New Coagulant Proteases for Cheesemaking from Leaves and Latex of the Spontaneous Plant Pergularia tomentosa: Biochemical Characterization of Coagulants and Sensorial Evaluation of Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Plant Material and Latex Collection
2.3. Preparation of Enzymatic Crude Extracts
2.4. Protein Quantification
2.5. Caseinolytic Activity Measurement
2.6. Electrophoretic Protein Profiles
2.7. Zymography
2.8. Effect of Temperature, Thermal Stability, and pH on Caseinolytic Activity
2.9. Effect of Metal Ions and Protease Inhibitors on Caseinolytic Activity
2.10. Kinetic Parameters
2.11. Determination of Milk-Clotting Activity and Optimal Coagulation Conditions
2.12. SDS-PAGE Analysis of Casein Hydrolysis by Enzymatic Extracts
2.13. Cheesemaking
2.13.1. Physicochemical Evaluation
2.13.2. Sensory Evaluation
2.14. Statistical Analysis
3. Results and Discussion
3.1. Extraction and Enzymatic Activity Characteristics of Pergularia tomentosa Extracts
3.2. Electrophoresis Profile and Zymography
3.3. Effect of Temperature, Thermal Stability, and pH on Proteolytic Activity
3.4. Effect of Metal Ions and Protease Inhibitors on Caseinolytic Activity
3.5. Kinetic Parameters
3.6. Milk-Clotting Activity
3.7. Effect of Pergularia tomentosa Protease Extracts on Caseins Hydrolysis
3.8. Characteristics of Produced Cheese
3.9. Sensory Characteristics of Produced Cheese
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Expósito, I.; Miralles, B.; Amigo, L.; Hernández-Ledesma, B. Health effects of cheese components with a focus on bioactive peptides. In Fermented Foods in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2017; pp. 239–273. [Google Scholar]
- Meng, F.; Chen, R.; Zhu, X.; Lu, Y.; Nie, T.; Lu, F.; Lu, Z. Newly Effective Milk-Clotting Enzyme from Bacillus subtilis and Its Application in Cheese Making. J. Agric. Food Chem. 2018, 66, 6162–6169. [Google Scholar] [CrossRef]
- Shah, M.A.; Mir, S.A.; Paray, M.A. Plant proteases as milk-clotting enzymes in cheesemaking: A review. Dairy Sci. Technol. 2014, 94, 5–16. [Google Scholar] [CrossRef]
- Jacob, M.; Jaros, D.; Rohm, H. Recent advances in milk clotting enzymes. Int. J. Dairy Technol. 2011, 64, 14–33. [Google Scholar] [CrossRef]
- Uhlig, H. Industrial Enzymes and Their Applications; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Mazorra-Manzano, M.A.; Moreno-Hernández, J.M.; Ramírez-Suarez, J.C. Milk-clotting plant proteases for cheesemaking. In Biotechnological Applications of Plant Proteolytic Enzymes; Springer: Berlin/Heidelberg, Germany, 2018; pp. 21–41. [Google Scholar]
- Shivaprasad, H.; Riyaz, M.; Venkatesh Kumar, R.; Dharmappa, K.; Tarannum, S.; Siddesha, J.; Rajesh, R.; Vishwanath, B. Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities. J. Thromb. Thrombolysis 2009, 28, 304–308. [Google Scholar] [CrossRef]
- Chehma, A. Catalogue des Plantes Spontanées du Sahara Septentrional Algérien; Université Kasdi Merbah-Ouargla, Laboratoire de Protections des Écosystèmes en Zones Arides et Semi-Arides: Ouargla, Algeria, 2006. [Google Scholar]
- Maroyi, A. Treatment of diarrhoea using traditional medicines: Contemporary research in South Africa and Zimbabwe. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 5–10. [Google Scholar] [CrossRef]
- Cherif, R.; Kemassi, A.; Boual, Z.; Bouziane, N.; Benbrahim, F.B.F.; Hadjseyd, A.; Gharib, T.; Hadj-Khelil, A.O.E.; Sakeur, M.L.; Hadj, M.D.O.E. Activités biologiques des extraits aqueux de Pergularia tomentosa L. (Asclepiadaceae). Rev. Laser Eng. 2016, 16, 25–35. [Google Scholar] [CrossRef]
- Goodman, S.M.; Hobbs, J.J. The Ethnobotany of the Egyptian Eastern Desert: A comparison of common plant usage between two culturally distinct Bedouin groups. J. Ethnopharmacol. 1988, 23, 73–89. [Google Scholar] [CrossRef]
- Lahmar, I.; Yotova, L. Investigation of Different Enzyme Activities from Pergularia tomentosa L. and Ecballium elaterium L. J. Chem. Technol. Metall. 2016, 51, 263–270. [Google Scholar]
- Benyahia, F.; Zitoun, O.A.; Meghzili, B.; Foufou, E.; Zidoune, M. Use of Pergularia tomentosa Plant Enzymatic Coagulant System in Fresh Cheese-Making. Food Nutr. Sci. 2021, 12, 1028–1040. [Google Scholar] [CrossRef]
- Freitas, C.D.T.; Oliveira, J.S.; Miranda, M.R.A.; Macedo, N.M.R.; Sales, M.P.; Villas-Boas, L.A.; Ramos, M.V. Enzymatic activities and protein profile of latex from Calotropis procera. Plant Physiol. Biochem. 2007, 45, 781–789. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hafid, K.; John, J.; Sayah, T.M.; Domínguez, R.; Becila, S.; Lamri, M.; Dib, A.L.; Lorenzo, J.M.; Gagaoua, M. One-step recovery of latex papain from Carica papaya using three phase partitioning and its use as milk-clotting and meat-tenderizing agent. Int. J. Biol. Macromol. 2020, 146, 798–810. [Google Scholar] [CrossRef]
- Gagaoua, M.; Hoggas, N.; Hafid, K. Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. Int. J. Biol. Macromol. 2015, 73, 245–252. [Google Scholar] [CrossRef]
- Arima, K.; Yu, J.; Iwasaki, S. Milk-clotting enzyme from Mucor pusillus var. Lindt. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1970; Volume 19, pp. 446–459. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Freitas, C.D.T.; Leite, H.B.; Oliveira, J.P.B.; Amaral, J.L.; Egito, A.S.; Vairo-Cavalli, S.; Lobo, M.D.P.; Monteiro-Moreira, A.C.O.; Ramos, M.V. Insights into milk-clotting activity of latex peptidases from Calotropis procera and Cryptostegia grandiflora. Food Res. Int. 2016, 87, 50–59. [Google Scholar] [CrossRef]
- Rayanatou, I.A.; Mahamadou, E.G.; Garric, G.; Harel-Oger, M.; Leduc, A.; Jardin, J.; Briard-Bion, V.; Cauty, C.; Adakal, H.; Grongnet, J.F.; et al. Physico-chemical characterization of dairy gel obtained by a proteolytic extract from Calotropis procera—A comparison with chymosin. Food Chem. 2017, 232, 405–412. [Google Scholar] [CrossRef]
- Amariglio, S. Contrôle de la Qualité des Produits Laitiers, Analyses Physiques et Chimiques; Lavoisier: Paris, France, 1986. [Google Scholar]
- James, C. Determination of the fat content of dairy products by the Gerber Method. In Analytical Chemistry of Food; Blackie Academic and Professional: Glasgow, UK, 1995; pp. 93–95. [Google Scholar] [CrossRef]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Pira, E.; Bittante, G.; Pazzola, M. Milk yield, quality, and coagulation properties of 6 breeds of goats: Environmental and individual variability. J. Dairy Sci. 2018, 101, 7236–7247. [Google Scholar] [CrossRef]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Shivaprasad, H.V.; Rajaiah, R.; Frey, B.M.; Frey, F.J.; Vishwanath, B.S. ’Pergularain e I’—A plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thromb. Res. 2010, 125, e100–e105. [Google Scholar] [CrossRef]
- Anusha, R.; Singh, M.K.; Bindhu, O. Characterisation of potential milk coagulants from Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. Eur. Food Res. Technol. 2014, 238, 997–1006. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Morishima, I.; Babiker, E.E.; Mori, N. Characterisation of partially purified milk-clotting enzyme from Solanum dubium Fresen seeds. Food Chem. 2009, 116, 395–400. [Google Scholar] [CrossRef]
- Singh, A.N.; Shukla, A.K.; Jagannadham, M.; Dubey, V.K. Purification of a novel cysteine protease, procerain B, from Calotropis procera with distinct characteristics compared to procerain. Process Biochem. 2010, 45, 399–406. [Google Scholar] [CrossRef]
- Sequeiros, C.; Torres, M.; Trejo, S.; Esteves, J.; Natalucci, C.; López, L. Philibertain g I, the most basic cysteine endopeptidase purified from the latex of Philibertia gilliesii Hook. et Arn. (Apocynaceae). Protein J. 2005, 24, 445–453. [Google Scholar] [CrossRef]
- Golden, K.; Smith-Marshall, J. Characterization of bromelain from Morinda citrifolia (Noni). J. Sci. Res. 2012, 4, 445–456. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Mahajan, R.T. Nivulian-II a new milk clotting cysteine protease of Euphorbia nivulia latex. Int. J. Biol. Macromol. 2014, 70, 391–398. [Google Scholar] [CrossRef]
- De Farias, V.A.; da Rocha Lima, A.D.; Costa, A.S.; de Freitas, C.D.T.; da Silva Araújo, I.M.; dos Santos Garruti, D.; de Figueiredo, E.A.T.; de Oliveira, H.D. Noni (Morinda citrifolia L.) fruit as a new source of milk-clotting cysteine proteases. Food Res. Int. 2020, 127, 108689. [Google Scholar] [CrossRef]
- Silva, A.C.D.; Nascimento, T.C.E.d.S.; Silva, S.A.d.; Herculano, P.N.; Moreira, K.A. Potential of quixaba (Sideroxylon obtusifolium) latex as a milk-clotting agent. Food Sci. Technol. 2013, 33, 494–499. [Google Scholar] [CrossRef]
- Mahajan, R.T.; Badgujar, S.B. Biological aspects of proteolytic enzymes: A review. J. Pharm. Res. 2010, 3, 2048–2068. [Google Scholar]
- Grzonka, Z.; Kasprzykowski, F.; Wiczk, W. Cysteine proteases. In Industrial Enzymes: Structure, Function and Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 181–195. [Google Scholar]
- Brutti, C.B.; Pardo, M.F.; Caffini, N.O.; Natalucci, C.L. Onopordum acanthium L. (Asteraceae) flowers as coagulating agent for cheesemaking. LWT Food Sci. Technol. 2012, 45, 172–179. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Perea-Gutiérrez, T.C.; Lugo-Sánchez, M.E.; Ramirez-Suarez, J.C.; Torres-Llanez, M.J.; González-Córdova, A.F.; Vallejo-Cordoba, B. Comparison of the milk-clotting properties of three plant extracts. Food Chem. 2013, 141, 1902–1907. [Google Scholar] [CrossRef]
- Silva, M.Z.R.; Oliveira, J.P.B.; Ramos, M.V.; Farias, D.F.; de Sá, C.A.; Ribeiro, J.A.C.; Silva, A.F.B.; de Sousa, J.S.; Zambelli, R.A.; da Silva, A.C.; et al. Biotechnological potential of a cysteine protease (CpCP3) from Calotropis procera latex for cheesemaking. Food Chem. 2020, 307, 125574. [Google Scholar] [CrossRef]
- Claverie-MartÌn, F.; Vega-Hernàndez, M.C. Aspartic Proteases Used in Cheese Making. In Industrial Enzymes: Structure, Function and Applications; Polaina, J., MacCabe, A.P., Eds.; Springer Nature: Dordrecht, The Netherlands, 2007; pp. 207–219. [Google Scholar]
- Aworh, O.C.; Nakai, S. Extraction of Milk Clotting Enzyme from Sodom Apple (Calotropis procera). J. Food Sci. 1986, 51, 1569–1570. [Google Scholar] [CrossRef]
- Sidrach, L.; García-Cánovas, F.; Tudela, J.; Rodríguez-López, J.N. Purification of cynarases from artichoke (Cynara scolymus L.): Enzymatic properties of cynarase A. Phytochemistry 2005, 66, 41–49. [Google Scholar] [CrossRef]
- Walstra, P.; Wouters, J.T.M.; Geurts, T.J. Dairy Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Pontual, E.V.; Carvalho, B.E.; Bezerra, R.S.; Coelho, L.C.; Napoleão, T.H.; Paiva, P.M. Caseinolytic and milk-clotting activities from Moringa oleifera flowers. Food Chem. 2012, 135, 1848–1854. [Google Scholar] [CrossRef]
- Kumari, M.; Sharma, A.; Jagannadham, M.V. Religiosin B, a milk-clotting serine protease from Ficus religiosa. Food Chem. 2012, 131, 1295–1303. [Google Scholar] [CrossRef]
- Wolfschoon-Pombo, A.F. Influence of calcium chloride addition to milk on the cheese yield. Int. Dairy J. 1997, 7, 249–254. [Google Scholar] [CrossRef]
- Fox, P.F.; McSweeney, P.L.H. Cheese: An Overview. In Cheese: Chemistry, Physics and Microbiology; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Academic Press: Cambridge, MA, USA, 2004; Volume 1, pp. 1–18. [Google Scholar] [CrossRef]
- Otani, H.; Matsumori, M.; Hosono, A. Purification and some properties of a milk clotting protease from the young seeds of Albizia julibrissin. Animal Sci. Technol. 1991, 62, 424–432. [Google Scholar] [CrossRef]
- Sousa, M.J.; Malcata, F.X. Advances in the role of a plant coagulant (Cynara cardunculus) in vitro and during ripening of cheeses from several milk species. Lait 2002, 82, 151–170. [Google Scholar] [CrossRef]
- Aquilanti, L.; Babini, V.; Santarelli, S.; Osimani, A.; Petruzzelli, A.; Clementi, F. Bacterial dynamics in a raw cow’s milk Caciotta cheese manufactured with aqueous extract of Cynara cardunculus dried flowers. Lett. Appl. Microbiol. 2011, 52, 651–659. [Google Scholar] [CrossRef]
- Zikiou, A.; Zidoune, M.N. Enzymatic extract from flowers of Algerian spontaneous Cynara cardunculus: Milk-clotting properties and use in the manufacture of a Camembert-type cheese. Int. J. Dairy Technol. 2019, 72, 89–99. [Google Scholar] [CrossRef]
- Alais, C. Science du Lait: Principes des Techniques Laitières; Ed. SEIPAC: Paris, France, 1984. [Google Scholar]
- De Moraes, G.M.D.; dos Santos, K.M.O.; de Barcelos, S.C.; Lopes, S.A.; do Egito, A.S. Potentially probiotic goat cheese produced with autochthonous adjunct culture of Lactobacillus mucosae: Microbiological, physicochemical and sensory attributes. Lwt 2018, 94, 57–63. [Google Scholar] [CrossRef]
- Omotosho, O.; Oboh, G.; Iweala, E. Comparative effects of local coagulants on the nutritive value, in vitro multienzyme protein digestibility and sensory properties of Wara cheese. Int. J. Dairy Sci. 2011, 6, 58–65. [Google Scholar] [CrossRef]
- Bittante, G.; Cipolat-Gotet, C.; Cecchinato, A. Genetic parameters of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process. J. Dairy Sci. 2013, 96, 7966–7979. [Google Scholar] [CrossRef]
- Khan, A.A.; Naqvi, T.; Naqvi, M. Identification of phytosaponins as novel biodynamic agents: An updated overview. Asian J. Exp. Biol. Sci. 2012, 3, 459–467. [Google Scholar]
- Dutcosky, S.D. Análise sensorial de alimentos. In Análise Sensorial de Alimentos, 2nd ed.; Champagnat: Curitiba, Brazil, 2007; p. 426. [Google Scholar]
- Duarate, P.; Figueiredo, R.; Pereira, S.; Pissarra, J. Structural characterization of the stigma-style complex of Cynaracardunculus (Asteraceae) and immunolocalization of cardosin A and B during floral development. Botany 2006, 84, 737–749. [Google Scholar] [CrossRef]
Parameter | Leaf Extract | Latex Extract |
---|---|---|
Yield (%) | 75.66 ± 0.88 a | 88.00 ± 2.00 b |
pH | 6.00 ± 0.10 a | 5.85 ± 0.10 a |
Protein content (mg/mL) | 5.70 ± 0.24 a | 31.44 ± 1.76 b |
Proteolytic activity (U/min) | 24.66 ± 0.44 a | 161.66 ± 3.77 b |
Specific proteolytic activity (U/mg) | 4.32 ± 0.25 a | 5.14 ± 0.31 a |
MCA (U/mL) | 97.92 ± 4.90 a | 1246.45 ± 69.01 b |
Specific milk-clotting activity (U/mg) | 17.26 ± 1.54 a | 39.89 ± 4.27 b |
MCI (MCA/PA) | 3.96 ± 0.16 a | 7.70 ± 0.35 a |
Parameter | Curd Latex | Curd Leaf | Curd Chymosin |
---|---|---|---|
pH | 6.41 ± 0.02 a | 6.44 ± 0.02 a | 6.73 ± 0.01 a |
Acidity% (g/100 g) | 0.33 ± 0.90 a | 0.35 ± 0.20 a | 0.32 ± 0.018 a |
Total solids (w/w) | 39.34 ± 1.14 a | 46.19 ± 0.31 b | 47.28 ± 0.39 b |
Moisture (g/100 g) | 60.66 ± 1.14 a | 53.81 ± 0.31 b | 52.72 ± 0.39 b |
Fat %(w/w) | 21.50 ± 0.30 a | 22.00 ± 0.20 a | 21.40 ± 0.10 a |
Cheese mass for 1 L of milk (g) | 200.45 | 238.20 | 227 |
Cheese yield % | 19.51 | 23.22 | 22.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leulmi, I.; Zidoune, M.N.; Hafid, K.; Djeghim, F.; Bourekoua, H.; Dziki, D.; Różyło, R. New Coagulant Proteases for Cheesemaking from Leaves and Latex of the Spontaneous Plant Pergularia tomentosa: Biochemical Characterization of Coagulants and Sensorial Evaluation of Cheese. Foods 2023, 12, 2467. https://doi.org/10.3390/foods12132467
Leulmi I, Zidoune MN, Hafid K, Djeghim F, Bourekoua H, Dziki D, Różyło R. New Coagulant Proteases for Cheesemaking from Leaves and Latex of the Spontaneous Plant Pergularia tomentosa: Biochemical Characterization of Coagulants and Sensorial Evaluation of Cheese. Foods. 2023; 12(13):2467. https://doi.org/10.3390/foods12132467
Chicago/Turabian StyleLeulmi, Imene, Mohammed Nasreddine Zidoune, Kahina Hafid, Fairouz Djeghim, Hayat Bourekoua, Dariusz Dziki, and Renata Różyło. 2023. "New Coagulant Proteases for Cheesemaking from Leaves and Latex of the Spontaneous Plant Pergularia tomentosa: Biochemical Characterization of Coagulants and Sensorial Evaluation of Cheese" Foods 12, no. 13: 2467. https://doi.org/10.3390/foods12132467
APA StyleLeulmi, I., Zidoune, M. N., Hafid, K., Djeghim, F., Bourekoua, H., Dziki, D., & Różyło, R. (2023). New Coagulant Proteases for Cheesemaking from Leaves and Latex of the Spontaneous Plant Pergularia tomentosa: Biochemical Characterization of Coagulants and Sensorial Evaluation of Cheese. Foods, 12(13), 2467. https://doi.org/10.3390/foods12132467