The Impact of Culinary Processing, including Sous-Vide, on Polyphenols, Vitamin C Content and Antioxidant Status in Selected Vegetables—Methods and Results: A Critical Review
Abstract
:1. Introduction
2. Methods and Search Strategy
3. Analytical Methods Used for the Antioxidant Potential and Polyphenols and Vitamin C Content
Conditions of Sous-Vide Method | Extraction | TAS | TP | Vit. C | References | |
---|---|---|---|---|---|---|
Temp. | Time | Methods | ||||
90 °C | 45–50 min | TAS and TP: first stage (fs): 0.16 mol/dm3 HCL in 80% methanol, second stage: supernatant from fs re-extracted on 70% acetone | ABTS | Folin–Ciocalteu reagent | Megazyne assay procedure K-ASCO 01/14 | [29] |
84 °C | 30–60 min | TAS: methanol/water (80:20) | ABTS FRAP | Folin–Ciocalteu reagent | - | [26] |
80 °C | 15 min, 90 min | TP, DPPH, FRAP: 70% methanol Vit. C: 20 mL solution with 30 g/L meta-phosphoric acid and 80 mL/L acetic acid | FRAP DPPH | Folin–Ciocalteu reagent | HPLC: LC 18 column (250 × 4.6 mm, 5 μm), isocratic solvent system, (0.1 mL/min of sulphuric acid), flow rate 1 mL/min, UV-VIS photodiode array detector (254 nm) | [19,20] |
90 °C | 5, 10, 15 min | TP and TAS: 90% methanol | DPPH | Folin–Ciocalteu reagent | HPLC: column Coregel 87H3 (7.8 × 300 mm), isocratic elution, flow rate 1 mL/min, mobile phase—0.02 N H2SO4, detector—photo diode array (SPD-M20A) 254 nm | [21] |
90 °C | 50 min | TP, DPPH, FRAP: 80% methanol | ABTS FRAP | Folin–Ciocalteu reagent | - | [30] |
90 °C, and 100 °C/90 °C | 35, 45, 55 min and 25, 30, 35 min | TP: methanol/water (80:20) TAS: methanol/water (50:50) | DPPH | Folin–Ciocalteu reagent | - | [22] |
80 °C | 15 min | Vit. C: aqueous with 1% metaphosphoric acid | - | - | Spectrophotometry with 2,6-dichlorophenolindo-phenol (λ = 515 nm) | [46] |
90 °C | 30 min | Vit. C: 0.5% oxalic acid aqueous solution TP: ethaanol/water (50:50) | Folin–Ciocalteu reagent | Spectrophotometry with 2,6-dichlorophenolindo-phenol | [41] | |
90 °C and chilled | - | TAS:10-fold diluted supernatant previously centrifuged from the material TP: water/methanol (30:70) | DPPH | HPLC: diode array detector for flavonoids 256 nm, phenolic acids 325 nm, linear gradient from 20% to 80%, mobile phase A: water H2O: formic acid 99.8:0.2 (v/v), phase B: CH3OH:CH3CN 40:60 (v/v). A prodigy column (5 μm ODS3 100 A, 250 × 4.60) | - | [23] |
64, 39–75 °C | 57, 32–75 min | - | DPPH | Folin–Ciocalteu reagent | Spectrophotometry method | [24] |
85 °C | 30–40 min | Free phenolic fractions: methanol/water (80:20) - ultrasonic bath – ×2 supernatant with ^mol/L HCl. Bound phenolic fractions: obtained residues after phenolic extraction washed with water, blended with 4 mLL−1, add 6 mol/L HCl, supernatant extracted of ethyl acetate | ABTS | Folin–Ciocalteu reagent HPLC: DAD-300RS array detector, Column C18 (150 mm × 4.6 mm, 2.6 μm), mobile phase: water/acetic acid in the ratio of 99:1 (solvent A) and water/ACN/acetic acid in the ratio of 67:32:1 (solvent B), ratio flow 1 mL/min, gradient elution | - | [31] |
80 °C and 90 °C | 10, 20, 30 min and 10, 20, 30 min | 80% ethanol | - | Folin–Ciocalteu reagent | - | [42] |
80–90 °C | 40–50 min | TP: Lyophilized sample extracted with methanol/0.1% formic acid (80:20). Supernatant re-extracted methanol/0.1% formic acid (80:20). | - | HPLC-MS/MS. HPLC: column C18 (3 × 75 mm, 2.7 μm), mobile phase: 0.1% formic acid (A) and acetonitrile (B), flow rate 0.6 mL/min, oven temp. 20 °C. first Gradient elution, at the end isocratic. MS: negative ionization modem source temp. 600 °C, IonSpray voltage −3500 V, nebulizing nitrogen. | - | [40] |
82 °C and 85 °C | 30 min and 5 min | TP and TAS: 80% methanol | DPPH | Folin–Ciocalteu reagent | - | [25] |
4. Total Antioxidant Status
5. Total Polyphenols Content
6. Vitamin C Content
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and Food Systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.H.; Khan, M.R.; Roobab, U.; Rajoka, M.S.; Inam-ur-Raheem, M.; Anwar, R.; Ahmed, W.; Jahan, M.; Ijaz, M.R.; Asghar, M.M.; et al. Enhancing the shelf stability of fresh-cut potatoes via chemical and nonthermal treatments. J. Food Process. Preserv. 2021, 45, 6. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Baldwin, D.E. Sous vide cooking: A Review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef]
- Kathuria, D.; Dhiman, A.K.; Attri, S. Sous vide, a culinary technique for improving quality of food products: A Review. Trends Food Sci. Technol. 2022, 119, 57–68. [Google Scholar] [CrossRef]
- Michalak-Majewska, M.; Stanikowski, P.; Gustaw, W.; Sławińska, A.; Radzki, W.; Skrzypczak, K.; Jabłońska-Ryś, E. Technologia sous-vide—Innowacyjny sposób Obróbki Cieplnej żywności. Żywność Nauka Technol. Jakość/Food Sci. Technol. Qual. 2018, 116, 34–44. [Google Scholar] [CrossRef]
- Creed, P.G. The sensory and nutritional quality of ‘sous vide’ foods. Food Control 1995, 6, 45–52. [Google Scholar] [CrossRef]
- Yıkmış, S.; Aksu, H.; Çöl, B.G.; Demirçakmak, İ.L. Evaluation of sous-vide technology in gastronomy. Int. J. Agric. Life Sci. 2018, 4, 226–231. [Google Scholar]
- Amoroso, L.; Rizzo, V.; Muratore, G. Nutritional values of potato slices added with rosemary essential oil cooked in sous vide bags. Int. J. Gastron. Food Sci. 2019, 15, 1–5. [Google Scholar] [CrossRef]
- Yılmaz, S.N.; İlyasoğlu, H. Comparision of the effect of Sous vide with traditional cooking methods on color properties and anti-oxidant capacity of zucchini and Green Bean. Food Health 2023, 9, 37–42. [Google Scholar] [CrossRef]
- Zavadlav, S.; Blažić, M.; Van de Velde, F.; Vignatti, C.; Fenoglio, C.; Piagentini, A.M.; Pirovani, M.E.; Perotti, C.M.; Bursać Kovačević, D.; Putnik, P. Sous-vide as a technique for preparing healthy and high-quality vegetable and seafood products. Foods 2020, 9, 1537. [Google Scholar] [CrossRef] [PubMed]
- Iborra-Bernad, C.; García-Segovia, P.; Martínez-Monzó, J. Physico-chemical and structural characteristics of vegetables cooked under sous-vide, Cook-vide, and conventional boiling. J. Food Sci. 2015, 80, 8. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, S.; Achaerandio, I.; Yang, Y.; Pujolà, M. Sous vide processing as an alternative to common cooking treatments: Impact on the starch profile, color, and shear force of potato (Solanum tuberosum L.). Food Bioprocess Technol. 2017, 10, 759–769. [Google Scholar] [CrossRef]
- Clausen, M.P.; Christensen, M.; Djurhuus, T.H.; Duelund, L.; Mouritsen, O.G. The quest for umami: Can Sous vide contribute? Int. J. Gastron. Food Sci. 2018, 13, 129–133. [Google Scholar] [CrossRef]
- Bayomy, H.M. Effects of culinary treatments on the physicochemical properties of Ulva Lactuca collected from Tabuk coast of Red Sea in Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 2355–2362. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, L.C.; de Oliveira, V.R.; Hagen, M.E.; Jablonski, A.; Flôres, S.H.; de Oliveira Rios, A. Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. avenger) and cauliflower (brassica oleracea var. Alphina F1) grown in an organic system. Food Chem. 2015, 172, 770–777. [Google Scholar] [CrossRef]
- Martínez, S.; Armesto, J.; Gómez-Limia, L.; Carballo, J. Impact of processing and storage on the nutritional and sensory properties and bioactive components of Brassica spp. A Review. Food Chem. 2020, 313, 126065. [Google Scholar] [CrossRef] [PubMed]
- Roascio-Albistur, A.; Gámbaro, A. Consumer perception of a non-traditional market on sous-vide dishes. Int. J. Gastron. Food Sci. 2018, 11, 20–24. [Google Scholar] [CrossRef]
- Lafarga, T.; Viñas, I.; Bobo, G.; Simó, J.; Aguiló-Aguayo, I. Effect of steaming and Sous vide processing on the total phenolic content, vitamin C and antioxidant potential of the genus brassica. Innov. Food Sci. Emerg. Technol. 2018, 47, 412–420. [Google Scholar] [CrossRef]
- Lafarga, T.; Bobo, G.; Viñas, I.; Zudaire, L.; Simó, J.; Aguiló-Aguayo, I. Steaming and sous-vide: Effects on antioxidant activity, vitamin C, and total phenolic content of brassica vegetables. Int. J. Gastron. Food Sci. 2018, 13, 134–139. [Google Scholar] [CrossRef]
- Özer, Ç. Influence of different cooking methods on bioactive properties of Broccoli. Int. J. Contemp. Tour. Res. 2021, 5, 69–76. [Google Scholar] [CrossRef]
- Guillén, S.; Mir-Bel, J.; Oria, R.; Salvador, M.L. Influence of cooking conditions on organoleptic and health-related properties of artichokes, green beans, Broccoli and carrots. Food Chem. 2017, 217, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; Santi, S.; Paciulli, M.; Ganino, T.; Pellegrini, N.; Visconti, A.; Vitaglione, P.; Barbanti, D.; Chiavaro, E. Comparison of physical, microstructural and antioxidative properties of pumpkin cubes cooked by conventional, vacuum cooking and sous vide methods. J. Sci. Food Agric. 2020, 101, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Koç, M.; Baysan, U.; Devseren, E.; Okut, D.; Atak, Z.; Karataş, H.; Kaymak-Ertekin, F. Effects of different cooking methods on the chemical and physical properties of carrots and Green Peas. Innov. Food Sci. Emerg. Technol. 2017, 42, 109–119. [Google Scholar] [CrossRef]
- Czarnowska-Kujawska, M.; Draszanowska, A.; Chróst, M.; Starowicz, M. The effect of sous-vide processing time on chemical and sensory properties of broccoli, Green Beans and beetroots. Appl. Sci. 2023, 13, 4086. [Google Scholar] [CrossRef]
- Kosewski, G.; Górna, I.; Bolesławska, I.; Kowalówka, M.; Więckowska, B.; Główka, A.K.; Morawska, A.; Jakubowski, K.; Dobrzyńska, M.; Miszczuk, P.; et al. Comparison of antioxidative properties of raw vegetables and thermally processed ones using the conventional and sous-vide methods. Food Chem. 2018, 240, 1092–1096. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Florkiewicz, A.; Socha, R.; Filipiak-Florkiewicz, A.; Topolska, K. Sous-vide technique as an alternative to traditional cooking methods in the context of antioxidant properties of brassica vegetables. J. Sci. Food Agric. 2018, 99, 173–182. [Google Scholar] [CrossRef]
- Doniec, J.; Florkiewicz, A.; Dziadek, K.; Filipiak-Florkiewicz, A. Hydrothermal treatment effect on antioxidant activity and polyphenols concentration and profile of Brussels sprouts (Brassica oleracea var. gemmifera) in an in vitro simulated gastrointestinal digestion model. Antioxidants 2022, 11, 446. [Google Scholar] [CrossRef]
- Koubová, E.; Mrázková, M.; Sumczynski, D.; Orsavová, J. In vitro digestibility, free and bound phenolic profiles and antioxidant activity of thermally treated Eragrostis tef L. J. Sci. Food Agric. 2018, 98, 3014–3021. [Google Scholar] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A. Three abts•+ radical cation-based approaches for the evaluation of antioxidant activity: Fast- and slow-reacting antioxidant behavior. Chem. Pap. 2018, 72, 1917–1925. [Google Scholar] [CrossRef]
- Shah, P.; Modi, H.A. Comparative Study of DPPH, ABTS and FRAP Assays for Determination of Antioxidant Activity. Int. J. Res. Appl. Sci. Eng. Technol. 2015, 3, 636–641. [Google Scholar]
- Sepahpour, S.; Selamat, J.; Abdul Manap, M.; Khatib, A.; Abdull Razis, A. Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules 2018, 23, 402. [Google Scholar] [CrossRef]
- Margraf, T.; Karnopp, A.R.; Rosso, N.D.; Granato, D. Comparison between Folin-Ciocalteu and Prussian blue assays to estimate the total phenolic content of juices and teas using 96-well microplates. J. Food Sci. 2015, 80, C2397–C2403. [Google Scholar] [CrossRef]
- Musci, M.; Yao, S. Optimization and validation of Folin–CIOCALTEU method for the determination of total polyphenol content of Pu-Erh Tea. Int. J. Food Sci. Nutr. 2017, 68, 913–918. [Google Scholar] [CrossRef]
- Rajauria, G. Optimization and validation of reverse phase HPLC method for qualitative and quantitative assessment of polyphenols in seaweed. J. Pharm. Biomed. Anal. 2018, 148, 230–237. [Google Scholar] [CrossRef]
- Giusti, F.; Caprioli, G.; Ricciutelli, M.; Vittori, S.; Sagratini, G. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-dad) and correlation study with antioxidant activity and colour. Food Chem. 2017, 221, 689–697. [Google Scholar] [CrossRef]
- Huarte, E.; Trius-Soler, M.; Domínguez-Fernández, M.; De Peña, M.-P.; Cid, C. (poly)phenol characterisation in white and red cardoon stalks: Could the sous-vide technique improve their bioaccessibility? Int. J. Food Sci. Nutr. 2021, 73, 184–194. [Google Scholar] [CrossRef]
- de Silva, M.; Sousa, P.H.; Figueiredo, R.W.; Gouveia, S.T.; Lima, J.S. Cooking effects on bioactive compounds and sensory acceptability in pumpkin (Cucurbita moschata CV. Leite). Rev. Ciência Agronômica 2019, 50, 3. [Google Scholar] [CrossRef]
- Stanikowski, P.; Michalak-Majewska, M.; Jabłońska-Ryś, E.; Gustaw, W.; Gruszecki, R. Influence of sous-vide thermal treatment, boiling, and steaming on the colour, texture and content of bioactive compounds in root vegetables. Ukr. Food J. 2021, 10, 77–89. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.; Jeong, H.S.; Lee, J.; Sung, J. Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Sci. Biotechnol. 2017, 27, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, A.; Jamroz, J. Precision of dehydroascorbic acid quantitation with the use of the subtraction method—Validation of HPLC–dad method for determination of total Vitamin C in Food. Food Chem. 2015, 173, 543–550. [Google Scholar] [CrossRef]
- Klimczak, I.; Gliszczyńska-Świgło, A. Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chem. 2015, 175, 100–105. [Google Scholar] [CrossRef]
- Gonnella, M.; Durante, M.; Caretto, S.; D’Imperio, M.; Renna, M. Quality Assessment of ready-to-eat asparagus spears as affected by conventional and sous-vide cooking methods. LWT 2018, 92, 161–168. [Google Scholar] [CrossRef]
- Csepregi, K.; Neugart, S.; Schreiner, M.; Hideg, É. Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules 2016, 21, 208. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and human health: The role of bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Polyphenols and their potential role to fight viral diseases: An overview. Sci. Total Environ. 2021, 801, 149719. [Google Scholar] [CrossRef]
- Petti, S.; Scully, C. Polyphenols, Oral Health and Disease: A Review. J. Dent. 2009, 37, 413–423. [Google Scholar] [CrossRef]
- Janda, K.; Kasprzak, M.; Wolska, J. Witamina C—Budowa, WŁAŚCIWOŚCI, Funkcje I Występowanie. Pomeranian J. Life Sci. 2018, 61, 419–425. [Google Scholar] [CrossRef]
- Moser, M.; Chun, O. Vitamin C and heart health: A review based on findings from Epidemiologic Studies. Int. J. Mol. Sci. 2016, 17, 1328. [Google Scholar] [CrossRef] [PubMed]
- Hemilä, H. Vitamin C and infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Colunga Biancatelli, R.M.; Berrill, M.; Marik, P.E. The antiviral properties of Vitamin C. Expert Rev. Anti-Infect. Ther. 2019, 18, 99–101. [Google Scholar] [CrossRef]
Vegetables | Relative to Raw Vegetables (%) | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TAS | TP | Vit. C | ||||||||
CC | S | SV | CC | S | SV | CC | S | SV | ||
Cauliflower white rose (Brassica oleracea var.botrytis) | ↑ (27.8) | ↑ (49.7) | ↑ (53.9) | ↓ (2.17) | ↓ (1.27) | ↑ (20.9) | ↓ (52.7) | ↓ (43.4) | ↓ (46.0) | [29] |
- | ↑ (40.6) DPPH method ↓ (40.2) FRAP method | ↑ (7.81) DPPH method ↓ (46.0) FRAP method | - | ↓ (75.0) | ↓ (72.0) | - | ↓ (97.7) | ↓ (97.2) | [19] | |
Romanesco type cauliflower (green rose) (Brassica oleracea var.botrytis) | ↓ (30.0) | ↓ (2.73) | ↑ (40.5) | ↓ (46.6) | ↓ (12.0) | ↑ (7.12) | ↓ (48.7) | ↓ (47.1) | ↓ (19.9) | [29] |
Broccoli (Brassica oleracea var.italica) | ↓ (4.52) | ↑ (39.4) | ↑ (34.2) | ↓ (32.5) | ↓ (1.87) | ↑ (5.28) | ↓ (58.0) | ↓ (41.8) | ↓ (35.4) | [29] |
↓ (48.5) | ↓ (16.4) | ↓ (26.8) | ↓ (62.3) | ↓ (8.68) | ↓ (13.6) | ↓ (62.3) | ↓ (12.0) | ↓ (36.7) | [21] | |
↓ (70.0) | - | ↓ (50.0) | ↓ (59.9) | - | ↓ (10.1) | - | - | - | [22] | |
↓ (30.5) | ↑ (3.13) | ↑ (20.3) | ↓ (70.4) | ↓ (17.2) | ↓ (10.2) | - | - | - | [25] | |
Grelo (Rapini) (Brassica rapa L. var rapa) | ↓ (72.5) | - | ↓ (88.5) | ↓ (81.8) | - | ↓ (84.8) | ↓ (84.6) | - | ↓ (81.5) | [20] |
Col cabdell cv. Pastoret (Brassica oleracea var.capitata) | ↓ (66.7) | - | ↓ (63.3) | ↓ (50.0) | - | ↓ (46.7) | ↓ (90.5) | - | ↓ (95.2) | [20] |
Col llombarda cv. Pastoret (Brrascia oleracea var.capitata f.rubra L.) | ↓ (50.0) | - | ↓ (50.3) | ↓ (83.3) | - | ↓ (82.7) | ↓ (80.0) | - | ↓ (86.0) | [20] |
Brussels sprouts (Brascia oleracea var.gemmifera) | ↑ (10.8) | ↑ (29.1) | ↑ (4.87) | ↓ (18.1) | ↓ (25.2) | ↑ (4.11) | ↓ (62.6) | ↓ (52.0) | ↓ (40.2) | [29] |
↑ (20.2) ABTS method ↓ (52.1) DPPH method | ↑ (38.5) ABTS method ↓ (36.0) DPPH method | ↑ (51.9) ABTS method ↓ (22.9) DPPH method | ↓ (5.64) | ↑ (18.8) | ↑ (27.3) | - | - | - | [30] | |
Kale cv. Crispa–Leaves (Brassica oleracea var.acephala) | - | ↑ (5.60) DPPH method ↓ (65.0) FRAP method | ↑ (44.4) DPPH method ↓ (56.4) FRAP method | - | ↓ (87.5) | ↓ (86.9) | - | ↓ (97.1) | ↓ (90.0) | [19] |
Kale cv. Crispa–Stem (Brassica oleracea var.acephala) | - | ↑ (160) DPPH method ↓ (28.2) FRAP method | ↑ (4.60) DPPH method ↑ (1.03) FRAP method | - | ↓ (58.8) | ↓ (64.7) | - | ↓ (95.5) | ↓ (75.9) | [19] |
Toscana (black cabbage) (Brassica oleracea var.acephala) | ↓ (64.4) | - | ↓ (64.0) | ↓ (62.5) | - | ↓ (56.3) | ↓ (98.3) | - | ↓ (97.3) | [20] |
Artichokes (Cynara scolymus, L.cv. Balnca de Tudela) | ↓ (83.0) | - | ↓ (15.1) | ↓ (94.9) | - | ↓ (62.5) | - | - | - | [22] |
Green beans (Phaseolus vulgaris L.cv. Perona) | ↓ (54.0) | - | ↓ (44.0) | ↓ (31.2) | - | ↓ (21.2) | - | - | - | [22] |
Asparagus (Asparagus officinalis L. cv Grande) | - | - | - | - | - | - | ↓ (1.22) | ↓ (11.0) | ↓ (3.66) | [46] |
Pumpkin (Cucurbita moschata cv. Leite) | - | - | - | ↓ (64.9) | ↓ (55.0) | ↓ (49.7) | ↓ (5.01) | ↓ (55.0) | ↓ (49.6) | [41] |
- | ↑ (15.3) | ↑ (14.1) | - | ↑ (218) | ↑ (91.0) | - | - | - | [23] | |
Green peas (Pisum sativum) | ↓ (30.4) | - | ↓ (28.3) | ↓ (16.4) | - | ↓ (17.3) | ↓ (31.6) | - | ↓ (30.7) | [24] |
Carrot (Dacus carota sativus) | ↓ (28.7) | - | ↓ (31.1) | ↓ (19.8) | - | ↓ (8.84) | ↓ (17.8) | - | ↓ (32.1) | [24] |
- | - | - | ↑ ● (18.4) | ↑ ● (17.2) | ↑ ▲ (23.0) ↑ ♦ (22.1) | - | - | - | [42] | |
↓ (90.8) | - | ↓ (44.7) | ↓ (34.6) | - | ↓ (40.8) | - | - | - | [22] | |
Root parsley (Petreoselenium crispum ssp. Tuberosum var. ‘Sonata’) | - | - | - | ↓■ (1.51) ↑^ (7.57) | ↑ ● (5.44) | ↓ # (12.0) ↑ & (5.33) ↓▲ (13.8) | - | - | - | [42] |
Brown teff (Eragrostis tef L.) | ↓ (12.6) | - | ↓ (3.88) | ↓ (45.9) | - | ↓ (35.3) | - | - | - | [32] |
White teff (Eragrostis tef L.) | ↓ (30.12) | - | ↓ (1.08) | ↓ (29.1) | - | ↓ (10.54) | - | - | - | [31] |
White Cardoon Stalks (Cynara cardunculus L.var.altilis DC) | - | - | - | ↓ (25.5) | - | ↑ (6.36) | - | - | - | [40] |
Red Cardoon Stalks (Cynara cardunculus L.var.altilis DC) | - | - | - | ↓ (22.0) | - | ↓ (12.3) | - | - | - | [40] |
Spinach (Spinacia oleracea L.) | ↓ (33.2) | ↓ (9.76) | ↓ (6.60) | ↓ (6.86) | ↓ (54.6) | ↓ (6.00) | - | - | - | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosewski, G.; Kowalówka, M.; Drzymała-Czyż, S.; Przysławski, J. The Impact of Culinary Processing, including Sous-Vide, on Polyphenols, Vitamin C Content and Antioxidant Status in Selected Vegetables—Methods and Results: A Critical Review. Foods 2023, 12, 2121. https://doi.org/10.3390/foods12112121
Kosewski G, Kowalówka M, Drzymała-Czyż S, Przysławski J. The Impact of Culinary Processing, including Sous-Vide, on Polyphenols, Vitamin C Content and Antioxidant Status in Selected Vegetables—Methods and Results: A Critical Review. Foods. 2023; 12(11):2121. https://doi.org/10.3390/foods12112121
Chicago/Turabian StyleKosewski, Grzegorz, Magdalena Kowalówka, Sławomira Drzymała-Czyż, and Juliusz Przysławski. 2023. "The Impact of Culinary Processing, including Sous-Vide, on Polyphenols, Vitamin C Content and Antioxidant Status in Selected Vegetables—Methods and Results: A Critical Review" Foods 12, no. 11: 2121. https://doi.org/10.3390/foods12112121
APA StyleKosewski, G., Kowalówka, M., Drzymała-Czyż, S., & Przysławski, J. (2023). The Impact of Culinary Processing, including Sous-Vide, on Polyphenols, Vitamin C Content and Antioxidant Status in Selected Vegetables—Methods and Results: A Critical Review. Foods, 12(11), 2121. https://doi.org/10.3390/foods12112121