Theogallin-to-Gallic-Acid Ratio as a Potential Biomarker of Pu-Erh Teas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Reagents
2.3. HPLC-DAD-MS Analysis
2.4. Sample Preparation
2.5. Data
3. Results and Discussion
3.1. Assaying Selected Methylxanthines
3.2. Assaying Gallic Acid and Theogallin
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, W.; Rajani, C.; Lv, A.; Fan, T.-P.; Zheng, X. Pu-erh tea: A review of a healthful brew. J. Tradit. Chin. Med. Sci. 2022, 9, 95–99. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, Y.; Zhang, H.; Wang, J.; Liu, X.; Chen, Z.; Zheng, M. Phenolic compounds and the biological effects of Pu-erh teas with long-term storage. Int. J. Food Prop. 2017, 20, 1715–1728. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.-C.; Lee, C.-T.; Yen, Y.-Y.; Chu, C.-L.; Hsieh, J.-P.; Yang, C.-S.; Lan, S.-J. Systematic review and meta-analysis of anti-hyperglycaemic effects of Pu-erh tea. Int. J. Food Sci. Technol. 2019, 54, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Zhao, Y.; Chen, X.; Zhou, H.; Yang, Y.; Zhang, X.; Huang, Y.; Zhang, N.; Lui, E.M.K.; Xiao, M. Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Res. Int. 2021, 144, 110360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Puer Tea. Ancient Caravans and Urban Chic; University of Washington Press: Seattle, WA, USA, 2014. [Google Scholar]
- Budinova, G.; Vlacil, D.; Mestek, O.; Volka, K. Application of infrared spectroscopy to the assessment of authenticity of tea. Talanta 1998, 47, 255–260. [Google Scholar] [CrossRef]
- Moreda-Pineiro, A.; Fisher, A.; Hill, S.J. The classification of tea according to region of origin using pattern recognition techniques and trace metal data. J. Food Compost Anal. 2003, 16, 195–211. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, P.; Pan, Z.; Xu, H.; Luo, Y.; Wang, X. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analysed by HS-SPME/GC–MS. Food Chem. 2013, 141, 259–265. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, C.; Li, M. Effects of geographical origin, variety, season and their interactions on minerals in tea for traceability. J. Food Compost. Anal. 2017, 63, 15–20. [Google Scholar] [CrossRef]
- Mu, B.; Zhu, Y.; Lv, H.P.; Yan, H.; Peng, Q.H.; Lin, Z. The enantiomeric distributions of volatile constituents in different tea cultivars. Food Chem. 2018, 265, 329–336. [Google Scholar] [CrossRef]
- Ku, K.M.; Kim, J.; Park, H.J.; Liu, K.H.; Lee, C.H. Application of Metabolomics in the Analysis of Manufacturing Type of Pu-erh Tea and Composition Changes with Different Postfermentation Year. J. Agric. Food Chem. 2010, 58, 345–352. [Google Scholar] [CrossRef]
- Lv, S.; Wu, Y.; Zhou, J.; Lian, M.; Li, C.; Xu, Y.; Liu, S.; Wang, C.; Meng, Q. The Study of Fingerprint Characteristics of Dayi Pu-Erh Tea Using a Fully Automatic HS-SPME/GC–MS and Combined Chemometrics Method. PLoS ONE 2014, 9, e116428. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Guo, X.; Liu, G.; Song, Y.; Ho, C.T.; Hou, R.; Zhang, L.; Wan, X. A comparative analysis for the volatile compounds of various Chinese dark teas using combinatory metabolomics and fungal solid-state fermentation. J. Food Drug Anal. 2018, 26, 112–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Lv, S.; Wang, C.; Gao, X.; Li, J.; Meng, Q. Comparative analysis of volatiles difference of Yunnan sun-dried Pu-erh green tea from different tea mountains: Jingmai and Wuliang mountain by chemical fingerprint similarity combined with principal component analysis and cluster analysis. Chem. Cent. J. 2016, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.K.; Lin, C.L.; Liang, Y.C.; Shiau, S.Y.L.; Juan, I.M. Survey of Catechins, Gallic Acid, and Methylxanthines in Green, Oolong, Pu-erh, and Black Teas. J. Agric. Food Chem. 1998, 46, 3635–3642. [Google Scholar] [CrossRef]
- Kłódka, D.; Bońkowski, M.; Telesiński, A. Zawartość wybranych metyloksantyn i związków fenolowych w naparach różnych rodzajów herbat rozdrobnionych (dust i fannings) w zależności od czasu parzenia. Żywność. Nauka Technolog. Jakość. 2008, 1, 103–113. [Google Scholar]
- Zhao, Y.; Chen, P.; Lin, L.; Harnly, J.M.; Yu, L.; Li, Z. Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem. 2011, 126, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Belščak-Cvitanović, A.; Durgo, K.; Chisti, Y.; Gong, J.; Sirisansaneeyakul, S.; Komes, D. Physicochemical properties and biological activities of a high-theabrownins instant Pu-erh tea produced using Aspergillus tubingensis. LWT 2018, 90, 598–605. [Google Scholar] [CrossRef]
- Yang, X.R.; Ye, C.X.; Xu, J.K.; Jiang, Y.M. Simultaneous analysis of purine alkaloids and catechins in Camellia sinensis, Camellia ptilophylla and Camellia assamica var. kucha by HPLC. Food Chem. 2007, 100, 1132–1136. [Google Scholar] [CrossRef]
- Mohanpuria, P.; Kumar, V.; Joshi, R.; Gulati, A.; Ahuja, P.S.; Yadav, S.K. Caffeine Biosynthesis and Degradation in Tea [Camellia sinensis (L.) O. Kuntze] is under Developmental and Seasonal Regulation. Mol. Biotechnol. 2009, 43, 104–111. [Google Scholar] [CrossRef]
- Mohanpuria, P.; Kumar, V.; Yadav, S.K. Tea Caffeine: Metabolism, Functions, and Reduction Strategies. Food Sci. Technol. 2010, 19, 275–287. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, C.; Ren, X.; Xia, T.; Li, X.; Wu, Y. Production of theophylline via aerobic fermentation of pu-erh tea using teaderived fungi. BMC Microbiol. 2019, 19, 261. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wan, X.; Hu, S.; Pan, C. Study on the increase mechanism of the caffeine content during the fermentation of tea with microorganisms. Food Chem. 2008, 107, 1086–1091. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, C.; Wang, H.; Xia, T. Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation. BMC Microbiol. 2018, 18, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Ma, C.; Xia, T.; Li, X.; Zheng, C.; Wu, T.; Liu, X. Isolation, characterization and application of theophylline-degrading Aspergillus fungi. Microb. Cell Factories 2020, 19, 72. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Shao, W.; Xiao, R.; Xu, K.; Ma, Z.; Johnstone, B.H.; Du, Y. Pu-erh tea aqueous extracts lower atherosclerotic risk factors in a rat hyperlipidemia model. Exp. Gerontol. 2009, 44, 434–439. [Google Scholar] [CrossRef]
- Pedan, V.; Rohn, S.; Holinger, M.; Hühn, T.; Chetschik, I. Bioactive Compound Fingerprint Analysis of Aged Raw Pu’er Tea and Young Ripened Pu’er Tea. Molecules 2018, 23, 1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Li, X.; Yang, H.; Wang, F.; Kong, J.; Qiu, D.; Li, Z. Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins. Food Chem. 2018, 268, 271–278. [Google Scholar] [CrossRef]
- Ge, Y.; Bian, X.; Sun, B.; Zhao, M.; Ma, Y.; Tang, Y.; Li, N.; Wu, J.L. Dynamic Profiling of Phenolic Acids during Pu-erh Tea Fermentation Using Derivatization Liquid Chromatography−Mass Spectrometry Approach. J. Agric. Food Chem. 2019, 67, 4568–4577. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.P.; Zhang, Y.J.; Lin, Z.; Liang, Y.R. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 2013, 53, 608–618. [Google Scholar] [CrossRef]
- Dimpfel, W.; Kler, A.; Kriesl, E.; Lehnfeld, R. Theogallin and L-theanine as active ingredients in decaffeinated green tea extract: I. electrophysiological characterization in the rat hippocampus in-vitro. J. Pharm. Pharmacol. 2007, 59, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Stagg, G.V.; Swaine, D. The identification of theogallin as 3-galloylquinic acid. Phytochemistry 1971, 10, 1671–1673. [Google Scholar] [CrossRef]
- Tan, J.; Engelhardt, U.H.; Lin, Z.; Kaiser, N.; Maiwald, B. Flavonoids, phenolic acids, alkaloids and theanine in different types of authentic Chinese white tea samples. J. Food Compost. Anal. 2017, 57, 8–15. [Google Scholar] [CrossRef]
- Dimpfel, W.; Kler, A.; Kriesl, E.; Lehnfeld, R.; Keplinger-Dimpfel, I.K. Source density analysis of the human EEG after ingestion of a drink containing decaffeinated extract of green tea enriched with L-theanine and theogallin. Nutr. Neurosci. 2007, 10, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Kler, A.; Zenger, R.; Dimpfel, W. Verwendung von Theogallin zur Herstellung eines Arzneimittels zur Prophylaxe und Behandlung von neurologischen und psychiatrischen Erkrankungen des zentralen Nervensystems, insbesondere von mentalen Konzentrationsleistungsstörungen, Depression and Demenz. Deutsches Patent- und Markenamt DE 10 2006 045 764 A1 2008.04.03. Available online: https://patentimages.storage.googleapis.com/a1/21/8a/d420234fe75cfc/DE102006045764A1.pdf (accessed on 25 June 2022).
- Al Zahrani, N.A.; El-Shishtawy, R.M.; Asiri, A.M. Recent developments of gallic acid derivatives and their hybrids inmedicinal chemistry: A review. Eur. J. Med. Chem. 2020, 204, 112609. [Google Scholar] [CrossRef]
- Liao, C.C.; Chen, S.C.; Huang, H.P.; Wang, C.J. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS). J. Food Drug Anal. 2018, 26, 620–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Xie, H.; Ma, Y.; Li, H.; Li, C.; Chen, L.; Jiang, B.; Nian, B.; Guo, T.; Zhang, Z.; et al. High Performance Liquid Chromatography and Metabolomics Analysis of Tannase Metabolism of Gallic Acid and Gallates in Tea Leaves. J. Agric. Food Chem. 2020, 68, 4946–4954. [Google Scholar] [CrossRef]
- Jiang, H.; Yua, F.; Qinc, L.; Zhang, N.; Cao, Q.; Schwab, W.; Li, D.; Song, C. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in sixtypes of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J. Food Compost. Anal. 2019, 77, 28–38. [Google Scholar] [CrossRef]
- Chen, G.H.; Lin, Y.L.; Hsu, W.L.; Hsieh, S.K.; Tzen, J.T.C. Significant elevation of antiviral activity of strictinin from Pu’er tea after thermal degradation to ellagic acid and gallic acid. J. Food Drug Anal. 2015, 23, 116–123. [Google Scholar] [CrossRef] [Green Version]
Type of Pu-Erh Tea | Production Date | Crop Type | Quantity per 100 g of the Product (mg) | ||
---|---|---|---|---|---|
Theobromine | Theophylline | Caffeine | |||
Raw 1 | 1998 | Arbor tea garden | 43.6 a | ND | 511.0 b |
Raw 2 | 2003 | No data | 171.7 b | ND | 474.5 c |
Raw 3 | 2007 | Arbor tea garden | 251.1 b | ND | 466.7 c |
Raw 4 | 2012 | No data | 200.7 b | ND | 461.6 c |
Raw 5 | 2014 | Old tea trees | 152.1 a | ND | 454.8 b |
Ripe 1 | 2003 | No data | 21.6 a | 13.4 a | 451.9 b |
Ripe 2 | 2005 | No data | 23.6 b | 8.0 b | 588.2 c |
Ripe 3 | 2007 | No data | 19.9 a | 1.2 a | 382.6 b |
Ripe 4 | 2010 | Arbor tea trees | 250.6 b | 24.1 a | 553.1 c |
Ripe 5 | 2015 | No data | 195.6 b | 31.2 a | 563.9 c |
Type of Pu-Erh Tea | Production Date | Crop Type | Quantity per 100 g of the Product (mg) | |
---|---|---|---|---|
Theogallin | Gallic Acid | |||
Raw 1 | 1998 | Arbor tea garden | 576.1 b | 148.3 a |
Raw 2 | 2003 | No data | 629.5 b | 165.4 a |
Raw 3 | 2007 | Arbor tea garden | 795.1 b | 118.2 a |
Raw 4 | 2012 | No data | 687.3 b | 75.9 a |
Raw 5 | 2014 | Old tea trees | 667.6 b | 60.9 a |
Ripe 1 | 2003 | No data | 18.1 a | 75.1 b |
Ripe 2 | 2005 | No data | 19.2 a | 114.5 b |
Ripe 3 | 2007 | No data | 22.7 a | 221.0 b |
Ripe 4 | 2010 | Arbor tea trees | 27.8 a | 247.2 b |
Ripe 5 | 2015 | No data | 29.0 a | 224.9 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karwowska, K.; Kozłowska-Tylingo, K.; Skotnicka, M.; Śmiechowska, M. Theogallin-to-Gallic-Acid Ratio as a Potential Biomarker of Pu-Erh Teas. Foods 2023, 12, 2453. https://doi.org/10.3390/foods12132453
Karwowska K, Kozłowska-Tylingo K, Skotnicka M, Śmiechowska M. Theogallin-to-Gallic-Acid Ratio as a Potential Biomarker of Pu-Erh Teas. Foods. 2023; 12(13):2453. https://doi.org/10.3390/foods12132453
Chicago/Turabian StyleKarwowska, Kaja, Katarzyna Kozłowska-Tylingo, Magdalena Skotnicka, and Maria Śmiechowska. 2023. "Theogallin-to-Gallic-Acid Ratio as a Potential Biomarker of Pu-Erh Teas" Foods 12, no. 13: 2453. https://doi.org/10.3390/foods12132453
APA StyleKarwowska, K., Kozłowska-Tylingo, K., Skotnicka, M., & Śmiechowska, M. (2023). Theogallin-to-Gallic-Acid Ratio as a Potential Biomarker of Pu-Erh Teas. Foods, 12(13), 2453. https://doi.org/10.3390/foods12132453