Tang, H.; Sheng, Q.; Li, H. Quantitative analysis of polycyclic aromatic hydrocarbons in soil by infrared spectroscopy combined with hybrid variable selection strategy and partial least squares. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 257, 119771. [Google Scholar] [CrossRef]
- Wrobel, T.P.; Liberda, D.; Koziol, P.; Paluszkiewicz, C.; Kwiatek, W.M. Comparison of the new Mie Extinction Extended Multiplicative Scattering Correction and Resonant Mie Extended Multiplicative Scattering Correction in transmission infrared tissue image scattering correction. Infrared Phys. Technol. 2020, 107, 103291. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.; Zhao, J.; Wu, M. Nondestructive detection of total volatile basic nitrogen (TVB-N) content in pork meat by integrating hyperspectral imaging and colorimetric sensor combined with a nonlinear data fusion. LWT Food Sci. Technol. 2015, 63, 268–274. [Google Scholar] [CrossRef]
- Leardi, R.; Nørgaard, L. Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions. J. Chemom. 2004, 18, 486–497. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, H.; Zhang, L.; Feng, D.; Zhang, F.; Jiang, M.; Sui, Q.; Jia, L. Fast determination of oxides content in cement raw meal using NIR-spectroscopy and backward interval PLS with genetic algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117327. [Google Scholar] [CrossRef]
- Deng, B.C.; Yun, Y.H.; Ma, P.; Lin, C.C.; Ren, D.B.; Liang, Y.Z. A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals. Analyst 2015, 140, 1876–1885. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, J.; Zhou, X.; Wu, X.; Lu, B.; Dai, C. Research on apple origin classification based on variable iterative space shrinkage approach with stepwise regression–support vector machine algorithm and visible-near infrared hyperspectral imaging. J. Food Process Eng. 2020, 43, e13432. [Google Scholar] [CrossRef]
- Song, X.; Huang, Y.; Yan, H.; Xiong, Y.; Min, S. A novel algorithm for spectral interval combination optimization. Anal. Chim. Acta 2016, 948, 19–29. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Rinnan, Å.; Berg, F.V.D.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Sun, B.; Deng, R.; Ren, B.; Teng, M.; Cheng, S.; Wang, F. Identification method of market power abuse of generators based on lasso-logit model in spot market. Energy 2022, 238, 121634. [Google Scholar] [CrossRef]
- Deng, B.-C.; Yun, Y.-H.; Cao, D.-S.; Yin, Y.-L.; Wang, W.-T.; Lu, H.-M.; Luo, Q.-Y.; Liang, Y.-Z. A bootstrapping soft shrinkage approach for variable selection in chemical modeling. Anal. Chim. Acta 2016, 908, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Song, X.; Tian, K.; Chen, Y.; Xiong, Y.; Min, S. Quantitative determination of additive Chlorantraniliprole in Abamectin preparation: Investigation of bootstrapping soft shrinkage approach by mid-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 191, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Lao, C.; Chen, J.; Zhang, Z.; Chen, Y.; Ma, Y.; Chen, H.; Gu, X.; Ning, J.; Jin, J.; Li, X. Predicting the contents of soil salt and major water-soluble ions with fractional-order derivative spectral indices and variable selection. Comput. Electron. Agric. 2021, 182, 106031. [Google Scholar] [CrossRef]
Assignment | This Work | Reported | ||
---|---|---|---|---|
Raman (cm−1) (Carbendazim Solid Samples) | SERS (cm−1) (Carbendazim with the SERS Substrates) | SERS Wavenumbers | References | |
Ring stretching C-C bending | 617 | 629 | 628 | [13,14] |
C-H bending in benzene ring | 722 | 736 | 733 | [14] |
C-H wagging | 751 | 770 | 774 | [14] |
C-N bending C-C stretch C-O-CH3 stretching | 1018 | 1007 | 1007 | [13,14] |
C-C stretch C-H bending N-H bending | 1225 | 1227 | 1228 | [13,14] |
C-H bending N-H bending | 1268 | 1271 | 1277 | [13] |
N-H bending C-H bending | 1473 | 1462 | 1460 | [13,14] |
N-H bending C-N stretch | 1538 | 1521 | 1523 | [13,14] |
Variable Selection Regression Model | Principal Components | Selected Variables | Selected Wavelength cm−1 | Calibration Set | Prediction Set | RPD | ||
---|---|---|---|---|---|---|---|---|
RC | RMSEC (mg/L) | RP | RMSEP (mg/L) | |||||
iVISSA-PLS | 8 | 945 | 1227, 1272, and 1543 | 0.9864 | 0.334 | 0.9828 | 0.358 | 3.355 |
GA-PLS | 8 | 99 | 629, 1007, 1227, 1271, 1521 | 0.9854 | 0.340 | 0.9857 | 0.331 | 3.370 |
LASSO-PLS | 10 | 218 | 629, 736, and 770 | 0.9885 | 0.295 | 0.9890 | 0.312 | 4.112 |
BOSS-PLS | 8 | 136 | 629, 736, 770, 1007, 1227, 1271, 1462, and 1521 | 0.9898 | 0.286 | 0.9923 | 0.247 | 4.169 |
Carbendazim Added (mg/kg) | SERS with BOSS-PLS Model (mg/kg) | Recovery Rate (%) | RSD (%) n = 10 | LC-MS/MS (mg/kg) | Recovery Rate (%) | RSD (%) n = 10 | BOSS-PLS Prediction Model |
---|---|---|---|---|---|---|---|
0 | 0 ± 0.013 | 0 | 0 | 0 | 0 | 0 | |
0.1 | 0.101 ± 0.015 | 86~116 | 3.54 | 0.097 ± 0.008 | 89~106 | 3.52 | RC = 0.987 RMSEC = 0.241 (mg/kg) RP = 0.973 RMSEP = 0.314 (mg/kg) |
0.5 | 0.498 ± 0.011 | 2.15 | 0.501 ± 0.022 | 1.57 | |||
1.0 | 1.022 ± 0.033 | 1.74 | 1.031 ± 0.028 | 2.01 | |||
5.0 | 5.141 ± 0.078 | 2.14 | 5.087 ± 0.084 | 1.59 | |||
10.0 | 10.315 ± 0.374 | 1.68 | 10.227 ± 0.214 | 1.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zhang, N.; Li, Z.; Shi, J.; Tahir, H.E.; Sun, Y.; Zhang, Y.; Zhang, X.; Holmes, M.; Zou, X. Rapid Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering and Coupled Chemometric Algorithm. Foods 2022, 11, 1287. https://doi.org/10.3390/foods11091287
Huang X, Zhang N, Li Z, Shi J, Tahir HE, Sun Y, Zhang Y, Zhang X, Holmes M, Zou X. Rapid Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering and Coupled Chemometric Algorithm. Foods. 2022; 11(9):1287. https://doi.org/10.3390/foods11091287
Chicago/Turabian StyleHuang, Xiaowei, Ning Zhang, Zhihua Li, Jiyong Shi, Haroon Elrasheid Tahir, Yue Sun, Yang Zhang, Xinai Zhang, Melvin Holmes, and Xiaobo Zou. 2022. "Rapid Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering and Coupled Chemometric Algorithm" Foods 11, no. 9: 1287. https://doi.org/10.3390/foods11091287
APA StyleHuang, X., Zhang, N., Li, Z., Shi, J., Tahir, H. E., Sun, Y., Zhang, Y., Zhang, X., Holmes, M., & Zou, X. (2022). Rapid Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering and Coupled Chemometric Algorithm. Foods, 11(9), 1287. https://doi.org/10.3390/foods11091287