Investigation of Components in Roasted Green Tea That Inhibit Streptococcus mutans Biofilm Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Crude Extract of RGT and Unrefined Tea (UT)
2.2. Fractionation
2.3. Measurement of BF Inhibitory Activities
2.4. Measurement of GTF Inhibitory Activities
2.5. Quantitation of Catechins and Tannins
2.6. Mass Spectrometry (MS)
2.7. Nuclear Magnetic Resonance (NMR) Spectroscopy
3. Results and Discussion
3.1. Quantitative Values of Catechins and Tannins
3.2. MBIC50 of the Extracts and Fractions
3.3. Inhibition of GTFs
3.4. MSMS and NMR
3.5. Future Directions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuramitsu, H.K.; He, X.; Lux, R.; Anderson, M.H.; Shi, W. Interspecies Interactions within Oral Microbial Communities. Microbiol. Mol. Biol. Rev. 2007, 71, 653–670. [Google Scholar] [CrossRef] [Green Version]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus Mutans. Microbiol. Spectr. 2019, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Bowen, W.H.; Koo, H. Biology of Streptococcus Mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms. Caries Res. 2011, 45, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Welin-Neilands, J.; Svensäter, G. Acid Tolerance of Biofilm Cells of Streptococcus Mutans. Appl. Environ. Microbiol. 2007, 73, 5633–5638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, T.; Luo, W.; Xu, L.; Yang, B.; Zhao, W.; Cang, H. Progress of Antimicrobial Discovery Against the Major Cariogenic Pathogen Streptococcus Mutans. Curr. Issues Mol. Biol. 2019, 32, 601–644. [Google Scholar] [CrossRef]
- Conrads, G.; About, I. Pathophysiology of Dental Caries. Monogr. Oral Sci. 2018, 27, 1–10. [Google Scholar]
- Kováč, J.; Slobodníková, L.; Trajčíková, E.; Rendeková, K.; Mučaji, P.; Sychrová, A.; Bittner Fialová, S. Therapeutic Potential of Flavonoids and Tannins in Management of Oral Infectious Diseases—A Review. Molecules 2022, 28, 158. [Google Scholar] [CrossRef]
- Forssten, S.D.; Björklund, M.; Ouwehand, A.C. Streptococcus Mutans, Caries and Simulation Models. Nutrients 2010, 2, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Zhou, Y.; Li, Z.; Huang, T.; Xiao, Y.; Cheng, L.; Peng, X.; Zhang, L.; Ren, B. Application of Antibiotics/Antimicrobial Agents on Dental Caries. Biomed Res. Int. 2020, 2020, 5658212. [Google Scholar] [CrossRef] [Green Version]
- Sakanaka, S.; Kim, M.; Taniguchi, M.; Yamamoto, T. Antibacterial Substances in Japanese Green Tea Extract against Streptococcus Mutans, a Cariogenic Bacterium. Agric. Biol. Chem. 1989, 53, 2307–2311. [Google Scholar] [CrossRef]
- Zayed, S.M.; Aboulwafa, M.M.; Hashem, A.M.; Saleh, S.E. Biofilm Formation by Streptococcus Mutans and Its Inhibition by Green Tea Extracts. AMB Express 2021, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Rayman, M.; Steinberg, D.; Sionov, R.V.; Friedman, M.; Shalish, M. Effect of Epigallocatechin Gallate on Dental Biofilm of Streptococcus Mutans: An in Vitro Study. BMC Oral. Health 2021, 21, 447. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, X.D.; Wu, C.D. Tea Catechin Epigallocatechin Gallate Inhibits Streptococcus Mutans Biofilm Formation by Suppressing Gtf Genes. Arch. Oral. Biol. 2012, 57, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, A.; Taka, M.; Nakamura, M.; Kimura, M.; Fukuyama, M.; Tanaka, F. The Effect of Gargling by Water: A Comparison with Green Tea and Isodine. J. Jpn. Soc. Nurs. 2005, 15, 83–90. [Google Scholar]
- Nakagawa, M. The Nature and the Origin of Polyphenols in Hoji-Cha (Roasted Green Tea). Chagyo Kenkyu Hokoku 1968, 1968, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Kubota, E. Effects of Roasting Condition on the Qualities of Roasted Green Tea (Hojicha). J. Food Sci. Technol. 1969, 16, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Morikawa, H.; Okuda, K.; Kunihira, Y.; Inada, A.; Miyagi, C.; Matsuo, Y.; Saito, Y.; Tanaka, T. Oligomerization Mechanism of Tea Catechins during Tea Roasting. Food Chem. 2019, 285, 252–259. [Google Scholar] [CrossRef]
- Hara, T.; Kubota, E. Changes in Aroma Components during Roasting of Green Tea. J. Food Sci. Technol. 1973, 20, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Mizukami, Y. Changes in Key Odorants in Sen-Cha Caused by Roasting. Tea Res. J. 2015, 2015, 90406316. [Google Scholar] [CrossRef] [Green Version]
- Nakahara, K.; Kawabata, S.; Ono, H.; Ogura, K.; Tanaka, T.; Ooshima, T.; Hamada, S. Inhibitory Effect of Oolong Tea Polyphenols on Glycosyltransferases of Mutans Streptococci. Appl. Environ. Microbiol. 1993, 59, 968–973. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Hamada, S.; Ooshima, T. Molecular Analysis of the Inhibitory Effects of Oolong Tea Polyphenols on Glucan-Binding Domain of Recombinant Glucosyltransferases from Streptococcus Mutans MT8148. FEMS Microbiol. Lett. 2003, 228, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagida, A.; Kanda, T.; Shoji, T.; OhnishiKameyama, M.; Nagata, T. Fractionation of Apple Procyanidins by Size-Exclusion Chromatography. J. Chromatogr. A 1999, 855, 181–190. [Google Scholar] [CrossRef]
- Motegi, M.; Takagi, Y.; Yonezawa, H.; Hanada, N.; Terajima, J.; Watanabe, H.; Senpuku, H. Assessment of Genes Associated with Streptococcus Mutans Biofilm Morphology. Appl. Environ. Microbiol. 2006, 72, 6277–6287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawarai, T.; Narisawa, N.; Yoneda, S.; Tsutsumi, Y.; Ishikawa, J.; Hoshino, Y.; Senpuku, H. Inhibition of Streptococcus Mutans Biofilm Formation Using Extracts from Assam Tea Compared to Green Tea. Arch. Oral Biol. 2016, 68, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Nikitkova, A.; Abdelsalam, H.; Li, J.; Xiao, J. Activity of Quercetin and Kaemferol against Streptococcus Mutans Biofilm. Arch. Oral Biol. 2019, 98, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, K.; Torii, H. A Colorimetric Determination of Tea Tannin with Ferrous Tartrate. Chagyo Kenkyu Hokoku 1962, 1962, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Iwasa, K.; Ota, I.; Torii, H. Improvement of Official Chemical Analysis of Tea (Part 3) Examination of Tannin Determination. Chagyo Kenkyu Hokoku 1970, 1970, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Candela, L.; Formato, M.; Crescente, G.; Piccolella, S.; Pacifico, S. Coumaroyl Flavonol Glycosides and More in Marketed Green Teas: An Intrinsic Value beyond Much-Lauded Catechins. Molecules 2020, 25, 1765. [Google Scholar] [CrossRef] [Green Version]
- Manir, M.M.; Kim, J.K.; Lee, B.-G.; Moon, S.-S. Tea Catechins and Flavonoids from the Leaves of Camellia Sinensis Inhibit Yeast Alcohol Dehydrogenase. Bioorg. Med. Chem. 2012, 20, 2376–2381. [Google Scholar] [CrossRef]
- Zhou, F.; Yang, L.; Gu, Y.; Ge, Z.; Huang, Y.; Zhao, H.; Li, B.; He, P.; Yang, J.; Tu, Y.; et al. Characterization and Quantification of Two Acylated Flavonol Glycosides from Camellia Sinensis and Their Antibacterial Effect on Oral Pathogens. Beverage Plant Res. 2022, 2, 1–9. [Google Scholar] [CrossRef]
Fractions | EC | EGC | ECg | EGCg | C | GC | Cg | GCg | Catechins | Tannins |
---|---|---|---|---|---|---|---|---|---|---|
REx | 0.73 | 1.96 | 0.40 | 3.68 | 0.66 | 2.73 | 0.86 | 2.25 | 13.27 | 23.9 |
RFr. 1 | 0.82 | 3.07 | 0.29 | 4.30 | 0.93 | 4.63 | LOQ | 2.26 | 16.30 | - |
RFr. 2 | 0.78 | 1.18 | 2.41 | 5.27 | 0.57 | 1.43 | 1.35 | 4.36 | 17.35 | - |
RFr. 3 | 0.49 | 0.80 | 0.86 | 2.37 | 0.36 | 0.94 | 0.30 | 1.66 | 7.78 | - |
RFr. 4 | LOQ | LOQ | LOQ | 0.06 | LOQ | 0.14 | 0.08 | 0.04 | 0.32 | 3.0 |
RFr. 5 | LOQ | 0.04 | LOQ | LOQ | 0.07 | 0.29 | LOQ | 0.05 | 0.45 | 19.5 |
RFr. 6 | 1.91 | 3.02 | LOQ | 0.47 | 1.35 | 3.50 | LOQ | 0.07 | 10.32 | 35.8 |
RFr. 7 | 0.08 | 0.22 | 8.75 | 16.66 | LOQ | 0.06 | 4.09 | 13.92 | 43.78 | 51.8 |
RFr. 6-1 | 5.54 | 8.36 | 2.87 | 4.12 | 3.83 | 8.99 | 2.79 | 2.77 | 39.27 | 35.9 |
RFr. 6-2 | LOQ | LOQ | LOQ | LOQ | LOQ | LOQ | 1.20 | LOQ | 1.20 | 26.0 |
RFr. 7-1 | LOQ | LOQ | 13.69 | 29.58 | LOQ | LOQ | 5.91 | 26.35 | 75.54 | 59.0 |
RFr. 7-2 | LOQ | LOQ | LOQ | LOQ | LOQ | LOQ | LOQ | LOQ | LOQ | 26.2 |
UEx | 4.52 | 15.82 | LOQ | 10.94 | 0.31 | 0.82 | 2.22 | LOQ | 34.62 | 24.8 |
UFr. 1 | 4.52 | 17.50 | 1.51 | 10.88 | 0.30 | 0.96 | LOQ | 0.18 | 35.85 | - |
UFr. 2 | 5.41 | 7.64 | 10.22 | 14.13 | 0.23 | 0.31 | 0.18 | 0.30 | 38.42 | - |
UFr. 3 | 4.52 | 8.31 | 3.17 | 8.82 | 0.16 | 0.34 | LOQ | 0.11 | 25.43 | - |
UFr. 4 | LOQ | LOQ | LOQ | LOQ | LOQ | 0.47 | LOQ | LOQ | 0.47 | - |
UFr. 5 | LOQ | 0.51 | 0.55 | 0.62 | 0.34 | LOQ | LOQ | LOQ | 2.02 | - |
UFr. 6 | 12.58 | 18.83 | 7.88 | 6.84 | 0.60 | 0.75 | LOQ | LOQ | 47.48 | - |
UFr. 7 | 0.40 | 0.54 | 28.57 | 45.21 | 0.34 | 0.37 | LOQ | 0.78 | 76.21 | - |
Fractions | Yield | MBIC50 | Fractions | Yield | MBIC50 |
---|---|---|---|---|---|
REx | 21.9 | 0.25 | UEx | 22.4 | 0.50 |
RFr. 1 | 51.2 | 0.50 | UFr. 1 | 71.8 | 0.50 |
RFr. 2 | 22.2 | 0.13 | UFr. 2 | 7.0 | 0.13 |
RFr. 3 | 11.6 | 0.13 | UFr. 3 | 6.3 | 0.13 |
RFr. 4 | 11.5 | >0.50 | UFr. 4 | 18.7 | >0.50 |
RFr. 5 | 8.9 | >0.50 | UFr. 5 | 8.4 | >0.50 |
RFr. 6 | 16.8 | 0.06 | UFr. 6 | 33.9 | 0.13 |
RFr. 7 | 10.7 | 0.03 | UFr. 7 | 20.6 | 0.06 |
RFr. 6-1 | 19.1 | 0.25 | |||
RFr. 6-2 | 58.8 | 0.13 | |||
RFr. 7-1 | 78.1 | 0.06 | |||
RFr. 7-2 | 11.0 | 0.06 | |||
RFr. 6-2-1 | 18.5 | 0.06 | |||
RFr. 6-2-2 | 22.1 | 0.13 | |||
RFr. 6-2-3 | 38.9 | 0.01 | |||
RFr. 7-2-1 | 45.5 | 0.03 | |||
RFr. 7-2-2 | 32.3 | 0.02 | |||
RFr. 7-2-3 | 4.0 | 0.06 | |||
Peak A | - | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goto, I.; Saga, S.; Ichitani, M.; Kimijima, M.; Narisawa, N. Investigation of Components in Roasted Green Tea That Inhibit Streptococcus mutans Biofilm Formation. Foods 2023, 12, 2502. https://doi.org/10.3390/foods12132502
Goto I, Saga S, Ichitani M, Kimijima M, Narisawa N. Investigation of Components in Roasted Green Tea That Inhibit Streptococcus mutans Biofilm Formation. Foods. 2023; 12(13):2502. https://doi.org/10.3390/foods12132502
Chicago/Turabian StyleGoto, Iori, Satoshi Saga, Masaki Ichitani, Manami Kimijima, and Naoki Narisawa. 2023. "Investigation of Components in Roasted Green Tea That Inhibit Streptococcus mutans Biofilm Formation" Foods 12, no. 13: 2502. https://doi.org/10.3390/foods12132502
APA StyleGoto, I., Saga, S., Ichitani, M., Kimijima, M., & Narisawa, N. (2023). Investigation of Components in Roasted Green Tea That Inhibit Streptococcus mutans Biofilm Formation. Foods, 12(13), 2502. https://doi.org/10.3390/foods12132502