Evaluation of In Vitro and In Silico Anti-Alzheimer Potential of Nonpolar Extracts and Essential Oil from Mentha piperita
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals Used
2.2. Raw Material Extraction
2.3. GC-MS Analysis
2.4. Colorimetric Total Phenolic and Flavonoid Content
2.4.1. Colorimetric Total Phenolic (CTP)
2.4.2. Colorimetric Total Flavonoid (CTF)
2.5. Colorimetric Antioxidant Capacity
2.5.1. Colorimetric DPPH Assay
2.5.2. Colorimetric Reducing Power Assay
2.5.3. Colorimetric Phenanthroline Assay
2.5.4. Colorimetric Silver Nanoparticle Assay
2.5.5. Colorimetric ABTS Assay
2.5.6. Colorimetric Cupric-Reducing Antioxidant Capacity (CUPRAC)
2.6. Colorimetric Cholinesterase Inhibition Activity
2.7. Statistical Analysis
2.8. Molecular Docking
3. Results
3.1. GC/MS of Essential Oil and the Nonpolar Extracts
3.2. Total Phenolic and Flavonoid Content Determination
3.3. Antioxidant Activities
3.4. Enzyme Inhibitory Activities
3.5. Molecular Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derabli, C.; Boualia, I.; Abdelwahab, A.B.; Boulcina, R.; Bensouici, C.; Kirsch, G.; Debache, A. A cascade synthesis, in vitro cholinesterases inhibitory activity and docking studies of novel Tacrine-pyranopyrazole derivatives. Bioorg. Med. Chem. Lett. 2018, 28, 2481–2484. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G. A Review on Applications and Uses of Thymus in the Food Industry. Plants 2020, 9, 961. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.M. Neuroprotective therapeutics for Alzheimer’s disease: Progress and prospects. Trends Pharmacol. Sci. 2011, 32, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Wen, L.L.; Huang, Y.-N.; Chen, Y.-T.; Ku, M.-C. Dual Effects of Antioxidants in Neurodegeneration: Direct Neuroprotection against Oxidative Stress and Indirect Protection via Suppression of Gliamediated Inflammation. Curr. Pharm. Des. 2006, 12, 3521–3533. [Google Scholar] [CrossRef] [PubMed]
- Casado, Á.; López-Fernández, M.E.; Casado, M.C.; De La Torre, R. Lipid Peroxidation and Antioxidant Enzyme Activities in Vascular and Alzheimer Dementias. Neurochem. Res. 2008, 33, 450–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007, 14, 289–300. [Google Scholar] [CrossRef]
- Gali, L.; Bedjou, F. Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis. S. Afr. J. Bot. 2019, 120, 163–169. [Google Scholar] [CrossRef]
- Zengin, G.; Mollica, A.; Aumeeruddy, M.Z.; Rengasamy, K.R.; Mahomoodally, M.F. Phenolic profile and pharmacological propensities of Gynandriris sisyrinchium through in vitro and in silico perspectives. Ind. Crop. Prod. 2018, 121, 328–337. [Google Scholar] [CrossRef]
- Khlifi, A.; Pecio, Ł.; Lobo, J.C.; Melo, D.; Ben Ayache, S.; Flamini, G.; Oliveira, M.B.P.; Oleszek, W.; Achour, L. Leaves of Cleome amblyocarpa Barr. And Murb. And Cleome arabica L.: Assessment of nutritional composition and chemical profile (LC-ESI-MS/MS), anti-inflammatory and analgesic effects of their extracts. J. Ethnopharmacol. 2021, 269, 113739. [Google Scholar] [CrossRef]
- Meziant, L.; Bachir-Bey, M.; Bensouici, C.; Saci, F.; Boutiche, M.; Louaileche, H. Assessment of inhibitory properties of flavonoid-rich fig (Ficus carica L.) peel extracts against tyrosinase, α-glucosidase, urease and cholinesterases enzymes, and relationship with antioxidant activity. Eur. J. Integr. Med. 2021, 43, 101272. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Fokou, P.V.T.; et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.D.; Koşar, M.; Kahlos, K.; Holm, Y.; Hiltunen, R. Antioxidant Properties and Composition of Aqueous Extracts from Mentha Species, Hybrids, Varieties, and Cultivars. J. Agric. Food Chem. 2003, 51, 4563–4569. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.D.; Koşar, M.; Baser, K.H.C.; Hiltunen, R. Phenolic Profile and Antioxidant Evaluation of Mentha x Piperita L. (Peppermint) Extracts. Nat. Prod. Commun. 2009, 4, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, G.; Baj, T.; Kowalski, R.; Szymańska, J. Optimization of Glycerol–Water Extraction of Selected Bioactive Compounds from Peppermint and Common Nettle. Antioxidants 2021, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Ind. Crops Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar]
- Moreno, M.I.; Isla, M.I.; Sampietro, A.R.; Vattuone, M.A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Oyaizu, M. Antioxidative Activities of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Szydlowskaczerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szlyk, E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 2008, 76, 899–905. [Google Scholar] [CrossRef]
- Özyürek, M.; Güngör, N.; Baki, S.; Güçlü, K.; Apak, R. Development of a Silver Nanoparticle-Based Method for the Antioxidant Capacity Measurement of Polyphenols. Anal. Chem. 2012, 84, 8052–8059. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Özyürek, M.; Celik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 1995, 245, 43–53. [Google Scholar] [CrossRef]
- Release, S. 1: Maestro, Version 10.1, TM contact: Schrödinger. 101 SW Main Street, Suite 1300.Schrödinger 2015.
- Cheung, J.; Gary, E.; Shiomi, K.; Rosenberry, T.L. Structures of Human Acetylcholinesterase Bound to Dihydrotanshinone I and Territrem B Show Peripheral Site Flexibility. ACS Med. Chem. Lett. 2013, 4, 1091–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wandhammer, M.; Carletti, E.; Van der Schans, M.; Gillon, E.; Nicolet, Y.; Masson, P.; Goeldner, M.; Noort, D.; Nachon, F. Structural Study of the Complex Stereoselectivity of Human Butyrylcholinesterase for the Neurotoxic V-agents. J. Biol. Chem. 2011, 286, 16783–16789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokrani, E.H.; Bensegueni, A.; Chaput, L.; Beauvineau, C.; Djeghim, H.; Mouawad, L. Identification of New Potent Acetylcholinesterase Inhibitors Using Virtual Screening and in vitro Approaches. Mol. Inform. 2019, 38, e1800118. [Google Scholar] [CrossRef] [PubMed]
- Boualia, I.; Derabli, C.; Boulcina, R.; Bensouici, C.; Yildirim, M.; Yildirim, A.B.; Mokrani, E.H.; Debache, A. Synthesis, molecular docking studies, and biological evaluation of novel alkyl bis(4-amino-5-cyanopyrimidine) derivatives. Arch. der Pharm. 2019, 352, e1900027. [Google Scholar] [CrossRef]
- Belhoula, H.; Mokrani, E.H.; Bensegueni, A.; Bioud, D. Highlight of New Phosphodiesterase 10A Inhibitors Using Molecular Docking. Curr. Res. Bioinform. 2020, 8, 34–37. [Google Scholar] [CrossRef]
- Machiani, M.A.; Javanmard, A.; Morshedloo, M.R.; Maggi, F. Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean. Ind. Crop. Prod. 2018, 111, 743–754. [Google Scholar] [CrossRef]
- Kharoubi, R.; Rehimi, N.; Khaldi, R.; Haouari-Abderrahim, J.; Soltani, N. Phytochemical Screening and Insecticidal Activities of Essential oil of Mentha x piperita L. (Lamiales: Lamiaceae) and their Enzymatic Properties against Mosquito Culex pipiens L. (Diptera: Culicidae). J. Essent. Oil Bear. Plants 2021, 24, 134–146. [Google Scholar] [CrossRef]
- Benabdallah, A.; Boumendjel, M.; Aissi, O.; Rahmoune, C.; Boussaid, M.; Messaoud, C. Chemical composition, antioxidant activity and acetylcholinesterase inhibitory of wild Mentha species from northeastern Algeria. S. Afr. J. Bot. 2018, 116, 131–139. [Google Scholar] [CrossRef]
- Sujana, P.; Sridhar, T.M.; Josthna, P.; Naidu, C.V. Antibacterial Activity and Phytochemical Analysis of Mentha piperita L. (Peppermint)—An Important Multipurpose Medicinal Plant. Am. J. Plant Sci. 2013, 4, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Külcü, D.B.; Gökışık, C.D.; Aydın, S. An Investigation of Antibacterial and Antioxidant Activity of Nettle (Urtica dioica L.), Mint (Mentha piperita), Thyme (Thyme serpyllum) and Chenopodium album L. Plants from Yaylacık Plateau, Giresun, Turkey. Turk. J. Agric. Food Sci. Technol. 2019, 7, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, V.; Gardeli, C.; Mallouchos, A.; Papaioannou, M.; Komaitis, M. Variation of the Chemical Profile and Antioxidant Behavior of Rosmarinus officinalis L. and Salvia fruticosa Miller Grown in Greece. J. Agric. Food Chem. 2008, 56, 7254–7264. [Google Scholar] [CrossRef]
- Stringaro, A.; Colone, M.; Angiolella, L. Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha spp. Essential Oils. Medicines 2018, 5, 112. [Google Scholar] [CrossRef] [Green Version]
- Barchan, A.; Bakkali, M.; Arakrak, A.; Pagán, R.; Laglaoui, A. The Effects of Solvents Polarity on the Phenolic Contents and Antioxidant Activity of Three Mentha Species Extracts. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 399–412. [Google Scholar]
- Martínez, L.; Ros, G.; Nieto, G. Effect of natural extracts obtained from food industry by-products on nutritional quality and shelf life of chicken nuggets enriched with organic Zn and Se provided in broiler diet. Poult. Sci. 2020, 99, 1491–1501. [Google Scholar] [CrossRef]
- Fatiha, B.; Didier, H.; Naima, G.; Khodir, M.; Martin, K.; Léocadie, K.; Caroline, S.; Mohamed, C.; Pierre, D. Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Ind. Crop. Prod. 2015, 74, 722–730. [Google Scholar] [CrossRef]
- Merola, N.; Castillo, J.; Benavente-García, O.; Ros, G.; Nieto, G. The Effect of Consumption of Citrus Fruit and Olive Leaf Extracton Lipid Metabolism. Nutrients 2017, 9, 10622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edris, A.E. Pharmaceutical and therapeutic Potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Vladimir-Knežević, S.; Blažeković, B.; Kindl, M.; Vladić, J.; Lower-Nedza, A.D.; Brantner, A.H. Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family. Molecules 2014, 19, 767–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertaş, A.; Gören, A.C.; Haşimi, N.; Tolan, V.; Kolak, U. Evaluation of Antioxidant, Cholinesterase Inhibitory and Antimicrobial Properties of Mentha longifolia subsp. noeana and Its Secondary Metabolites. Rec. Nat. Prod. 2015, 9, 105–115. [Google Scholar]
- Bensouici, C.; Boudiar, T.; Kashi, I.; Bouhedjar, K.; Boumechhour, A.; Khatabi, L.; Larguet, H. Chemical characterization, antioxidant, anticholinesterase and alpha-glucosidase potentials of essential oil of Rosmarinus tournefortii de noé. J. Food Meas. Charact. 2020, 14, 632–639. [Google Scholar] [CrossRef]
- Ferhat, M.; Erol, E.; Beladjila, K.A.; Çetintaş, Y.; Duru, M.E.; Öztürk, M.; Kabouche, A.; Kabouche, Z. Antioxidant, anticholinesterase and antibacterial activities of Stachys guyoniana and Mentha aquatica. Pharm. Biol. 2017, 55, 324–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, G.; Martínez, L.; Castillo, J.; Ros, G. Effect of hydroxytyrosol, walnut and olive oil on nutritional profile of Low-Fat Chicken Frankfurters. Eur. J. Lipid Sci. Technol. 2017, 119, 1600518. [Google Scholar] [CrossRef]
- Martínez, L.; Ros, G.; Nieto, G. Fe, Zn and Se Bioavailability in Chicken Meat Emulsions Enriched with Minerals, Hydroxytyrosol and Extra Virgin Olive Oil as Measured by Caco-2 Cell Model. Nutrients 2018, 10, 969. [Google Scholar] [CrossRef] [Green Version]
- Nieto, G.; Martínez, G.N.; Castillo, J.; Ros, G. Hydroxytyrosol extracts, olive oil and walnuts as functional components in chicken sausages. J. Sci. Food Agric. 2017, 97, 3761–3771. [Google Scholar] [CrossRef]
- Martínez, L.; Jongberg, S.; Ros, G.; Skibsted, L.H.; Nieto, G. Plant derived ingredients rich in nitrates or phenolics for protectionof pork against protein oxidation. Food Res. Int. 2020, 129, 108789. [Google Scholar] [CrossRef]
- Martínez, J.; Nieto, G.; Castillo, J.; Ros, G. Influence of in vitro gastrointestinal digestion and/or grape seed extract addition on antioxidant capacity of meat emulsions. Lwt 2014, 59, 834–840. [Google Scholar] [CrossRef]
- Nieto, G.; Bañón, S.; Garrido, M.D. Incorporation of thyme leaves in the diet of pregnant and lactating ewes: Effect on the fattyacid profile of lamb. Small Rumin. Res. 2012, 105, 140–147. [Google Scholar] [CrossRef]
- Martínez, G.N. Incorporation of by-products of rosemary and thyme in the diet of ewes: Effect on the fatty acid profile of lamb. Eur. Food Res. Technol. 2013, 236, 379–389. [Google Scholar] [CrossRef]
- Nieto, G.; Bañón, S.; Garrido, M. Administration of distillate thyme leaves into the diet of Segureña ewes: Effect on lamb meat quality. Animal 2012, 6, 2048–2056. [Google Scholar] [CrossRef] [Green Version]
- Satmi, F.R.S.; Hossain, M.A. In vitro antimicrobial potential of crude extracts and chemical compositions of essential oils of leaves of Mentha piperita L native to the Sultanate of Oman. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Shushni, M.A.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef]
Extracts | DPPH· Assay | Reducing Power Assay | Phenanthroline Assay | SNP Assay | ABTS·+ Assay | CUPRAC Assay | Total Phenolics (μg GAE/mg) * | Total Flavonoids (μg QE/mg) ** |
---|---|---|---|---|---|---|---|---|
IC50 (µg/mL) | A0.50 (µg/mL) | A0.50 (µg/mL) | A0.50 (µg/mL) | IC50 (µg/mL) | A0.50 (µg/mL) | |||
Essential oil | >800 | >200 | >200 | >200 | 270.91 ± 6.68 d | 182.91 ± 1.68 h | 22.51 ± 0.14 a | 0.66 ± 0.03 a |
Petroleum ether extract | >800 | >200 | >200 | >200 | >800 | 167.36 ± 1.38 f | 144.81 ± 0.16 d | 7.039 ± 0.33 b |
Chloroform extract | >800 | >200 | 140.11 ± 0.98 e | 124.97 ± 0.41 d | 132.66 ± 2.86 c | 89.61 ± 0.9 e | 109.08 ± 2.85 c | 9.29 ± 0.77 c |
Hexane extract | >800 | >200 | >200 | >200 | >800 | 170.33 ± 2.89 g | 89.09 ± 1.25 b | 1.15 ± 0.01 a |
BHA b | 9.11 ± 0.89 c | 5.60 ± 0.05 b | 1.49 ± 0.08 ab | 73.47 ± 0.88 c | 2.98 ± 0.11 ab | 2.22 ± 0.15 a | NT | NT |
BHT b | 1.60 ± 0.36 a | 14.48 ± 0.07 c | 2.20 ± 0.04 b | >200 | 1.31 ± 0.06 a | 5.53 ± 0.03 b | NT | NT |
α-tocopherol b | 19.99 ± 0.74 d | >200 | 5.78 ± 0.30 c | 63.41 ± 4.39 b | 10.54 ± 0.07 b | 17.56 ± 0.17 d | NT | NT |
Quercetin b | 3.40 ± 0.30 b | 4.03 ± 0.38 a | 0.65 ± 0.04 a | 11.25 ± 0.78 a | 2.50 ± 0.06 a | 2.42 ± 0.1 a | NT | NT |
Ascorbic acid b | 2.69 ± 0.22 b | 5.60 ± 0.05 b | 8.30 ± 0.76 d | >200 | 4.04 ± 0.02 ab | 10.98 ± 0.14 c | NT | NT |
Compound | Docking Score (Fitness) | |
---|---|---|
AChE | BChE | |
Imidazoquinoline | 45.36 | 39.23 |
N-acetyl-17-oroidine | 63.01 | 63.68 |
1,8-Cineole | 37.16 | 30.81 |
n-Eicosane | 36.30 | 43.08 |
l-Menthone | 38.76 | 36.05 |
Linolenic acid | 35.77 | 43.57 |
Pulegone | 37.45 | 36.25 |
Galantamine | 57.02 | 53.04 |
Enzyme | PDB ID | Docking Score | Interactions Formed in the Active Pocket | |
---|---|---|---|---|
Type of Interactions | Residue Information | |||
AChE | 4M0E | 63.01 | Hydrogen bond π–π stacking | Tyr72, Tyr337 Tyr124, Trp286, Tyr337 |
BChE | 2XQF | 63.68 | Hydrogen bond π–π stacking | Asp70 Tyr332, His438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srief, M.; Bani, M.; Mokrani, E.H.; Mennai, I.; Hamdi, M.; Boumechhour, A.; Abou Mustapha, M.; Derdour, M.; Kerkatou, M.; El-Shazly, M.; et al. Evaluation of In Vitro and In Silico Anti-Alzheimer Potential of Nonpolar Extracts and Essential Oil from Mentha piperita. Foods 2023, 12, 190. https://doi.org/10.3390/foods12010190
Srief M, Bani M, Mokrani EH, Mennai I, Hamdi M, Boumechhour A, Abou Mustapha M, Derdour M, Kerkatou M, El-Shazly M, et al. Evaluation of In Vitro and In Silico Anti-Alzheimer Potential of Nonpolar Extracts and Essential Oil from Mentha piperita. Foods. 2023; 12(1):190. https://doi.org/10.3390/foods12010190
Chicago/Turabian StyleSrief, Manel, Moustafa Bani, El Hassen Mokrani, Imad Mennai, Mehdi Hamdi, Abdenour Boumechhour, Mohamed Abou Mustapha, Mouna Derdour, Messouad Kerkatou, Mohamed El-Shazly, and et al. 2023. "Evaluation of In Vitro and In Silico Anti-Alzheimer Potential of Nonpolar Extracts and Essential Oil from Mentha piperita" Foods 12, no. 1: 190. https://doi.org/10.3390/foods12010190
APA StyleSrief, M., Bani, M., Mokrani, E. H., Mennai, I., Hamdi, M., Boumechhour, A., Abou Mustapha, M., Derdour, M., Kerkatou, M., El-Shazly, M., Bensouici, C., Nieto, G., & Akkal, S. (2023). Evaluation of In Vitro and In Silico Anti-Alzheimer Potential of Nonpolar Extracts and Essential Oil from Mentha piperita. Foods, 12(1), 190. https://doi.org/10.3390/foods12010190