Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Reagents, and Standards
2.2. Pretreatment Procedure
2.3. Drying by Experimental Design
2.4. Total Phenolic and Carotenoid Analysis
2.5. Antioxidant Properties
2.6. Color Analysis
2.6.1. Surface Color Measurement
2.6.2. The Non-Enzymatic Browning Index (NBI)
2.7. Rehydration Analysis
2.8. Analysis of Textural and Morphological Properties
2.8.1. Texture
2.8.2. Scanning Electron Microscopy (SEM)
2.9. Desirability Function
3. Results and Discussion
3.1. Total Phenolic Content and Total Carotenoid Content
3.2. Antioxidant Activity
3.3. Color Analysis
3.4. Rehydration
3.5. Texture
3.6. Morphological Properties of Pretreated Dried Sweet Red Pepper
3.7. Overall Desirability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D.; Parniakov, O.; Nowacka, M. The Quality of Red Bell Pepper Subjected to Freeze-Drying Preceded by Traditional and Novel Pretreatment. Foods 2021, 10, 226. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data (accessed on 29 May 2023).
- Geng, Z.; Huang, X.; Wang, J.; Xiao, H.; Yang, X.; Zhu, L.; Qi, X.; Zhang, Q.; Hu, B. Pulsed Vacuum Drying of Pepper (Capsicum annuum L.): Effect of High-Humidity Hot Air Impingement Blanching Pretreatment on Drying Kinetics and Quality Attributes. Foods 2022, 11, 318. [Google Scholar] [CrossRef]
- Łechtańska, J.M.; Szadzinska, J.; Kowalski, S.J. Microwave- and Infrared-Assisted Convective Drying of Green Pepper: Quality and Energy Considerations. Chem. Eng. Process. 2015, 98, 155–164. [Google Scholar] [CrossRef]
- Finger, F.L.; Pereira, G.M. Physiology and Postharvest of Pepper Fruits. In Production and Breeding of Chilli Peppers (Capsicum spp.); do Rêgo, E.R., do Rêgo, M.M., Finger, F.L., Eds.; Springer: Cham, Switzerland, 2016; pp. 27–40. ISBN 9783319065328. [Google Scholar]
- Topuz, A.; Feng, H.; Kushad, M. The Effect of Drying Method and Storage on Color Characteristics of Paprika. LWT—Food Sci. Technol. 2009, 42, 1667–1673. [Google Scholar] [CrossRef]
- Galvin-King, P.; Haughey, S.A.; Elliott, C.T. The Detection of Substitution Adulteration of Paprika Spectroscopy Tools. Foods 2020, 9, 944. [Google Scholar] [CrossRef]
- Ropelewska, E.; Sabanci, K.; Aslan, M.F. The Changes in Bell Pepper Flesh as a Result of Lacto-Fermentation Evaluated Using Image Features and Machine Learning. Foods 2022, 11, 2956. [Google Scholar] [CrossRef]
- Del Río-Celestino, M.; Font, R. The Health Benefits of Fruits and Vegetables. Foods 2020, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Jin, N.; Wang, S.; Meng, X.; Xie, Y.; Li, Z.; Zhang, G.; Yin, X.; Lyu, J.; Zhong, Y.; et al. Comparing the Morphological Characteristics and Nutritional Composition of 23 Pepper (Capsicum annuum L.) Varieties. Eur. Food Res. Technol. 2022, 249, 963–974. [Google Scholar] [CrossRef]
- Lučić, M.; Miletić, A.; Savić, A.; Lević, S.; Sredović Ignjatović, I.; Onjia, A. Dietary Intake and Health Risk Assessment of Essential and Toxic Elements in Pepper (Capsicum annuum). J. Food Compos. Anal. 2022, 111, 104598. [Google Scholar] [CrossRef]
- Campos, M.R.S.; Gómez, K.R.; Ordoñez, Y.M.; Ancona, D.B. Polyphenols, Ascorbic Acid and Carotenoids Contents and Antioxidant Properties of Habanero Pepper (Capsicum chinense) Fruit. Food Nutr. Sci. 2013, 4, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Ergüneş, G.; Tarhan, S. Color Retention of Red Peppers by Chemical Pretreatments during Greenhouse and Open Sun Drying. J. Food Eng. 2006, 76, 446–452. [Google Scholar] [CrossRef]
- Rosa, A.; Deiana, M.; Casu, V.; Paccagnini, S.; Appendino, G.; Ballero, M.; Dessí, M.A. Antioxidant Activity of Capsinoids. J. Agric. Food Chem. 2002, 50, 7396–7401. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of Air-Drying Temperature on Physico-Chemical Properties, Antioxidant Capacity, Colour and Total Phenolic Content of Red Pepper (Capsicum annuum L. Var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Yang, X.H.; Deng, L.Z.; Mujumdar, A.S.; Xiao, H.W.; Zhang, Q.; Kan, Z. Evolution and Modeling of Colour Changes of Red Pepper (Capsicum annuum L.) during Hot Air Drying. J. Food Eng. 2018, 231, 101–108. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.H.; Wang, J.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017, 59, 1408–1432. [Google Scholar] [CrossRef]
- Çakmak, R.Ş.; Tekeoğlu, O.; Bozkir, H.; Ergün, A.R.; Baysal, T. Effects of Electrical and Sonication Pretreatments on the Drying Rate and Quality of Mushrooms. LWT—Food Sci. Technol. 2016, 69, 197–202. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Mason, T.J.; Paniwnyk, L.; Lelas, V. Accelerated Drying of Button Mushrooms, Brussels Sprouts and Cauliflower by Applying Power Ultrasound and Its Rehydration Properties. J. Food Eng. 2007, 81, 88–97. [Google Scholar] [CrossRef]
- Yildiz, G.; Izli, G.; Muhammad, R. Comparison of Chemical, Physical, and Ultrasound Treatments on the Shelf Life of Fresh-Cut Quince Fruit (Cydonia oblonga Mill.). J. Food Process. Preserv. 2019, 44, e14366. [Google Scholar] [CrossRef]
- Aadil, R.M.; Khalil, A.A.; Rehman, A.; Khalid, A.; Inam-ur-Raheem, M.; Karim, A.; Gill, A.A.; Abid, M.; Afraz, M.T. Assessing the Impact of Ultra-Sonication and Thermo-Ultrasound on Antioxidant Indices and Polyphenolic Profile of Apple-Grape Juice Blend. J. Food Process. Preserv. 2019, 44, e14406. [Google Scholar] [CrossRef]
- Milanović, M.; Komatina, M.; Zlatanović, I.; Manić, N.; Antonijević, D. Kinetic Parameters Identification of Conductive Enhanced Hot Air Drying Process of Food Waste. Therm. Sci. 2021, 25, 1795–1807. [Google Scholar] [CrossRef]
- Salević, A.; Stojanović, D.; Lević, S.; Pantić, M.; Ðordević, V.; Pešić, R.; Bugarski, B.; Pavlović, V.; Uskoković, P.; Nedović, V. The Structuring of Sage (Salvia officinalis L.) Extract-Incorporating Edible Zein-Based Materials with Antioxidant and Antibacterial Functionality by Solvent Casting versus Electrospinning. Foods 2022, 11, 390. [Google Scholar] [CrossRef]
- Lučić, M.; Sredović Ignjatović, I.; Lević, S.; Pećinar, I.; Antić, M.; Đurđić, S.; Onjia, A. Ultrasound-Assisted Extraction of Essential and Toxic Elements from Pepper in Different Ripening Stages Using Box–Behnken Design. J. Food Process. Preserv. 2022, 46, e16493. [Google Scholar] [CrossRef]
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Ilić, S.Z.; Milenković, L.; Dimitrijević, A.; Stanojević, L.; Cvetković, D.; Kevrešan, Ž.; Fallik, E.; Mastilović, J. Light Modification by Color Nets Improve Quality of Lettuce from Summer Production. Sci. Hortic. 2017, 226, 389–397. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Kojić, J.; Belović, M.; Krulj, J.; Pezo, L.; Teslić, N.; Kojić, P.; Tukuljac, L.P.; Šeregelj, V.; Ilić, N. Textural, Color and Sensory Features of Spelt Wholegrain Snack Enriched with Betaine. Foods 2022, 11, 475. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Morales, F.J.; Seiquer, I.; Pilar Navarro, M. Maillard Reaction Products Profile and Intake from Spanish Typical Dishes. Food Res. Int. 2010, 43, 1304–1311. [Google Scholar] [CrossRef]
- Szadzińska, J.; Łechtańska, J.; Kowalski, S.J.; Stasiak, M. The Effect of High Power Airborne Ultrasound and Microwaves on Convective Drying Effectiveness and Quality of Green Pepper. Ultrason. Sonochem. 2017, 34, 531–539. [Google Scholar] [CrossRef]
- Kalušević, A.M.; Lević, S.M.; Čalija, B.R.; Milić, J.R.; Pavlović, V.B.; Bugarski, B.M.; Nedović, V.A. Effects of Different Carrier Materials on Physicochemical Properties of Microencapsulated Grape Skin Extract. J. Food Sci. Technol. 2017, 54, 3411–3420. [Google Scholar] [CrossRef] [PubMed]
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Lukić, J.; Radulović, J.; Lučić, M.; Đurkić, T.; Onjia, A. Chemometric Optimization of Solid-Phase Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry and Probabilistic Risk Assessment of Ultraviolet Filters in an Urban Recreational Lake. Front. Environ. Sci. 2022, 10, 911. [Google Scholar] [CrossRef]
- Vera Candioti, L.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental Design and Multiple Response Optimization. Using the Desirability Function in Analytical Methods Development. Talanta 2014, 124, 123–138. [Google Scholar] [CrossRef]
- Campos-Hernández, N.; Jaramillo-Flores, M.E.; Téllez-Medina, D.I.; Alamilla-Beltrán, L. Effect of Traditional Dehydration Processing of Pepper Jalapeno Rayado (Capsicum annuum) on Secondary Metabolites with Antioxidant Activity. CYTA—J. Food 2018, 16, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Que, F.; Mao, L.; Fang, X.; Wu, T. Comparison of Hot Air-Drying and Freeze-Drying on the Physicochemical Properties and Antioxidant Activities of Pumpkin (Cucurbita moschata Duch.) Flours. Int. J. Food Sci. Technol. 2008, 43, 1195–1201. [Google Scholar] [CrossRef]
- Bouzari, A.; Holstege, D.; Barrett, D.M. Mineral, Fiber, and Total Phenolic Retention in Eight Fruits and Vegetables: A Comparison of Refrigerated and Frozen Storage. J. Agric. Food Chem. 2015, 63, 951–956. [Google Scholar] [CrossRef]
- Norafida, A.; Aminah, A. Effect of Blanching Treatments on Antioxidant Activity of Frozen Green Capsicum (Capsicum annuum L. Var Bell Pepper). Int. Food Res. J. 2018, 25, 1427–1434. [Google Scholar]
- Wang, J.; Yang, X.H.; Mujumdar, A.S.; Wang, D.; Zhao, J.H.; Fang, X.M.; Zhang, Q.; Xie, L.; Gao, Z.J.; Xiao, H.W. Effects of Various Blanching Methods on Weight Loss, Enzymes Inactivation, Phytochemical Contents, Antioxidant Capacity, Ultrastructure and Drying Kinetics of Red Bell Pepper (Capsicum annuum L.). LWT—Food Sci. Technol. 2017, 77, 337–347. [Google Scholar] [CrossRef]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Jiménez-Fernández, M.; Azuara, E. Oleoresins from Capsicum Spp.: Extraction Methods and Bioactivity. Food Bioprocess Technol. 2017, 10, 51–76. [Google Scholar] [CrossRef]
- Sharma, R.; Joshi, V.K.; Kaushal, M. Effect of Pre-Treatments and Drying Methods on Quality Attributes of Sweet Bell-Pepper (Capsicum annum) Powder. J. Food Sci. Technol. 2015, 52, 3433–3439. [Google Scholar] [CrossRef]
- Kheto, A.; Dhua, S.; Nema, P.K.; Sharanagat, V.S. Influence of Drying Temperature on Quality Attributes of Bell Pepper (Capsicum annuum L.): Drying Kinetics and Modeling, Rehydration, Color, and Antioxidant Analysis. J. Food Process Eng. 2021, 44, e13880. [Google Scholar] [CrossRef]
- Gaware, T.J.; Sutar, N.; Thorat, B.N. Drying of Tomato Using Different Methods: Comparison of Dehydration and Rehydration Kinetics. Dry. Technol. 2010, 28, 651–658. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, B.; ElGasim, A.; Yagoub, A.; Ma, H.; Sun, Y.; Xu, X.; Yu, X.; Zhou, C. Role of Drying Techniques on Physical, Rehydration, Flavor, Bioactive Compounds and Antioxidant Characteristics of Garlic. Food Chem. 2021, 343, 128404. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.A.; Wang, S.Y.; Wang, H.; Xiao, H.; Liu, Z.L.; Pan, Y.H.; Gao, L. Comparative Study on the Influence of Various Drying Techniques on Drying Characteristics and Physicochemical Quality of Garlic Slices. Foods 2023, 12, 1314. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, G.E.; Iacomini, M.; Cordeiro, L.M.C. New Findings on Green Sweet Pepper (Capsicum annum) Pectins: Rhamnogalacturonan and Type I and II Arabinogalactans. Carbohydr. Polym. 2017, 171, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.K.; Zhou, F.F.; Liu, Y.; Wang, J.H. Na+-Induced Gelation of a Low-Methoxyl Pectin Extracted from Premna microphylla Turcz. Food Hydrocoll. 2021, 110, 106153. [Google Scholar] [CrossRef]
- Wang, H.; Wan, L.; Chen, D.; Guo, X.; Liu, F.; Pan, S. Unexpected Gelation Behavior of Citrus Pectin Induced by Monovalent Cations under Alkaline Conditions. Carbohydr. Polym. 2019, 212, 51–58. [Google Scholar] [CrossRef]
- Wehr, J.B.; Menzies, N.W.; Blamey, F.P.C. Alkali Hydroxide-Induced Gelation of Pectin. Food Hydrocoll. 2004, 18, 375–378. [Google Scholar] [CrossRef]
- Castro, S.M.; Van Loey, A.; Saraiva, J.A.; Smout, C.; Hendrickx, M. Inactivation of Pepper (Capsicum annuum) Pectin Methylesterase by Combined High-Pressure and Temperature Treatments. J. Food Eng. 2006, 75, 50–58. [Google Scholar] [CrossRef]
- Moreira, H.R.; Munarin, F.; Gentilini, R.; Visai, L.; Granja, P.L.; Tanzi, M.C.; Petrini, P. Injectable Pectin Hydrogels Produced by Internal Gelation: PH Dependence of Gelling and Rheological Properties. Carbohydr. Polym. 2014, 103, 339–347. [Google Scholar] [CrossRef]
- Wang, J.; Fang, X.M.; Mujumdar, A.S.; Qian, J.Y.; Zhang, Q.; Yang, X.H.; Liu, Y.H.; Gao, Z.J.; Xiao, H.W. Effect of High-Humidity Hot Air Impingement Blanching (HHAIB) on Drying and Quality of Red Pepper (Capsicum annuum L.). Food Chem. 2017, 220, 145–152. [Google Scholar] [CrossRef]
- Deng, L.Z.; Yang, X.H.; Mujumdar, A.S.; Zhao, J.H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.J.; Xiao, H.W. Red Pepper (Capsicum annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Lemus-Mondaca, R.; Bilbao-Sáinz, C.; Fito, P.; Andrés, A. Effect of Air Drying Temperature on the Quality of Rehydrated Dried Red Bell Pepper (Var. Lamuyo). J. Food Eng. 2008, 85, 42–50. [Google Scholar] [CrossRef]
- Dias, A.L.B.; Arroio Sergio, C.S.; Santos, P.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Effect of Ultrasound on the Supercritical CO2 Extraction of Bioactive Compounds from Dedo de Moça Pepper (Capsicum baccatum L. Var. Pendulum). Ultrason. Sonochem. 2016, 31, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, M.; Wiktor, A.; Śledź, M.; Jurek, N.; Witrowa-Rajchert, D. Drying of Ultrasound Pretreated Apple and Its Selected Physical Properties. J. Food Eng. 2012, 113, 427–433. [Google Scholar] [CrossRef]
- Montalvo-González, E.; Anaya-Esparza, L.M.; Abraham Domínguez-Avila, J.; González-Aguilar, G.A. Chapter 5—Ultrasonic Processing Technology for Postharvest Disinfection. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 101–119. ISBN 9780128126981. [Google Scholar]
- Rodríguez, Ó.; Eim, V.; Rosselló, C.; Femenia, A.; Cárcel, J.A.; Simal, S. Application of Power Ultrasound on the Convective Drying of Fruits and Vegetables: Effects on Quality. J. Sci. Food Agric. 2018, 98, 1660–1673. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, K.; Ahluwalia, P. Effect of Drying Temperatures and Storage on Chemical and Bioactive Attributes of Dried Tomato and Sweet Pepper. LWT—Food Sci. Technol. 2020, 117, 108604. [Google Scholar] [CrossRef]
- Bechoff, A.; Westby, A.; Menya, G.; Tomlins, K.I. Effect of Pretreatments for Retaining Total Carotenoids in Dried and Stored Orange-Fleshed-Sweet Potato Chips. J. Food Qual. 2011, 34, 259–267. [Google Scholar] [CrossRef]
No. | Effect of Factor | Factor | Level −1 | Level 0 | Level +1 |
---|---|---|---|---|---|
1 | A | Drying method | HD | - | FD |
2 | B | pH | 3 | 6.5 | 10 |
3 | C | Additive (0.25%) | CA | CA/KMS | KMS |
4 | D | US | Off | - | On |
5 | E | T (°C) | 20 | 50 | 80 |
6 | F | t (min) | 1 | 3 | 5 |
7 | G | m (g) | 30 | 100 | 170 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 16 | 0.93981 | 0.058738 | 1.45 | 0.271 |
Linear | 7 | 0.63253 | 0.090361 | 2.23 | 0.114 |
Drying method | 1 | 0.10933 | 0.109333 | 2.69 | 0.129 |
pH | 1 | 0.00805 | 0.008050 | 0.20 | 0.665 |
Additive | 1 | 0.23870 | 0.238696 | 5.88 | 0.034 |
US | 1 | 0.25751 | 0.257508 | 6.34 | 0.029 |
T, °C | 1 | 0.01078 | 0.010783 | 0.27 | 0.617 |
t, min | 1 | 0.00797 | 0.007974 | 0.20 | 0.666 |
m, g | 1 | 0.00018 | 0.000181 | 0.00 | 0.948 |
2-Way Interactions | 7 | 0.29276 | 0.041823 | 1.03 | 0.463 |
Drying method*pH | 1 | 0.04277 | 0.042775 | 1.05 | 0.327 |
Drying method*Additive | 1 | 0.02684 | 0.026838 | 0.66 | 0.433 |
Drying method*US | 1 | 0.00554 | 0.005539 | 0.14 | 0.719 |
Drying method*T, C | 1 | 0.08010 | 0.080101 | 1.97 | 0.188 |
Drying method*t, min | 1 | 0.03090 | 0.030902 | 0.76 | 0.402 |
Drying method*m, g | 1 | 0.02626 | 0.026262 | 0.65 | 0.438 |
pH*US | 1 | 0.08034 | 0.080342 | 1.98 | 0.187 |
3-Way Interactions | 1 | 0.00530 | 0.005301 | 0.13 | 0.725 |
Drying method*pH*US | 1 | 0.00530 | 0.005301 | 0.13 | 0.725 |
Curvature | 1 | 0.00922 | 0.009221 | 0.23 | 0.643 |
Error | 11 | 0.44673 | 0.040611 | ||
Lack-of-Fit | 3 | 0.28896 | 0.096321 | 4.88 | 0.032 |
Pure Error | 8 | 0.15776 | 0.019720 | ||
Total | 27 | 1.38653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lučić, M.; Potkonjak, N.; Sredović Ignjatović, I.; Lević, S.; Dajić-Stevanović, Z.; Kolašinac, S.; Belović, M.; Torbica, A.; Zlatanović, I.; Pavlović, V.; et al. Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum). Foods 2023, 12, 2468. https://doi.org/10.3390/foods12132468
Lučić M, Potkonjak N, Sredović Ignjatović I, Lević S, Dajić-Stevanović Z, Kolašinac S, Belović M, Torbica A, Zlatanović I, Pavlović V, et al. Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum). Foods. 2023; 12(13):2468. https://doi.org/10.3390/foods12132468
Chicago/Turabian StyleLučić, Milica, Nebojša Potkonjak, Ivana Sredović Ignjatović, Steva Lević, Zora Dajić-Stevanović, Stefan Kolašinac, Miona Belović, Aleksandra Torbica, Ivan Zlatanović, Vladimir Pavlović, and et al. 2023. "Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)" Foods 12, no. 13: 2468. https://doi.org/10.3390/foods12132468
APA StyleLučić, M., Potkonjak, N., Sredović Ignjatović, I., Lević, S., Dajić-Stevanović, Z., Kolašinac, S., Belović, M., Torbica, A., Zlatanović, I., Pavlović, V., & Onjia, A. (2023). Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum). Foods, 12(13), 2468. https://doi.org/10.3390/foods12132468