A Cake Made with No Animal Origin Ingredients: Physical Properties and Nutritional and Sensory Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Gelled Emulsion Preparation
2.3. Soy Protein Suspension Preparation
2.4. Cakes Preparation
2.5. Proximate Composition Analysis
2.6. Fatty Acids Profile
2.7. Color
2.8. Texture (Hardness)
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. General Composition and Fatty Acid Profile
3.2. Texture
3.3. Color
3.4. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raikos, V.; Ranawana, V. Reformulating Foods for Health-Concepts, Trends and Considerations. In Reformulation as a Strategy for Developing Healthier Food Products; Raikos, V., Ranawana, V., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 1–5. [Google Scholar]
- Garvey, E.C.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Factors Influencing the Sensory Perception of Reformulated Baked Confectionary Products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1160–1188. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.N.; Park, S.; Shin, W.S. Textural and Sensory Characteristics of Rice Chiffon Cake Formulated with Sugar Alcohols Instead of Sucrose. J. Food Qual. 2014, 37, 281–290. [Google Scholar] [CrossRef]
- Ronda, F.; Gómez, M.; Blanco, C.A.; Caballero, P.A. Effects of Polyols and Nondigestible Oligosaccharides on the Quality of Sugar-Free Sponge Cakes. Food Chem. 2005, 90, 549–555. [Google Scholar] [CrossRef]
- Estruch, R.; Vendrell, E.; Ruiz-León, A.M.; Casas, R.; Castro-Barquero, S.; Alvarez, X. Reformulation of Pastry Products to Improve Effects on Health. Nutrients 2020, 12, 1709. [Google Scholar] [CrossRef] [PubMed]
- Woodbury, T.J.; Grush, E.; Allan, M.C.; Mauer, L.J. The Effects of Sugars and Sugar Alcohols on the Pasting and Granular Swelling of Wheat Starch. Food Hydrocoll. 2022, 126, 107433. [Google Scholar] [CrossRef]
- Hedayati, S.; Shahidi, F.; Koocheki, A.; Farahnaky, A.; Majzoobi, M. Functional Properties of Granular Cold-Water Swelling Maize Starch: Effect of Sucrose and Glucose. Int. J. Food Sci. Technol. 2016, 51, 2416–2423. [Google Scholar] [CrossRef]
- Struck, S.; Jaros, D.; Brennan, C.S.; Rohm, H. Sugar Replacement in Sweetened Bakery Goods. Int. J. Food Sci. Technol. 2014, 49, 1963–1976. [Google Scholar] [CrossRef]
- Lin, S.D.; Lee, C.C.; Mau, J.L.; Lin, L.Y.; Chiou, S.Y. Effect of Erythritol on Quality Characteristics of Reduced-Calorie Danish Cookies. J. Food Qual. 2010, 33, 14–26. [Google Scholar] [CrossRef]
- Gutiérrez-Luna, K.; Ansorena, D.; Astiasarán, I. Flax and Hempseed Oil Functional Ingredient Stabilized by Inulin and Chia Mucilage as a Butter Replacer in Muffin Formulations. J. Food Sci. 2020, 85, 3072–3080. [Google Scholar] [CrossRef]
- Koç, M.; Koç, B.; Susyal, G.; Yilmazer, M.S.; Ertekin, F.K.; Baǧdatlioǧlu, N. Functional and Physicochemical Properties of Whole Egg Powder: Effect of Spray Drying Conditions. J. Food Sci. Technol. 2011, 48, 141–149. [Google Scholar] [CrossRef]
- Yazici, G.N.; Ozer, M.S. A Review of Egg Replacement in Cake Production: Effects on Batter and Cake Properties. Trends Food Sci. Technol. 2021, 111, 346–359. [Google Scholar] [CrossRef]
- Hedayati, S.; Niakousari, M.; Seidi Damyeh, M.; Mazloomi, S.M.; Babajafari, S.; Ansarifar, E. Selection of Appropriate Hydrocolloid for Eggless Cakes Containing Chubak Root Extract Using Multiple Criteria Decision-Making Approach. LWT 2021, 141, 110914. [Google Scholar] [CrossRef]
- Peris, M.; Rubio-Arraez, S.; Castelló, M.L.; Ortolá, M.D. From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products. Foods 2019, 8, 660. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Gutiérrez-luna, K.; Ansorena, D.; Astiasarán, I. Use of Hydrocolloids and Vegetable Oils for the Formulation of a Butter Replacer: Optimization and Oxidative Stability. LWT 2022, 153, 112538. [Google Scholar] [CrossRef]
- AOAC. Moisture in Meat. 950.46. In Official Methods of Analysis; Horwitz, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002; pp. 12–13. [Google Scholar]
- AOAC. Ash of Meat. 920.153. In Official Methods of Analysis; Horwitz, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002; p. 4. [Google Scholar]
- AOAC. Nitrogen in Meat. Kjeldahl Method. 928.08. In Official Methods of Analysis; Horwitz, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002; pp. 5–6. [Google Scholar]
- UNE-ISO 1443; Meat and Meat Products—Determination of Total Fat Content. ISO: Geneva, Switzerland, 1973.
- AOAC. Fat in Flour. Acid Hydrolysis Method. 922.06. In Official Methods of Analysis; Horwitz, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002; p. 5. [Google Scholar]
- AOAC. Methyl Esters of Fatty Acids in Oils and Fats. 969.33. In Official Methods of Analysis; Horwitz, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002; pp. 19–20. [Google Scholar]
- Ansorena, D.; Echarte, A.; Ollé, R.; Astiasarán, I. 2012: No Trans Fatty Acids in Spanish Bakery Products. Food Chem. 2013, 138, 422–429. [Google Scholar] [CrossRef]
- Ureta, M.M.; Olivera, D.F.; Salvadori, V.O. Quality Attributes of Muffins: Effect of Baking Operative Conditions. Food Bioprocess Technol. 2014, 7, 463–470. [Google Scholar] [CrossRef]
- Alejandre, M.; Astiasarán, I.; Ansorena, D. Omega-3 Fatty Acids and Plant Sterols as Cardioprotective Ingredients in Beef Patties: Composition and Relevance of Nutritional Information on Sensory Characterization. Food Funct. 2019, 10, 7883–7891. [Google Scholar] [CrossRef]
- Altindag, G.; Certel, M.; Erem, F.; Ilknur Konak, Ü. Quality Characteristics of Gluten-Free Cookies Made of Buckwheat, Corn, and Rice Flour with/without Transglutaminase. Food Sci. Technol. Int. 2015, 21, 213–220. [Google Scholar] [CrossRef]
- Moiraghi, M.; Vanzetti, L.; Bainotti, C.; Helguera, M.; León, A.; Pérez, G. Relationship between Soft Wheat Flour Physicochemical Composition and Cookie-Making Performance. Cereal Chem. 2011, 88, 130–136. [Google Scholar] [CrossRef]
- European Commission. EC Regulation No 1169/2011, and Subsequent Modifications and Supplements. Off. J. Eur. Union 2011, L304, 18–63. [Google Scholar]
- Willett, W.C. The Great Fat Debate: Total Fat and Health. J. Am. Diet. Assoc. 2011, 111, 660–662. [Google Scholar] [CrossRef] [PubMed]
- Rios, R.V.; Pessanha, M.D.F.; de Almeida, P.F.; Viana, C.L.; da Silva Lannes, S.C. Application of Fats in Some Food Products. Food Sci. Technol. 2014, 34, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Raes, K.; Fievez, V.; Chow, T.T.; Ansorena, D.; Demeyer, D.; De Smet, S. Effect of Diet and Dietary Fatty Acids on the Transformation and Incorporation of C18 Fatty Acids in Double-Muscled Belgian Blue Young Bulls. J. Agric. Food Chem. 2004, 52, 6035–6041. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.A.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of Specific Dietary Fats with Total and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef]
- Du, X.; Xin, H. Association between Cholesterol Intake and All-Cause Mortality: NHANES-Linked Mortality Study. Cent. Eur. J. Public Health 2021, 29, 117–121. [Google Scholar] [CrossRef]
- Pancharoen, S.; Leelawat, B.; Vattanakul, S. Using Texture Properties for Clustering Butter Cake from Various Ratios of Ingredient Combination. J. Food Meas. Charact. 2019, 13, 34–42. [Google Scholar] [CrossRef]
- Göksel Saraç, M.; Dedebaş, T.; Hastaoğlu, E.; Arslan, E. Influence of Using Scarlet Runner Bean Flour on the Production and Physicochemical, Textural, and Sensorial Properties of Vegan Cakes: WASPAS-SWARA Techniques. Int. J. Gastron. Food Sci. 2022, 27, 100489. [Google Scholar] [CrossRef]
- Bianchi, F.; Cervini, M.; Giuberti, G.; Rocchetti, G.; Lucini, L.; Simonato, B. Distilled Grape Pomace as a Functional Ingredient in Vegan Muffins: Effect on Physicochemical, Nutritional, Rheological and Sensory Aspects. Int. J. Food Sci. Technol. 2022, 57, 4847–4858. [Google Scholar] [CrossRef]
- Heo, Y.; Kim, M.J.; Lee, J.W.; Moon, B.K. Muffins Enriched with Dietary Fiber from Kimchi By-Product: Baking Properties, Physical–Chemical Properties, and Consumer Acceptance. Food Sci. Nutr. 2019, 7, 1778–1785. [Google Scholar] [CrossRef]
- Perez-santana, M.; Cagampang, G.B.; Nieves, C.; Cedeño, V.; Macintosh, A.J. Use of High Oleic Palm Oils in Fluid Shortenings and Effect on Physical Properties of Cookies. Foods 2022, 11, 2793. [Google Scholar] [CrossRef]
- Ureta, M.M.; Olivera, D.F.; Salvadori, V.O. Influence of Baking Conditions on the Quality Attributes of Sponge Cake. Food Sci. Technol. Int. 2017, 23, 156–165. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Caracciolo, M.; Capocasale, M.; Zappia, C.; Poiana, M. Effects of Shortening Replacement with Extra Virgin Olive Oil on the Physical—Chemical—Sensory Properties of Italian Cantuccini Biscuits. Foods 2022, 11, 299. [Google Scholar] [CrossRef]
- Rahmati, N.F.; Mazaheri Tehrani, M. Replacement of Egg in Cake: Effect of Soy Milk on Quality and Sensory Characteristics. J. Food Process. Preserv. 2015, 39, 574–582. [Google Scholar] [CrossRef]
- Jarpa-Parra, M.; Wong, L.; Wismer, W.; Temelli, F.; Han, J.; Huang, W.; Eckhart, E.; Tian, Z.; Shi, K.; Sun, T.; et al. Quality Characteristics of Angel Food Cake and Muffin Using Lentil Protein as Egg/Milk Replacer. Int. J. Food Sci. Technol. 2017, 52, 1604–1613. [Google Scholar] [CrossRef]
- Richardson, A.M.; Tyuftin, A.A.; Kilcawley, K.N.; Gallagher, E.; O’sullivan, M.G.; Kerry, J.P. The Application of Pureed Butter Beans and a Combination of Inulin and Rebaudioside a for the Replacement of Fat and Sucrose in Sponge Cake: Sensory and Physicochemical Analysis. Foods 2021, 10, 254. [Google Scholar] [CrossRef]
- Henrique, N.A.; Deliza, R.; Rosenthal, A. Consumer Sensory Characterization of Cooked Ham Using the Check-All-That-Apply (CATA) Methodology. Food Eng. Rev. 2015, 7, 265–273. [Google Scholar] [CrossRef]
- Grasso, S.; Harrison, S.M.; Monahan, F.J.; Brayden, D.; Brunton, N.P. The Effect of Plant Sterol-Enriched Turkey Meat on Cholesterol Bio-Accessibility during in Vitro Digestion and Caco-2 Cell Uptake. Int. J. Food Sci. Nutr. 2017, 69, 176–182. [Google Scholar] [CrossRef]
Ingredients (g/100 g) | Control | Reformulated |
---|---|---|
Flour | 32.3 | 32.3 |
Baking powder | 1.4 | 1.4 |
Salt | 0.3 | 0.3 |
Whole milk | 27.6 | 0.0 |
Apple cider vinegar | 1.5 | 1.5 |
Granulated sugar | 23.2 | 15.0 |
Butter | 13.2 | 0.0 |
Maltitol | 0.0 | 8.0 |
Pure vanilla extract | 0.5 | 0.5 |
Soy protein suspension (6%) | 0.0 | 13.0 |
Gelled emulsion | 0.0 | 28.0 |
Ingredients (g/100 g) | Control | Reformulated |
---|---|---|
Energy (kcal/100 g) | 363 | 274 |
Moisture (g/100 g) | 25.0 ± 0.5 | 32.0 ± 0.2 * |
Lipids (g/100 g) | 13.7 ± 0.0 | 4.5 ± 0.1 * |
Carbohydrates 1 (g/100 g) | 54.5 | 56.8 |
Sugars 2 (g/100 g) | 27.2 | 17.5 |
Polyols 2 (g/100 g) | 0.0 | 9.0 |
Protein (g/100 g) | 5.3 ± 0.1 | 5.1 ± 0.1 * |
Ash (g/100 g) | 1.5 ± 0.1 | 1.6 ± 0.1 |
Fatty Acid | Control | Reformulated |
---|---|---|
Caproic acid, C6:0 | 0.13 ± 0.01 | ND |
Caprylic acid, C8:0 | 0.13 ± 0.02 | ND |
Capric acid, C10:0 | 0.38 ± 0.07 | ND |
Lauric acid, C12:0 | 0.49 ± 0.06 | ND |
Myristic acid, C14:0 | 1.83 ± 0.10 | ND |
Palmitic acid, C16:0 | 5.10 ± 0.09 | 0.33 ± 0.003 * |
t-Palmitoleic, C16:1 | 0.05 ± 0.004 | ND |
Palmitoleic acid, C16:1 n-7 | 0.27 ± 0.03 | 0.01 ± 0.001 * |
Stearic acid, C18:0 | 1.42 ± 0.06 | 0.15 ± 0.003 * |
∑Trans isomers, C18:1 | 0.27 ± 0.04 | 0.01 ± 0.002 * |
Oleic acid, C18:1 n-9 | 2.92 ± 0.14 | 3.19 ± 0.02 * |
Vaccenic acid, C18:1 n-7 | 0.10 ± 0.01 | 0.04 ± 0.001 * |
t-Linoleic acid, C18:2 | ND | ND |
c-t Linoleic acid, C18:2 | 0.01 ± 0.001 | ND |
t-c Linoleic acid, C18:2 | ND | ND |
Linoleic acid, C18:2 n-6 | 0.49 ± 0.02 | 0.77 ± 0.005 * |
Arachidic acid, C20:0 | 0.02 ± 0.002 | 0.01 ± 0.000 |
γ-linolenic acid, C18:3 n-6 | ND | ND |
Eicosenoic acid, C20:1 n-9 | ND | ND |
α-linolenic acid, C18:3 n-3 | 0.07 ± 0.01 | 0.02 ± 0.004 * |
Eicosadienoic acid, C20:2 n-6 | ND | 0.01 ± 0.001 |
Behenic acid, C22:0 | ND | 0.04 ± 0.001 * |
Brassidic acid, C22:1 | 0.01 ± 0.001 | ND |
Erucic acid, C22:1 n-9 | ND | ND |
Eicosatrienoic acid, C20:3 n-3 | ND | ND |
Arachidonic acid, C20:4 n-6 | 0.02 ± 0.002 | 0.01 ± 0.000 * |
Eicosapentaenoic acid, C20:5 n-3 | 0.01 ± 0.001 | 0.01 ± 0.001 * |
Nervonic acid, C24:1 n-9 | ND | ND |
Docosatrienoic acid, C22:3 n-9 | ND | ND |
Docosapentaenoic acid, C22:5 n-6 | ND | ND |
Lignoceric acid, C24:0 | ND | ND |
Docosapentaenoic acid, C22:5 n-3 | ND | ND |
Docosahexaenoic acid, C22:6 n-3 | ND | ND |
∑SFA | 9.45 ± 0.35 | 0.52 ± 0.01 * |
∑MUFA | 3.17 ± 0.31 | 3.24 ± 0.02 |
∑PUFA | 0.58 ± 0.05 | 0.81 ± 0.01 * |
∑n3 | 0.08 ± 0.01 | 0.04 ± 0.001 * |
∑n6 | 0.52 ± 0.02 | 0.77 ± 0.01 * |
∑n6/n3 | 0.90 ± 0.06 | 0.90 ± 0.02 |
∑PUFA/SFA | 0.01 ± 0.001 | 0.07 ± 0.002 * |
∑PUFA + MUFA/SFA | 0.05 ± 0.01 | 0.36 ± 0.01 * |
∑Trans | 0.31 ± 0.06 | 0.02 ± 0.002 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansorena, D.; Cartagena, L.; Astiasaran, I. A Cake Made with No Animal Origin Ingredients: Physical Properties and Nutritional and Sensory Quality. Foods 2023, 12, 54. https://doi.org/10.3390/foods12010054
Ansorena D, Cartagena L, Astiasaran I. A Cake Made with No Animal Origin Ingredients: Physical Properties and Nutritional and Sensory Quality. Foods. 2023; 12(1):54. https://doi.org/10.3390/foods12010054
Chicago/Turabian StyleAnsorena, Diana, Lucía Cartagena, and Iciar Astiasaran. 2023. "A Cake Made with No Animal Origin Ingredients: Physical Properties and Nutritional and Sensory Quality" Foods 12, no. 1: 54. https://doi.org/10.3390/foods12010054
APA StyleAnsorena, D., Cartagena, L., & Astiasaran, I. (2023). A Cake Made with No Animal Origin Ingredients: Physical Properties and Nutritional and Sensory Quality. Foods, 12(1), 54. https://doi.org/10.3390/foods12010054