Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Chemicals
2.2. Phase Solubility
2.3. Preparation of Modified β-cyclodextrin Cinnamon Essential Oil Inclusion Complexes
2.4. Scanning Electron Microscopy (SEM)
2.5. Molecular Docking
2.6. GC-MS Analysis
2.7. Antioxidative Activities
2.7.1. Determination of Ferric Reducing Antioxidant Power (FRAP Assay)
2.7.2. DPPH Radical Scavenging Activity
2.7.3. PTIO Radical Scavenging Activity
2.8. Antimicrobial Assay
2.8.1. Preparation of Four Kinds of Pathogens
2.8.2. Determination of Minimum Inhibitory Concentration (MIC)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Phase Solubility
3.2. Characterization of Modified-β-CD-ICs
3.3. Particles Morphology
3.4. Molecular Docking Studies
3.5. Volatile Chemical Composition of Modified-β-CD-ICs
3.6. Antioxidant Activities of Modified-β-CD-ICs
3.7. MIC of CEO and Modified-β-CD-ICs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yang, K.; Liu, A.; Hu, A.; Li, J.; Zen, Z.; Liu, Y.; Li, C. Preparation and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and after encapsulation. Food Control 2021, 123, 107783. [Google Scholar] [CrossRef]
- Prakash, B.; Kedia, A.; Mishra, P.K.; Dubey, N.K. Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities—Potentials and challenges. Food Control 2015, 47, 381–391. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Baek, K.-H.; Kang, S.C. Control of Salmonella in foods by using essential oils: A review. Food Res. Int. 2012, 45, 722–734. [Google Scholar] [CrossRef]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products—A review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, L.; Daniel, B.; Elisa, P.; Diego, G.; Rafael, P. Modified cyclodextrin type and dehydration methods exert a significant effect on the antimicrobial activity of encapsulated carvacrol and thymol. J. Sci. Food Agric. 2020, 101, 3827–3835. [Google Scholar] [CrossRef]
- Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009, 23, 1631–1640. [Google Scholar] [CrossRef]
- Irie, T.; Uekama, K. Pharmaceutical Applications of Cyclodextrins. III. Toxicological Issues and Safety Evaluation. J. Pharm. Sci. 1997, 86, 147–162. [Google Scholar] [CrossRef]
- Alizadeh, N.; Nazari, F. Thymol essential oil/ β-cyclodextrin inclusion complex into chitosan nanoparticles: Improvement of thymol properties in vitro studies. J. Mol. Liq. 2022, 346, 118250. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.; Luo, J. Preparation and characterization of the rutin-CM-β-CD inclusion complex. Sci. Technol. Food Ind. 2017, 38, 197–202. [Google Scholar] [CrossRef]
- Chaves, G.; Andrade, H.H.N.d.; Braga, J.E.F.; Quintans, L.J.; Almeida, R.N.d.; Diniz, M.d.F.F.M. Non-clinical study of the anxiolytic effect of Citrus aurantium L. essential oil in an inclusion complex with 2-hydroxypropyl-β-cyclodextrin. Rev. De Cienc. Farm. Basica E Apl. 2021, 41, 1–12. [Google Scholar] [CrossRef]
- Yu, Z.; Cui, M.; Yan, C.; Song, F.; Liu, Z.; Liu, S. Investigation of heptakis (2,6-di-O-methyl)-beta-cyclodextrin inclusion complexes with flavonoid glycosides by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 2007, 21, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Kfoury, M.; Pipkin, J.D.; Antle, V.; Fourmentin, S. Captisol®: An efficient carrier and solubilizing agent for essential oils and their components. Flavour Fragr. J. 2017, 32, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Samperio, C.; Boyer, R.; Eigel, W.N.; Holland, K.W., III.; McKinney, J.S.; O’Keefe, S.F.; Marcy, J.E. Enhancement of plant essential oils’ aqueous solubility and stability using alpha and beta cyclodextrin. J. Agric. Food Chem. 2010, 58, 12950–12956. [Google Scholar] [CrossRef] [PubMed]
- Dittert, L.; Takeru, H.; Reese, R.D. Phase Solubility Technique in Studying the Formation of Complex Salts of Triamterene. J. Pharm. Sci. 1964, 53, 1325–1328. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, T.; Chai, X.; He, D.; Duan, X.; Yu, B.; Huang, Y. Preparation and antibacterial and antioxidant ability of β-cyclodextrin complexes of vaporized Illicium verum essential oil. Food Sci. Nutr. 2022, 10, 4003–4018. [Google Scholar] [CrossRef]
- Natrajan, D.; Srinivasan, S.; Sundar, K.; Ravindran, A. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J. Food Drug Anal. 2015, 23, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, Q.; Zhang, S.; Jiang, Q.; Shang, J.; Zhou, L.; Li, W. Maltosyl-β-cyclodextrin mediated Supramolecular Host-Guest inclusion complex used for enhancing baicalin antioxidant activity and bioavailability. J. Drug Deliv. Sci. Technol. 2019, 54, 101346. [Google Scholar] [CrossRef]
- Lin, J.; Tang, Z.-S.; Brennan, C.S.; Zeng, X.-A. Thermomechanically micronized sugar beet pulp: Dissociation mechanism, physicochemical characteristics, and emulsifying properties. Food Res. Int. 2022, 160, 111675. [Google Scholar] [CrossRef]
- Muhoza, B.; Xia, S.; Cai, J.; Zhang, X.; Duhoranimana, E.; Su, J. Gelatin and pectin complex coacervates as carriers for cinnamaldehyde: Effect of pectin esterification degree on coacervate formation, and enhanced thermal stability. Food Hydrocoll. 2019, 87, 712–722. [Google Scholar] [CrossRef]
- Tien, C.N.; Hong, B.P.; Van, C.M. Chemical composition and antioxidant activity of the essential oil of Alseodaphne velutina Chev. from Viet Nam. Nat. Prod. Res. 2020, 36, 617–620. [Google Scholar] [CrossRef]
- Lin, J.; Yu, S.; Ai, C.; Zhang, T.; Guo, X. Emulsion stability of sugar beet pectin increased by genipin crosslinking. Food Hydrocoll. 2020, 101, 105459. [Google Scholar] [CrossRef]
- Ebru, B.; Alper, Ö.A.; Behiye, Ş.; Müzeyyen, D.; Şenay, S. Quercetin, Rutin And Quercetin-Rutin Incorporated Hydroxypropyl β-Cyclodextrin Inclusion Complexes. Eur. J. Pharm. Sci. 2022, 172, 106153. [Google Scholar] [CrossRef]
- Guijie, L.; Yujiao, C.; Tenghui, Z.; Yingzhuo, L.; Leng, H.; Guolu, L. Characterization of Oxygenated Heterocyclic Compounds and in vitro Antioxidant Activity of Pomelo Essential Oil. Drug Des. Dev. Ther. 2021, 15, 937–947. [Google Scholar] [CrossRef]
- Loftsson, T.; Matthíasson, K.; Másson, M. The effects of organic salts on the cyclodextrin solubilization of drugs. Int. J. Pharm. 2003, 262, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Magnusdottir, A.; Másson, M.; Loftsson, T. Self Association and Cyclodextrin Solubilization of NSAIDs. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 213–218. [Google Scholar] [CrossRef]
- Valle, E.M.M.D. Cyclodextrins and their uses: A review. Process. Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Loftsson, T.; Hreinsdóttir, D.; Másson, M. Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 2005, 302, 18–28. [Google Scholar] [CrossRef]
- Chai, X.H.; Lin, R.H.; Wu, K.G.; Li, S.R. Characterization in β-cyclodextrin-thymol Inclusion Complexes. Adv. Mater. Res. 2011, 3, 227–233. [Google Scholar] [CrossRef]
- Lin, J.; Tang, Z.-S.; Lin, J.; Chandrapala, J.; Brennan, C.S.; Han, Z.; Zeng, X.-A. Elucidation of the cellulose nanocrystal-sugar beet pectin interactions for emulsification enhancement. Food Hydrocoll 2023, 135, 108198. [Google Scholar] [CrossRef]
- Jingya, L.; Sidian, Z.; Xiuying, Z.; Yi, L.; Meng, S.; Sizhu, W. Molecular simulation and experimental study on the inclusion of rutin with β-cyclodextrin and its derivative. J. Mol. Struct. 2022, 1254, 132359. [Google Scholar] [CrossRef]
- Chandra, P.P.; Abhishek, M.; Anirban, D.; Rohan, S.; Aditi, K.; Supradip, S. Delineating the behavior of Berberis anthocyanin/β-cyclodextrin inclusion complex in vitro: A molecular dynamics approach. LWT 2022, 157, 113090. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, W.; Li, C.; Tan, T. Investigation of the inclusions of puerarin and daidzin with beta-cyclodextrin by molecular dynamics simulation. J. Phys. Chem. 2010, 114, 4876–4883. [Google Scholar] [CrossRef] [PubMed]
- Shuo, H. Preparation, Structural Analysis and Molecular Modelling of Drug-β-Cyclodextrin Inclusion Complexes. Master’s Thesis, Hebei University of Science and Technology, Shijiazhuang, China, 2011. [Google Scholar]
- Jayaprakasha, G.K.; Rao, L.J.M. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit. Rev. Food Sci. Nutr. 2011, 51, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Yanli, W.; Chao, Y.; Yawei, L. Characterization and component analysis of Cinnamon Essential Oil/Hydroxypropyl-β-cyclodextrin Complex. China Food Addit. 2018, 33, 56–61. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Hou, T.; Sana, S.S.; Li, H.; Xing, Y.; Nanda, A.; Netala, V.R.; Zhang, Z. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Biosci. 2022, 47, 101716. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- Cho, T.J.; Park, S.M.; Yu, H.; Seo, G.H.; Kim, H.W.; Kim, S.A.; Rigano, D. Recent Advances in the Application of Antibacterial Complexes Using Essential Oils. Molecules 2020, 25, 1752. [Google Scholar] [CrossRef]
- Daorui, P.; Zhaoxiang, H.; Qian, L.; Erpei, W.; Sentai, L.; Erna, L.; Weifei, W. Antibacterial Mechanism of Cinnamaldehyde: Modulation of Biosynthesis of Phosphatidylethanolamine and Phosphatidylglycerol in Staphylococcus aureus and Escherichia coli. J. Agric. Food Chem. 2021, 69, 13628–13636. [Google Scholar] [CrossRef]
- Sun, J.; Leng, X.; Zang, J.; Zhao, G. Bio-based antibacterial food packaging films and coatings containing cinnamaldehyde: A review. Crit Rev Food Sci Nutr. 2021, 1–13. [Google Scholar] [CrossRef]
- Kamimura, J.A.; Santos, E.H.; Hill, L.E.; Gomes, C.L. Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. LWT—Food Sci. Technol. 2014, 57, 701–709. [Google Scholar] [CrossRef]
- Santos, E.H.; Kamimura, J.A.; Hill, L.E.; Gomes, C.L. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT—Food Sci. Technol. 2015, 60, 583–592. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, Y.; Na, L.; Jin, R.; Zhang, S. UV-vis spectral analysis of inclusion complexes between beta-cyclodextrin and aromatic/aliphatic guest molecules. Curr. Drug Discov. Technol. 2008, 5, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, L.; Khodaei, N.; Salmieri, S.; Karboune, S.; Lacroix, M. Correlation between chemical composition and antimicrobial properties of essential oils against most common food pathogens and spoilers: In-vitro efficacy and predictive modelling. Microb. Pathog. 2020, 147, 104212. [Google Scholar] [CrossRef] [PubMed]
- Cristian, D.; Mihaela, C.; Tiberius, B.; Gabriela, B.; Petru, A.; Stefan, D. Encapsulation of Coriander Essential Oil in Beta-Cyclodextrin: Antioxidant and Antimicrobial Properties Evaluation. Rom. Biotechnol. Lett. 2014, 19, 9128–9140. [Google Scholar]
- Kfoury, M.; Sahraoui, A.L.-H.; Bourdon, N.; Laruelle, F.; Fontaine, J.; Auezova, L.; Fourmentin, S. Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins. Food Chem. 2016, 196, 518–525. [Google Scholar] [CrossRef]
- Guerra-Rosas, M.I.; Morales-Castro, J.; Cubero-Márquez, M.A.; Salvia-Trujillo, L.; Martín-Belloso, O. Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control 2017, 77, 131–138. [Google Scholar] [CrossRef]
- Balkovec, M.; Black, M.; Abruzzo, K.; Bartizal, K.; Dreikorn, S. Pneumocandin antifungal lipopeptides. The phenolic hydroxyl is required for 1,3-β-glucan synthesis inhibition. Bioorg. Med. Chem. Lett. 1993, 3, 2039–2042. [Google Scholar] [CrossRef]
- Russell, A. Mechanisms of bacterial resistance to non-antibiotics: Food additives and food and pharmaceutical preservatives. J. Appl. Bacteriol. 1991, 71, 191–201. [Google Scholar] [CrossRef]
- Nikaido, H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 1994, 264, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, S.; Sharma, K.; Guleria, S.; Skaltsa, E. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Sung-Youn, K.; Dong-Hyun, K.; Jin-Ki, K.; Yong-Geun, H.; Young, H.J.; Taewan, K.; Seon-Ho, L. Antimicrobial activity of plant extracts against Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes on fresh lettuce. J. Food Sci. 2011, 76, M41–M46. [Google Scholar] [CrossRef]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Griensven, L.J.L.D.V. Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model. Molecules 2010, 15, 7532. [Google Scholar] [CrossRef] [PubMed]
CD | Reaction Parameter | ||
---|---|---|---|
Ratio of Oil to Shell Materials, (w/w) | Time (h) | Temperature (°C) | |
β-CD | 1:10 | 3 | 40 |
Mal-β-CD | 1:10 | 1.5 | 15 |
CM-β-CD | 1:8 | 2 | 30 |
HP-β-CD | 1:10 | 1.5 | 30 |
DM-β-CD | 1:12 | 1 | 50 |
CD | DY (%) | EE (%) | CEO Load (mg/g) |
---|---|---|---|
β-CD | 87.33 | 57.37 ±1.23 c | 87.58 ±0.72 a |
Mal-β-CD | 91.25 | 68.90 ±2.31 b | 75.86 ±1.63 c |
CM-β-CD | 86.67 | 72.73 ±1.69 a | 84.57 ±0.19 b |
HP-β-CD | 86.05 | 43.88 ±1.49 e | 34.82 ±0.82 d |
DM-β-CD | 78.18 | 49.90 ±0.85 d | 88.35 ±2.05 a |
Serial Number | Compound Name -Molecular Formula | Relative Content (%) | |||||
---|---|---|---|---|---|---|---|
CEO | CEO- β-CD | CEO-Mal-β-CD | CEO- CM-β-CD | CEO-HP-β-CD | CEO- DM-β-CD | ||
1 | Styrene-C8H8 | 0.146 | - | - | - | - | - |
2 | α-Pinene-C10H16 | 0.769 | - | - | - | - | 0.024 |
3 | Camphene-C10H16 | 0.060 | - | - | - | - | 0.033 |
4 | Benzaldehyde-C7H6O | 0.864 | 0.901 | 0.526 | 1.391 | 0.367 | 0.470 |
5 | β-pinene-C10H16 | 0.033 | - | - | - | - | 0.020 |
6 | p-Cymene-C10H14 | 0.042 | - | - | - | - | 0.027 |
7 | Limonene-C10H16 | 0.036 | - | - | - | - | 0.017 |
8 | Salicylal-C7H6O2 | 0.221 | - | - | - | 0.160 | 0.145 |
9 | Acetophenone-C8H8O | 0.039 | 1.080 | - | - | - | - |
10 | Phenylethyl alcohol-C8H10O | 0.471 | - | - | - | - | 0.037 |
11 | Benzenepropanal-C9H10O | 0.640 | - | 0.364 | - | 1.293 | 0.825 |
12 | ((1S)-endo)-(-)-borneol-C10H16O | 0.133 | - | 0.416 | - | - | - |
13 | α-Terpineol-C10H18O | 0.031 | - | - | - | - | 0.028 |
14 | 2-Methoxybenzaldehyde-C8H8O2 | 0.667 | 1.032 | 0.646 | - | 0.754 | 0.689 |
15 | Acetic acid 2-phenylethyl ester-C10H12O2 | 0.098 | - | 0.321 | - | - | 0.178 |
16 | (E)-Cinnamaldehyde-C9H8O | 82.306 | 51.005 | 77.241 | 76.712 | 91.941 | 85.026 |
17 | 3-Phenylprop-2-en-1-ol-C9H10O | 0.112 | - | - | - | - | - |
18 | Caryophyllene-C15H24 | 0.142 | - | - | - | - | 0.122 |
19 | (E)-alpha-bergamotene-C15H24 | 0.074 | - | - | - | - | 0.094 |
20 | Coumarin-C9H6O2 | 0.845 | - | 0.296 | - | 0.330 | 0.122 |
21 | (2-Nitroprop-1-en-1-yl)benzene-C9H9NO2 | 0.973 | - | - | - | - | - |
22 | 2-Methoxycinnamaldehyde-C10H10O2 | 9.199 | 8.144 | 13.626 | 6.200 | 3.414 | 8.788 |
23 | Gamma-muurolene-C15H24 | 0.189 | - | - | - | - | - |
24 | α-curcumene-C15H22 | 0.158 | - | - | - | - | 0.229 |
25 | α-muurolene-C15H24 | 0.146 | - | - | - | - | - |
26 | β-bisabolene-C15H24 | 0.159 | - | - | - | - | 0.153 |
27 | (+)-δ-cadinene-C15H24 | 0.320 | - | - | - | - | 0.211 |
28 | Nerolidol-C15H26O | 0.189 | - | - | - | - | - |
29 | Spathulenol-C15H24O | 0.163 | - | - | - | - | - |
30 | Caryophyllene oxide-C15H24O | 0.149 | - | - | - | - | - |
31 | alpha-Bisabolol-C15H26O | 0.062 | - | - | - | - | 0.177 |
32 | Myristic acid-C14H28O2 | 0.095 | 9.277 | 1.175 | 2.540 | - | 0.304 |
33 | Benzyl benzoate-C14H12O2 | 0.081 | - | 0.232 | - | - | 0.194 |
34 | Pentadecanal-C15H30O | 0.020 | - | - | - | - | 0.017 |
35 | Pentadecanoic acid- C15H30O2 | 0.042 | 5.882 | 0.736 | 3.385 | 0.168 | 0.142 |
36 | Phenethyl benzoate-C15H14O2 | 0.055 | - | 0.322 | - | - | - |
37 | Palmitic acid-C16H32O2 | 0.241 | 21.024 | 2.191 | 9.772 | 1.064 | 0.458 |
38 | Phytol-C20H40O | 0.017 | - | 0.109 | - | - | - |
39 | Anethole-C10H12O | 0.015 | - | 0.397 | - | - | - |
40 | Cinnamyl acetate-C11H12O2 | - | 1.655 | 1.408 | - | 0.509 | 1.469 |
Terpenes type | 14 (3.23%) | 0 | 1 (0.40%) | 0 | 0 | 9 (0.90%) | |
Alcohols type | 8 (1.18%) | 0 | 2 (0.52%) | 0 | 0 | 3 (0.25%) | |
Aldehydes type | 7 (93.92%) | 4 (61.09%) | 5 (92.40%) | 3 (84.30%) | 6 (97.93%) | 7 (95.96%) | |
Alkanes type | 1 (0.04%) | 0 | 0 | 0 | 0 | 1 (0.02%) | |
Fatty acids type | 3 (0.38%) | 3 (36.19%) | 3 (4.10%) | 3 (15.70%) | 2 (1.23%) | 3 (0.90%) | |
Esters type | 4 (1.08%) | 1 (1.655%) | 5 (2.58%) | 0 | 2 (0.84%) | 4 (1.97%) |
Sample | CEO | β-CD-ICs | Mal-ICs | HP-ICs | CM-ICs | DM-ICs |
---|---|---|---|---|---|---|
Trolox equivalents (μmol Trolox /mg) | 1.075 ± 0.024 ab | 0.752 ± 0.079 c | 1.092 ± 0.016 a | 0.532 ± 0.033 d | 1.065 ± 0.054 ab | 0.979 ± 0.021 b |
Sample | β-CD | Mal-β-CD | HP-β-CD | CM-β-CD | DM-β-CD |
---|---|---|---|---|---|
Trolox equivalents (μmol Trolox /mg) | 0.008 ±0.001 bc | 0.018 ±0.001 b | 0.119 ±0.009 a | 0.003 ±0.001 c | 0.018 ±0.003 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Zhang, T.; Chai, X.; Duan, X.; He, D.; Yu, H.; Liu, X.; Tao, Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods 2023, 12, 45. https://doi.org/10.3390/foods12010045
Wu K, Zhang T, Chai X, Duan X, He D, Yu H, Liu X, Tao Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods. 2023; 12(1):45. https://doi.org/10.3390/foods12010045
Chicago/Turabian StyleWu, Kegang, Tong Zhang, Xianghua Chai, Xuejuan Duan, Dong He, Hongpeng Yu, Xiaoli Liu, and Zhihua Tao. 2023. "Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence" Foods 12, no. 1: 45. https://doi.org/10.3390/foods12010045
APA StyleWu, K., Zhang, T., Chai, X., Duan, X., He, D., Yu, H., Liu, X., & Tao, Z. (2023). Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods, 12(1), 45. https://doi.org/10.3390/foods12010045