An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity
Abstract
:1. Introduction
2. Market and Consumer Acceptance
- Original soy drinks: those beverages declared only as “soy drink”;
- Fortified soy drinks: those drinks that contain added calcium (minimum 7.5% of nutrient reference values);
- Sugar-free soy drinks: those drinks that declare “no added sugars”;
- Light soy drinks: those drinks having 1.5 g of fat per 100 mL and 30% less energy value than the original product;
- Flavored soy drinks: those drinks with added flavors (chocolate, vanilla, caramel, cappuccino, nuts, cinnamon, and lemon).
3. Industrial Production
3.1. Traditional Methods
3.2. Innovative Methods
4. Nutritional Properties of Soy-Derived Beverages
4.1. Protein Composition
4.2. Fatty Acid Composition
4.3. Carbohydrates
4.4. Isoflavones
5. Bioactive Properties of Soy Milk
5.1. Antioxidant Activity
5.2. Cardiovascular Disease Risk Factors
5.3. Cancer Risk and Development
5.4. Menopause
5.5. Bone Health
5.6. Mental Health and Cognitive Impairment
5.7. Gut Health
5.8. Other Actions
5.9. Controversial Effects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- (EU) No 1308/2013; Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007. European Parliament and of the Council: London, UK, 2013.
- Nutrition, C. For F.S. and A. Draft Guidance for Industry: Labeling of Plant-Based Milk Alternatives and Voluntary Nutrient Statements. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-labeling-plant-based-milk-alternatives-and-voluntary-nutrient-statements (accessed on 6 July 2023).
- Storz, M.A.; Brommer, M.; Lombardo, M.; Rizzo, G. Soy Milk Consumption in the United States of America: An NHANES Data Report. Nutrients 2023, 15, 2532. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, F.; Pellegrino, L.; Verduci, E.; Ghiselli, A.; Bernabei, R.; Calvani, R.; Cetin, I.; Giampietro, M.; Perticone, F.; Piretta, L.; et al. Cow’s Milk Consumption and Health: A Health Professional’s Guide. J. Am. Coll. Nutr. 2019, 38, 197–208. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Aoac International, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Smith, N.W.; Dave, A.C.; Hill, J.P.; McNabb, W.C. Nutritional Assessment of Plant-Based Beverages in Comparison to Bovine Milk. Front. Nutr. 2022, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Choi, J.K.; Park, J.; Im, H.C.; Han, J.H.; Huh, M.H.; Lee, Y.-B. Recent Innovations in Processing Technologies for Improvement of Nutritional Quality of Soymilk. CyTA-J. Food 2021, 19, 287–303. [Google Scholar] [CrossRef]
- Kaharso, V.C.; Muhoza, B.; Kong, X.; Hua, Y.; Zhang, C. Quality Improvement of Soymilk as Influenced by Anaerobic Grinding Method and Calcium Addition. Food Biosci. 2021, 42, 101210. [Google Scholar] [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-Based Milk Substitutes: Bioactive Compounds, Conventional and Novel Processes, Bioavailability Studies, and Health Effects. J. Funct. Food. 2020, 70, 103975. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Tan, M.V.; Oiseth, S.; Buckow, R. An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Rev. Int. 2020, 38, 1064–1102. [Google Scholar] [CrossRef]
- Clemente, A.; Domoney, C. Biological Significance of Polymorphism in Legume Protease Inhibitors from the Bowman-Birk Family. Curr. Protein Pept. Sci. 2006, 7, 201–216. [Google Scholar] [CrossRef]
- Lajolo, F.M.; Genovese, M.I. Nutritional Significance of Lectins and Enzyme Inhibitors from Legumes. J. Agric. Food Chem. 2002, 50, 6592–6598. [Google Scholar] [CrossRef]
- McClements, D.J.; Newman, E.; McClements, I.F. Plant-Based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.K.; Mangaraj, S. Processing Influences on Composition and Quality Attributes of Soymilk and Its Powder. Food Eng. Rev. 2012, 4, 149–164. [Google Scholar] [CrossRef]
- Yuan, S.H.; Chang, S.K.C.; Liu, Z.S.; Xu, B.J. Elimination of Trypsin Inhibitor Activity and Beany Flavor in Soy Milk by Consecutive Blanching and Ultrahigh-Temperature (UHT) Processing. J. Agric. Food Chem. 2008, 56, 7957–7963. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.C.; Song, H.L.; Li, X.; Wu, L.A.; Guo, S.T. Influence of Blanching and Grinding Process with Hot Water on Beany and Non-Beany Flavor in Soymilk. J. Food Sci. 2011, 76, S20–S25. [Google Scholar] [CrossRef] [PubMed]
- Kubo, M.T.K.; dos Reis, B.H.G.; Sato, L.N.I.; Gut, J.A.W. Microwave and Conventional Thermal Processing of Soymilk: Inactivation Kinetics of Lipoxygenase and Trypsin Inhibitors Activity. LWT-Food Sci. Technol. 2021, 145, 10. [Google Scholar] [CrossRef]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant Based Alternatives to Conventional Milk, Production, Potential and Health Concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol.-Mysore 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Penha, C.B.; Santos, V.D.; Speranza, P.; Kurozawa, L.E. Plant-Based Beverages: Ecofriendly Technologies in the Production Process. Innov. Food Sci. Emerg. Technol. 2021, 72, 102760. [Google Scholar] [CrossRef]
- Chantapakul, T.; Tao, W.Y.; Chen, W.J.; Liao, X.Y.; Ding, T.; Liu, D.H. Manothermosonication: Inactivation and Effects on Soymilk Enzymes. Ultrason. Sonochem. 2020, 64, 104961. [Google Scholar] [CrossRef]
- Morales-de La Pena, M.; Martin-Belloso, O.; Welti-Chanes, J. High-Power Ultrasound as Pre-Treatment in Different Stages of Soymilk Manufacturing Process to Increase the Isoflavone Content. Ultrason. Sonochem. 2018, 49, 154–160. [Google Scholar] [CrossRef]
- Mu, Q.R.; Su, H.C.; Zhou, Q.; Xiao, S.G.; Zhu, L.J.; Xu, X.Y.; Pan, S.Y.; Hu, H. Effect of Ultrasound on Functional Properties, Flavor Characteristics, and Storage Stability of Soybean Milk. Food Chem. 2022, 381, 132158. [Google Scholar] [CrossRef]
- Preece, K.E.; Hooshyar, N.; Krijgsman, A.; Fryer, P.J.; Zuidam, N.J. Intensified Soy Protein Extraction by Ultrasound. Chem. Eng. Process.-Process Intensif. 2017, 113, 94–101. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Jayachandran, L.E.; Rao, P.S. Sequential Microwave-Ultrasound Assisted Extraction of Soymilk and Optimization of Extraction Process. LWT-Food Sci. Technol. 2021, 151, 112220. [Google Scholar] [CrossRef]
- Vanga, S.K.; Wang, J.; Raghavan, V. Effect of Ultrasound and Microwave Processing on the Structure, in-Vitro Digestibility and Trypsin Inhibitor Activity of Soymilk Proteins. LWT 2020, 131, 109708. [Google Scholar] [CrossRef]
- Morales-De la Pena, M.; Welti-Chanes, J.; Martin-Belloso, O. Impact of Pulsed Electric Field Pre-Treatment on the Isoflavone Profile of Soymilk. Beverages 2022, 8, 19. [Google Scholar] [CrossRef]
- Penha, C.B.; Falcao, H.G.; Ida, E.I.; Speranza, P.; Kurozawa, L.E. Enzymatic Pretreatment in the Extraction Process of Soybean to Improve Protein and Isoflavone Recovery and to Favor Aglycone Formation. Food Res. Int. 2020, 137, 109624. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.M.; Li, L.; He, F.; Yan, W.X.; Tang, Y.L.; Yang, R.J.; Zhao, W. Highly Effective Inactivation of Anti-Nutritional Factors (Lipoxygenase, Urease and Trypsin Inhibitor) in Soybean by Radio Frequency Treatment. Int. J. Food Sci. Technol. 2021, 56, 93–102. [Google Scholar] [CrossRef]
- Li, J.; Xiang, Q.; Liu, X.; Ding, T.; Zhang, X.; Zhai, Y.; Bai, Y. Inactivation of Soybean Trypsin Inhibitor by Dielectric-Barrier Discharge (DBD) Plasma. Food Chem. 2017, 232, 515–522. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.D.; Zhang, J.Y.; Lv, Y.; Li, X.Y.; Guo, S.T. Effects of High-Temperature Pressure Cooking on Cold-Grind and Blanched Soymilk: Physico-Chemical Properties, in Vitro Digestibility and Sensory Quality. Food Res. Int. 2021, 149, 10. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Xue, Z.; Gao, X.; Jia, Y.; Wang, Y.; Lu, Y.; Zhang, J.; Zhang, M.; Chen, H. Insight into the Inactivation Mechanism of Soybean Bowman-Birk Trypsin Inhibitor (BBTI) Induced by Epigallocatechin Gallate and Epigallocatechin: Fluorescence, Thermodynamics and Docking Studies. Food Chem. 2020, 303, 125380. [Google Scholar] [CrossRef]
- Ge, G.; Guo, W.; Zheng, J.; Zhao, M.; Sun, W. Effect of Interaction between Tea Polyphenols with Soymilk Protein on Inactivation of Soybean Trypsin Inhibitor. Food Hydrocoll. 2021, 111, 106177. [Google Scholar] [CrossRef]
- Liu, C.; Luo, L.; Wu, Y.; Yang, X.; Dong, J.; Luo, F.; Zou, Y.; Shen, Y.-B.; Lin, Q. Inactivation of Soybean Bowman-Birk Inhibitor by Stevioside: Interaction Studies and Application to Soymilk. J. Agric. Food Chem. 2019, 67, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.I.; Chiang, C.Y.; Ko, C.Y.; Huang, H.Y.; Cheng, K.C. Reduction of Phytic Acid in Soymilk by Immobilized Phytase System. J. Food Sci. 2018, 83, 2963–2969. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Hao, N.; Li, L.; Zhang, Y.; Yu, L.; Jiang, L.; Sui, X. Valorization of Soy Whey Wastewater: How Epigallocatechin-3-Gallate Regulates Protein Precipitation. ACS Sustain. Chem. Eng. 2019, 7, 15504–15513. [Google Scholar] [CrossRef]
- Shkembi, B.; Huppertz, T. Calcium Absorption from Food Products: Food Matrix Effects. Nutrients 2021, 14, 180. [Google Scholar] [CrossRef]
- Abagoshu, N.A.; Ibrahim, A.M.; Teka, T.A.; Mekonnen, T.B. Effect of Soybean Varieties and Processing Methods on Nutritional and Sensory Properties of Soymilk. J. Food Process. Preserv. 2017, 41, e13014. [Google Scholar] [CrossRef]
- Zaaboul, F.; Zhao, Q.; Xu, Y.; Liu, Y. Soybean Oil Bodies: A Review on Composition, Properties, Food Applications, and Future Research Aspects. Food Hydrocoll. 2022, 124 Pt A, 107296. [Google Scholar] [CrossRef]
- Chen, Y.; Ono, T. Simple Extraction Method of Non-Allergenic Intact Soybean Oil Bodies That Are Thermally Stable in an Aqueous Medium. J. Agric. Food Chem. 2010, 58, 7402–7407. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Xing, J.; Wang, R.; Shi, X.; Guo, S. Characterization of Particles in Soymilks Prepared by Blanching Soybeans and Traditional Method: A Comparative Study Focusing on Lipid-Protein Interaction. Food Hydrocoll. 2017, 63, 1–7. [Google Scholar] [CrossRef]
- Shimoyamada, M.; Mogami, S.; Tsuzuki, K.; Honda, Y. Characterization of Soymilk Prepared by Milling and Pressing at High Temperature. J. Food Process. Preserv. 2014, 38, 830–836. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Tatsumi, E.; Isobe, S. High-Pressure Treatment Effects on Proteins in Soy Milk. LWT-Food Sci. Technol. 2005, 38, 7–14. [Google Scholar] [CrossRef]
- Ding, J.; Wen, J.; Wang, J.; Tian, R.; Yu, L.; Jiang, L.; Zhang, Y.; Sui, X. The Physicochemical Properties and Gastrointestinal Fate of Oleosomes from Non-Heated and Heated Soymilk. Food Hydrocoll. 2020, 100, 105418. [Google Scholar] [CrossRef]
- Battisti, I.; Ebinezer, L.B.; Lomolino, G.; Masi, A.; Arrigoni, G. Protein Profile of Commercial Soybean Milks Analyzed by Label-Free Quantitative Proteomics. Food Chem. 2021, 352, 129299. [Google Scholar] [CrossRef]
- van den Berg, L.A.; Mes, J.J.; Mensink, M.; Wanders, A.J. Protein Quality of Soy and the Effect of Processing: A Quantitative Review. Front. Nutr. 2022, 9, 2148. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assuncao, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carriere, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.; Recio, I.; Heimo, D.; Dubois, S.; Moughan, P.J.; Hodgkinson, S.M.; Portmann, R.; Egger, L. In Vitro Digestibility of Dietary Proteins and in Vitro DIAAS Analytical Workflow Based on the INFOGEST Static Protocol and Its Validation with in Vivo Data. Food Chem. 2023, 404, 134720. [Google Scholar] [CrossRef] [PubMed]
- Peñalvo, J.L.; Castilho, M.C.; Silveira, M.I.N.; Matallana, M.C.; Torija, M.E. Fatty Acid Profile of Traditional Soymilk. Eur. Food Res. Technol. 2004, 219, 251–253. [Google Scholar] [CrossRef]
- Chen, Y.; Ono, T. Protein particle and soluble protein structure in prepared soymilk, Food Hydrocolloids. Food Hydrocoll. 2014, 39, 120–126. [Google Scholar] [CrossRef]
- Iwanaga, D.; Gray, D.A.; Fisk, I.D.; Decker, E.A.; Weiss, J.; McClements, D.J. Extraction and Characterization of Oil Bodies from Soy Beans: A Natural Source of Pre-Emulsified Soybean Oil. J. Agric. Food Chem. 2007, 55, 8711–8716. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.; Zhu, D.; Pang, X.; Liu, Y.; Frew, R.; Chen, G. Lipidomics Profiling of Goat Milk, Soymilk and Bovine Milk by UPLC-Q-Exactive Orbitrap Mass Spectrometry. Food Chem. 2017, 224, 302–309. [Google Scholar] [CrossRef]
- Walther, B.; Guggisberg, D.; Badertscher, R.; Egger, L.; Portmann, R.; Dubois, S.; Haldimann, M.; Kopf-Bolanz, K.; Rhyn, P.; Zoller, O.; et al. Comparison of Nutritional Composition between Plant-Based Drinks and Cow’s Milk. Front. Nutr. 2022, 9, 2645. [Google Scholar] [CrossRef]
- Li, S.; Ye, A.; Singh, H. Impacts of Heat-Induced Changes on Milk Protein Digestibility: A Review. Int. Dairy J. 2021, 123, 105160. [Google Scholar] [CrossRef]
- Roberfroid, M. Prebiotics: The Concept Revisited1,2. J. Nutr. 2007, 137, S830–S837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathuria, D.; Dhiman, A.K.; Attri, S. Enrichment of Isoflavone for Development of Functional Soya and Dairy Products. J. Food Process. Preserv. 2022, 46, e16170. [Google Scholar] [CrossRef]
- Yu, X.; Meenu, M.; Xu, B.; Yu, H. Impact of Processing Technologies on Isoflavones, Phenolic Acids, and Antioxidant Capacities of Soymilk Prepared from 15 Soybean Varieties. Food Chem. 2021, 345, 128612. [Google Scholar] [CrossRef]
- Huang, H.; Liang, H.; Kwok, K.-C. Effect of Thermal Processing on Genistein, Daidzein and Glycitein Content in Soymilk. J. Sci. Food Agric. 2006, 86, 1110–1114. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K.C. Isoflavones, Flavan-3-Ols, Phenolic Acids, Total Phenolic Profiles, and Antioxidant Capacities of Soy Milk As Affected by Ultrahigh-Temperature and Traditional Processing Methods. J. Agric. Food Chem. 2009, 57, 4706–4717. [Google Scholar] [CrossRef]
- Chen, K.-I.; Erh, M.-H.; Su, N.-W.; Liu, W.-H.; Chou, C.-C.; Cheng, K.-C. Soyfoods and Soybean Products: From Traditional Use to Modern Applications. Appl. Microbiol. Biotechnol. 2012, 96, 9–22. [Google Scholar] [CrossRef]
- Mazumder, M.A.R.; Begum, A.A. Soy milk as source of nutrient for malnourished population of developing country: A review. Int. J. Adv. Sci. Tech. Res. 2016, 6, 192–203. [Google Scholar]
- Onuegbu, A.J.; Olisekodiaka, J.M.; Irogue, S.E.; Amah, U.K.; Okwara, J.E.; Ayelagbe, O.G.; Onah, C.E. Consumption of Soymilk Reduces Lipid Peroxidation But May Lower Micronutrient Status in Apparently Healthy Individuals. J. Med. Food 2018, 21, 506–510. [Google Scholar] [CrossRef]
- Rivas, M.; Garay, R.P.; Escanero, J.F.; Cia, P.; Cia, P.; Alda, J.O. Soy Milk Lowers Blood Pressure in Men and Women with Mild to Moderate Essential Hypertension. J. Nutr. 2002, 132, 1900–1902. [Google Scholar] [CrossRef] [Green Version]
- Fraser, G.E.; Jaceldo-Siegl, K.; Orlich, M.; Mashchak, A.; Sirirat, R.; Knutsen, S. Dairy, Soy, and Risk of Breast Cancer: Those Confounded Milks. Int. J. Epidemiol. 2020, 49, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.-M.; Ho, W.-K.; Yoon, S.-Y.; Mariapun, S.; Hasan, S.N.; Lee, D.S.-C.; Hassan, T.; Lee, S.-Y.; Phuah, S.-Y.; Sivanandan, K.; et al. A Case-Control Study of Breast Cancer Risk Factors in 7,663 Women in Malaysia. PLoS ONE 2018, 13, e0203469. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, B.K.; Knutsen, S.F.; Fraser, G.E. Does High Soy Milk Intake Reduce Prostate Cancer Incidence? The Adventist Health Study (United States). Cancer Causes Control 1998, 9, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Tranche, S.; Brotons, C.; Pascual de la Pisa, B.; Macias, R.; Hevia, E.; Marzo-Castillejo, M. Impact of a Soy Drink on Climacteric Symptoms: An Open-Label, Crossover, Randomized Clinical Trial. Gynecol. Endocrinol. 2016, 32, 477–482. [Google Scholar] [CrossRef]
- Furlong, O.N.; Parr, H.J.; Hodge, S.J.; Slevin, M.M.; Simpson, E.E.; McSorley, E.M.; McCormack, J.M.; Magee, P.J. Consumption of a Soy Drink Has No Effect on Cognitive Function but May Alleviate Vasomotor Symptoms in Post-Menopausal Women; a Randomised Trial. Eur. J. Nutr. 2020, 59, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Messina, M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [Green Version]
- Aly, E.; Sanchez-Moya, T.; Darwish, A.A.; Ros-Berruezo, G.; Lopez-Nicolas, R. In Vitro Digestion Effect on CCK and GLP-1 Release and Antioxidant Capacity of Some Plant-Based Milk Substitutes. J. Food Sci. 2022, 87, 1999–2008. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K.C. Comparative Study on Antiproliferation Properties and Cellular Antioxidant Activities of Commonly Consumed Food Legumes against Nine Human Cancer Cell Lines. Food Chem. 2012, 134, 1287–1296. [Google Scholar] [CrossRef]
- Ramdath, D.D.; Padhi, E.M.T.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients 2017, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- Blanco Mejia, S.; Messina, M.; Li, S.S.; Viguiliouk, E.; Chiavaroli, L.; Khan, T.A.; Srichaikul, K.; Mirrahimi, A.; Sievenpiper, J.L.; Kris-Etherton, P.; et al. A Meta-Analysis of 46 Studies Identified by the FDA Demonstrates That Soy Protein Decreases Circulating LDL and Total Cholesterol Concentrations in Adults. J. Nutr. 2019, 149, 968–981. [Google Scholar] [CrossRef]
- Bhattarai, K.; Adhikari, S.; Fujitani, M.; Kishida, T. Dietary Daidzein, but Not Genistein, Has a Hypocholesterolemic Effect in Non-Ovariectomized and Ovariectomized Female Sprague-Dawley Rats on a Cholesterol-Free Diet. Biosci. Biotechnol. Biochem. 2017, 81, 1805–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.-Y.; Jeon, J.-E.; Jang, S.-Y.; Jeong, Y.-J.; Jeon, S.-M.; Park, H.-J.; Choi, M.-S. Differential Effects of Powdered Whole Soy Milk and Its Hydrolysate on Antiobesity and Antihyperlipidemic Response to High-Fat Treatment in C57BL/6N Mice. J. Agric. Food Chem. 2011, 59, 2584–2591. [Google Scholar] [CrossRef] [PubMed]
- Wihastuti, T.A.; Teuku, H.; Merika, S.; Wijayanti, M.D.; Firani, N.K.; Agustin, I.; Anita, K.W.; Danik, A.; Lauran, P.; Nofa, S.; et al. Inhibition of Oxidative Stress in Hypercolesterolemic Rats by Soy Milk. J. Cardiovasc. Dis. Res. 2016, 7, 74–82. [Google Scholar] [CrossRef]
- Eslami, O.; Shidfar, F. Soy Milk: A Functional Beverage with Hypocholesterolemic Effects? A Systematic Review of Randomized Controlled Trials. Complement. Ther. Med. 2019, 42, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Ahnen, R.T.; Jonnalagadda, S.S.; Slavin, J.L. Role of Plant Protein in Nutrition, Wellness, and Health. Nutr. Rev. 2019, 77, 735–747. [Google Scholar] [CrossRef]
- Handa, C.L.; Zhang, Y.; Kumari, S.; Xu, J.; Ida, E.I.; Chang, S.K.C. Comparative Study of Angiotensin I-Converting Enzyme (ACE) Inhibition of Soy Foods as Affected by Processing Methods and Protein Isolation. Processes 2020, 8, 978. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Samperi, R.; Ventura, S.; Chiozzi, R.Z.; Laganà, A. Identification of Potential Bioactive Peptides Generated by Simulated Gastrointestinal Digestion of Soybean Seeds and Soy Milk Proteins. J. Food Compos. Anal. 2015, 44, 205–213. [Google Scholar] [CrossRef]
- Tomatsu, M.; Shimakage, A.; Shinbo, M.; Yamada, S.; Takahashi, S. Novel Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Soya Milk. Food Chem. 2013, 136, 612–616. [Google Scholar] [CrossRef]
- Meyer, B.J.; Larkin, T.A.; Owen, A.J.; Astheimer, L.B.; Tapsell, L.C.; Howe, P.R.C. Limited Lipid-Lowering Effects of Regular Consumption of Whole Soybean Foods. Ann. Nutr. Metab. 2004, 48, 67–78. [Google Scholar] [CrossRef]
- Beavers, D.P.; Beavers, K.M.; Miller, M.; Stamey, J.; Messina, M.J. Exposure to Isoflavone-Containing Soy Products and Endothelial Function: A Bayesian Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Carbiovasc. Dis. 2012, 22, 182–191. [Google Scholar] [CrossRef]
- Reverri, E.J.; LaSalle, C.D.; Franke, A.A.; Steinberg, F.M. Soy Provides Modest Benefits on Endothelial Function without Affecting Inflammatory Biomarkers in Adults at Cardiometabolic Risk. Mol. Nutr. Food Res. 2015, 59, 323–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; et al. Genistein and Cancer: Current Status, Challenges, and Future Directions. Adv. Nutr. 2015, 6, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Hod, R.; Maniam, S.; Mohd Nor, N.H. A Systematic Review of the Effects of Equol (Soy Metabolite) on Breast Cancer. Molecules 2021, 26, 1105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Bioavailability and Biological Effects of the Isoflavone Glycitein and Isoflavone Glucuronides: Role of Glucuronide in Human Natural Killer Cell Modulation in Vitro; Iowa State University: Ames, IA, USA, 2000. [Google Scholar]
- Lee, S.-A.; Shu, X.-O.; Li, H.; Yang, G.; Cai, H.; Wen, W.; Ji, B.-T.; Gao, J.; Gao, Y.-T.; Zheng, W. Adolescent and Adult Soy Food Intake and Breast Cancer Risk: Results from the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2009, 89, 1920–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shike, M.; Doane, A.S.; Russo, L.; Cabal, R.; Reis-Filho, J.S.; Gerald, W.; Cody, H.; Khanin, R.; Bromberg, J.; Norton, L. The Effects of Soy Supplementation on Gene Expression in Breast Cancer: A Randomized Placebo-Controlled Study. JNCI-J. Natl. Cancer Inst. 2014, 106, dju189. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.H.; Spicer, D.; Garcia, A.; Tseng, C.-C.; Hovanessian-Larsen, L.; Sheth, P.; Martin, S.E.; Hawes, D.; Russell, C.; MacDonald, H.; et al. Double-Blind Randomized 12-Month Soy Intervention Had No Effects on Breast MRI Fibroglandular Tissue Density or Mammographic Density. Cancer Prev. Res. 2015, 8, 942–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baglia, M.L.; Zheng, W.; Li, H.; Yang, G.; Gao, J.; Gao, Y.-T.; Shu, X.-O. The Association of Soy Food Consumption with the Risk of Subtype of Breast Cancers Defined by Hormone Receptor and HER2 Status. Int. J. Cancer 2016, 139, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Travis, R.C.; Allen, N.E.; Appleby, P.N.; Spencer, E.A.; Roddam, A.W.; Key, T.J. A Prospective Study of Vegetarianism and Isoflavone Intake in Relation to Breast Cancer Risk in British Women. Int. J. Cancer 2008, 122, 705–710. [Google Scholar] [CrossRef]
- Available online: https://www.wcrf.org/wp-content/uploads/2021/03/Breast-Cancer-Survivors-2014-Report.pdf (accessed on 9 June 2023).
- Ide, H.; Tokiwa, S.; Sakamaki, K.; Nishio, K.; Isotani, S.; Muto, S.; Hama, T.; Masuda, H.; Horie, S. Combined Inhibitory Effects of Soy Isoflavones and Curcumin on the Production of Prostate-Specific Antigen. Prostate 2010, 70, 1127–1133. [Google Scholar] [CrossRef]
- Bosland, M.C.; Kato, I.; Zeleniuch-Jacquotte, A.; Schmoll, J.; Rueter, E.E.; Melamed, J.; Kong, M.X.; Macias, V.; Kajdacsy-Balla, A.; Lumey, L.H.; et al. Effect of Soy Protein Isolate Supplementation on Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy A Randomized Trial. JAMA-J. Am. Med. Assoc. 2013, 310, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.H.; Makela, S.; Andersson, L.C.; Salmi, S.; Saji, S.; Webster, J.I.; Jensen, E.V.; Nilsson, S.; Warner, M.; Gustafsson, J.A. A Role for Estrogen Receptor Ss in the Regulation of Growth of the Ventral Prostate. Proc. Natl. Acad. Sci. USA 2001, 98, 6330–6335. [Google Scholar]
- Imamov, O.; Morani, A.; Shim, G.J.; Omoto, Y.; Thulin-Andersson, C.; Warner, M.; Gustafsson, J.A. Estrogen Receptor Beta Regulates Epithelial Cellular Differentiation in the Mouse Ventral Prostate. Proc. Natl. Acad. Sci. USA 2004, 101, 9375–9380. [Google Scholar] [CrossRef]
- McPherson, S.J.; Hussain, S.; Balanathan, P.; Hedwards, S.L.; Niranjan, B.; Grant, M.; Chandrasiri, U.P.; Toivanen, R.; Wang, Y.; Taylor, R.A. Estrogen Receptor–β Activated Apoptosis in Benign Hyperplasia and Cancer of the Prostate Is Androgen Independent and TNFα Mediated. Proc. Natl. Acad. Sci. USA 2010, 107, 3123–3128. [Google Scholar] [CrossRef] [PubMed]
- Apprey, C.; Larbie, C.; Arthur, F.K.N.; Appiah-Opong, R.; Annan, R.A.; Tuffour, I. Anti-Proliferative Effect of Isoflavones Isolated from Soybean and Soymilk Powder on Lymphoma (DG 75) and Leukemia (CEM) Cell Lines. Brit. J. Pharm. Res. 2015, 7, 206–216. [Google Scholar] [CrossRef]
- Clemente, A.; del Carmen Arques, M. Bowman-Birk Inhibitors from Legumes as Colorectal Chemopreventive Agents. World J. Gastroenterol. 2014, 20, 10305–10315. [Google Scholar] [CrossRef]
- Mahady, G.B. Do Soy Isoflavones Cause Endometrial Hyperplasia? Nutr. Rev. 2005, 63, 392–397. [Google Scholar] [CrossRef]
- Abe, S.K.; Sawada, N.; Ishihara, J.; Takachi, R.; Mori, N.; Yamaji, T.; Shimazu, T.; Goto, A.; Iwasaki, M.; Inoue, M.; et al. Comparison between the Impact of Fermented and Unfermented Soy Intake on the Risk of Liver Cancer: The JPHC Study. Eur. J. Nutr. 2021, 60, 1389–1401. [Google Scholar] [CrossRef]
- Mahady, G.B.; Parrot, J.; Lee, C.; Yuri, G.S.; Dan, A. Botanical Dietary Supplement Use in Peri- and Postmenopausal Women. Menopause-J. N. Am. Menopause Soc. 2003, 10, 65–72. [Google Scholar]
- Simpson, E.E.A.; Furlong, O.N.; Parr, H.J.; Hodge, S.J.; Slevin, M.M.; McSorley, E.M.; McCormack, J.M.; McConville, C.; Magee, P.J. The Effect of a Randomized 12-Week Soy Drink Intervention on Everyday Mood in Postmenopausal Women. Menopause-J. N. Am. Menopause Soc. 2019, 26, 867–873. [Google Scholar] [CrossRef]
- Taku, K.; Melby, M.K.; Kronenberg, F.; Kurzer, M.S.; Messina, M. Extracted or Synthesized Soybean Isoflavones Reduce Menopausal Hot Flash Frequency and Severity: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Menopause-J. N. Am. Menopause Soc. 2012, 19, 776–790. [Google Scholar] [CrossRef]
- Tai, T.Y.; Tsai, K.S.; Tu, S.T.; Wu, J.S.; Chang, C.I.; Chen, C.L.; Shaw, N.S.; Peng, H.Y.; Wang, S.Y.; Wu, C.H. The Effect of Soy Isoflavone on Bone Mineral Density in Postmenopausal Taiwanese Women with Bone Loss: A 2-Year Randomized Double-Blind Placebo-Controlled Study. Osteoporos. Int. 2012, 23, 1571–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, V.L.; Knutsen, S.F.; Beeson, W.L.; Fraser, G.E. Soy Milk and Dairy Consumption Is Independently Associated with Ultrasound Attenuation of the Heel Bone among Postmenopausal Women: The Adventist Health Study-2. Nutr. Res. 2011, 31, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.C.; Guldan, G.S.; Woo, J.; Yu, R.; Tse, M.M.; Sham, A.; Cheng, J. A Prospective Study of the Effects of 1-Year Calcium-Fortified Soy Milk Supplementation on Dietary Calcium Intake and Bone Health in Chinese Adolescent Girls Aged 14 to 16. Osteoporos. Int. 2005, 16, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, M.; Suzuki, A.; Kikuchi, M.; Arai, H. Soymilk Intake Has Desirable Effects on Phosphorus and Calcium Metabolism. J. Clin. Biochem. Nutr. 2018, 62, 259–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonet-Costa, V.; Herranz-Perez, V.; Blanco-Gandia, M.; Mas-Bargues, C.; Ingles, M.; Garcia-Tarraga, P.; Rodriguez-Arias, M.; Minarro, J.; Borras, C.; Manuel Garcia-Verdugo, J.; et al. Clearing Amyloid-Beta through PPAR Gamma/ApoE Activation by Genistein Is a Treatment of Experimental Alzheimer’s Disease. J. Alzheimers Dis. 2016, 51, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Calvello, R.; Aresta, A.; Trapani, A.; Zambonin, C.; Cianciulli, A.; Salvatore, R.; Clodoveo, M.L.; Corbo, F.; Franchini, C.; Panaro, M.A. Bovine and Soybean Milk Bioactive Compounds: Effects on Inflammatory Response of Human Intestinal Caco-2 Cells. Food Chem. 2016, 210, 276–285. [Google Scholar] [CrossRef]
- Sadeghi, O.; Milajerdi, A.; Siadat, S.D.; Keshavarz, S.A.; Sima, A.R.; Vahedi, H.; Adibi, P.; Esmaillzadeh, A. Effects of Soy Milk Consumption on Gut Microbiota, Inflammatory Markers, and Disease Severity in Patients with Ulcerative Colitis: A Study Protocol for a Randomized Clinical Trial. Trials 2020, 21, 565. [Google Scholar] [CrossRef]
- Fernandez-Raudales, D.; Hoeflinger, J.L.; Bringe, N.A.; Cox, S.B.; Dowd, S.E.; Miller, M.J.; de Mejia, E.G. Consumption of Different Soymilk Formulations Differentially Affects the Gut Microbiomes of Overweight and Obese Men. Gut Microbes 2012, 3, 490–500. [Google Scholar] [CrossRef]
- Fujisawa, T.; Ohashi, Y.; Shin, R.; Narai-Kanayama, A.; Nakagaki, T. The Effect of Soymilk Intake on the Fecal Microbiota, Particularly Bifidobacterium Species, and Intestinal Environment of Healthy Adults: A Pilot Study. Biosci. Microbiota Food Health 2017, 36, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, G.; Wainwright, L.J.; Holland, R.; Barrett, K.E.; Casey, J. Wrinkle Reduction in Post-Menopausal Women Consuming a Novel Oral Supplement: A Double-Blind Placebo-Controlled Randomized Study. Int. J. Cosmet. Sci. 2014, 36, 22–31. [Google Scholar] [CrossRef]
- Ryan-Borchers, T.A.; Park, J.S.; Chew, B.P.; McGuire, M.K.; Fournier, L.R.; Beerman, K.A. Soy Isoflavones Modulate Immune Function in Healthy Postmenopausal Women. Am. J. Clin. Nutr. 2006, 83, 1118–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morency, M.-E.; Birken, C.S.; Lebovic, G.; Chen, Y.; L’Abbé, M.; Lee, G.J.; Maguire, J.L.; Collaboration, T.K. Association between Noncow Milk Beverage Consumption and Childhood Height. Am. J. Clin. Nutr. 2017, 106, 597–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.E.; Kim, M.-J.; Han, H.-S. Effects of Soy-Based Formula on Infants’ Growth and Blood Laboratory Values Spanning 3 Years after Birth. Clin. Exp. Pediatr. 2009, 52, 28–35. [Google Scholar] [CrossRef]
- Setiabudiawan, B.; Sitaresmi, M.N.; Sapartini, G.; Sumadiono; Citraresmi, E.; Sekartini, R.; Putra, A.M.; Jo, J. Growth Patterns of Indonesian Infants with Cow’s Milk Allergy and Fed with Soy-Based Infant Formula. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Skakkebaek, N.E.; Rajpert-De Meyts, E.; Main, K.M. Testicular Dysgenesis Syndrome: An Increasingly Common Developmental Disorder with Environmental Aspects. Hum. Reprod 2001, 16, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.; Lewi, J.E. An Unusual Case of Gynecomastia Associated with Soy Product Consumption. Endocr. Pract. 2008, 14, 415–418. [Google Scholar] [CrossRef]
- Siepmann, T.; Roofeh, J.; Kiefer, F.W.; Edelson, D.G. Hypogonadism and Erectile Dysfunction Associated with Soy Product Consumption. Nutrition 2011, 27, 859–862. [Google Scholar] [CrossRef]
- Chavarro, J.E.; Toth, T.L.; Sadio, S.M.; Hauser, R. Soy Food and Isoflavone Intake in Relation to Semen Quality Parameters among Men from an Infertility Clinic. Hum. Reprod. 2008, 23, 2584–2590. [Google Scholar] [CrossRef]
- Mínguez-Alarcón, L.; Afeiche, M.C.; Chiu, Y.-H.; Vanegas, J.C.; Williams, P.L.; Tanrikut, C.; Toth, T.L.; Hauser, R.; Chavarro, J.E. Male Soy Food Intake Was Not Associated with in Vitro Fertilization Outcomes among Couples Attending a Fertility Center. Andrology 2015, 3, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Reed, K.E.; Camargo, J.; Hamilton-Reeves, J.; Kurzer, M.; Messina, M. Neither Soy nor Isoflavone Intake Affects Male Reproductive Hormones: An Expanded and Updated Meta-Analysis of Clinical Studies. Reprod. Toxicol. 2021, 100, 60–67. [Google Scholar] [CrossRef]
- Imai, H.; Nishikawa, H.; Suzuki, A.; Kodama, E.; Iida, T.; Mikura, K.; Hashizume, M.; Kigawa, Y.; Tadokoro, R.; Sugisawa, C.; et al. Secondary Hypogonadism Due to Excessive Ingestion of Isoflavone in a Man. Intern. Med. 2022, 61, 2899–2903. [Google Scholar] [CrossRef] [PubMed]
- Fleshner, N.E.; Kapusta, L.; Donnelly, B.; Tanguay, S.; Chin, J.; Hersey, K.; Farley, A.; Jansz, K.; Siemens, D.R.; Trpkov, K.; et al. Progression from High-Grade Prostatic Intraepithelial Neoplasia to Cancer: A Randomized Trial of Combination Vitamin-E, Soy, and Selenium. J. Clin. Oncol. 2011, 29, 2386–2390. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Rigby, A.S.; Bhasin, S.; Thatcher, N.J.; Kilpatrick, E.S.; Atkin, S.L. Effect of Soy in Men With Type 2 Diabetes Mellitus and Subclinical Hypogonadism: A Randomized Controlled Study. J. Clin. Endocrinol. Metab 2017, 102, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Doerge, D.R.; Chang, H.C. Inactivation of Thyroid Peroxidase by Soy Isoflavones, in Vitro and in Vivo. J. Chromatogr. B 2002, 777, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Duncan, A.; Messina, V.; Lynch, H.; Kiel, J.; Erdman, J.W. The Health Effects of Soy: A Reference Guide for Health Professionals. Front. Nutr. 2022, 9, 970364. [Google Scholar] [CrossRef] [PubMed]
- Otun, J.; Sahebkar, A.; Ostlundh, L.; Atkin, S.L.; Sathyapalan, T. Systematic Review and Meta-Analysis on the Effect of Soy on Thyroid Function. Sci. Rep. 2019, 9, 3964. [Google Scholar] [CrossRef] [Green Version]
- Risk Assessment for Peri- and Post-Menopausal Women Taking Food Supplements Containing Isolated Isoflavones|EFSA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4246 (accessed on 4 July 2023).
- Rice, S.; Mason, H.D.; Whitehead, S.A. Phytoestrogens and Their Low Dose Combinations Inhibit MRNA Expression and Activity of Aromatase in Human Granulosa-Luteal Cells. J. Steroid Biochem. Mol. Biol. 2006, 101, 216–225. [Google Scholar] [CrossRef]
- Lacey, M.; Bohday, J.; Fonseka, S.M.R.; Ullah, A.I.; Whitehead, S.A. Dose-Response Effects of Phytoestrogens on the Activity and Expression of 3beta-Hydroxysteroid Dehydrogenase and Aromatase in Human Granulosa-Luteal Cells. J. Steroid. Biochem. Mol. Biol. 2005, 96, 279–286. [Google Scholar] [CrossRef]
- Hooper, L.; Ryder, J.J.; Kurzer, M.S.; Lampe, J.W.; Messina, M.J.; Phipps, W.R.; Cassidy, A. Effects of Soy Protein and Isoflavones on Circulating Hormone Concentrations in Pre- and Post-Menopausal Women: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2009, 15, 423–440. [Google Scholar] [CrossRef] [Green Version]
- Maskarinec, G.; Morimoto, Y.; Novotny, R.; Nordt, F.J.; Stanczyk, F.Z.; Franke, A.A. Urinary Sex Steroid Excretion Levels during a Soy Intervention among Young Girls: A Pilot Study. Nutr. Cancer 2005, 52, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Zung, A.; Shachar, S.; Zadik, Z.; Kerem, Z. Soy-Derived Isoflavones Treatment in Children with Hypercholesterolemia: A Pilot Study. J. Pediatr. Endocrinol. Metab. 2010, 23, 133–141. [Google Scholar] [CrossRef] [PubMed]
Category | Original (n = 7) | Fortified (n = 31) | Sugar-Free (n = 20) | Light (n = 4) | Flavored (n = 13) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Values (n) | Range | Mean Values (n) | Range | Mean Values (n) | Range | Mean Values (n) | Range | Mean Values (n) | Range | |
% Soybeans | 11.4 | 7.4–16.0 | 10.9 | 5.0–14.5 | 11.5 | 5.5–15.0 | 7.6 | 5.0–11.0 | 10.3 | 7.2–13.0 |
Nutritional values | per 100 mL | |||||||||
Energy (kJ) | 174 | 148–206 | 187 | 96–299 | 149 | 96–205 | 117 | 113–124 | 262 | 160–320 |
(kCal) | 42 | 36–49 | 44.6 | 23–71 | 35.6 | 23–49 | 28 | 27–30 | 62 | 38–76 |
Fats (g) | 1.9 | 1.7–2.3 | 1.8 | 1.1–2.9 | 1.9 | 1.20–2.9 | 1.2 | 1.1–1.4 | 2.1 | 1.6–2.9 |
Saturates | 0.4 | 0.3–0.6 | 0.3 | 0.2–0.6 | 0.3 | 0.2–0.6 | 0.2 | 0.2–0.3 | 0.4 | 0.3–0.7 |
Mono-unsaturated | 0.6 (3) | 0.4–1.1 | 0.5 (18) | 0.2–1.1 | 0.4 (7) | 0.4–0.5 | 0.3 (3) | 0.2–0.3 | 0.5 (8) | 0.3–0.7 |
Polyunsaturated | 1.1 (3) | 1.0–1.1 | 1.1 (18) | 0.7–1.7 | 1.1 (7) | 1.0–1.3 | 0.7 (3) | 0.7–0.7 | 1.2 (8) | 0.9–1.7 |
Carbohydrate (g) | 2.5 | 0.8–4.0 | 3.6 | 0–9.2 | 1.3 | 0–7.0 | 1.6 | 0.9–2.0 | 6.8 | 2.5–10.1 |
Sugars | 1.9 | 0.5–3.2 | 2.9 | 0–7.6 | 0.7 | 0–3.2 | 1.5 | 0.6–2.0 | 6.3 | 1.7–9.5 |
Fiber (g) | 0.6 (4) | 0.4–0.8 | 0.6 (24) | 0.3–1.3 | 0.6 (9) | 0.3–0.9 | 0.8 (3) | 0.5–1.2 | 0.9 (10) | 0.4–1.3 |
Protein (g) | 3.4 | 3.0–3.7 | 3.2 | 2.1–6.0 | 3.2 | 2.1–3.8 | 2.3 | 2.1–2.6 | 3.6 | 3.0–6.0 |
Salt (g) | 0.11 | 0.05–0.20 | 0.10 | 0–0.20 | 0.08 | 0.02–0.18 | 0.11 | 0.09–0.14 | 0.12 | 0.04–0.2 |
Minerals | per 100 mL | |||||||||
Calcium (mg) | 133 (4) | 120–150 | 123 (31) | 60–150 | 108 (6) | 60–120 | 135 (4) | 120–140 | 126 (7) | 120–150 |
Potassium (mg) | - | - | 52 (1) | - | - | - | - | - | - | - |
Phosphorus (mg) | - | - | 70 (2) | 70–70 | 70 (1) | - | - | - | - | - |
Magnesium (mg) | - | - | 70 (1) | - | 70 (1) | - | - | - | - | - |
Iron (mg) | - | - | 2.50 (1) | - | - | - | - | - | 2.5 (1) | - |
Vitamins | per 100 mL | |||||||||
Vitamin A (µg) | 120 (2) | 120–120 | 118 (16) | 80–120 | 100 (2) | 80–120 | 120 (1) | - | 120 (3) | 120–120 |
Vitamin D (µg) | 0.79 (4) | 0.75–0.90 | 0.82 (25) | 0.75–2.00 | 1.17 (3) | 0.75–2.00 | 0.75 (2) | 0.75–0.75 | 0.79 (6) | 0.75–1.00 |
Vitamin E (µg) | - | - | 1.60 (1) | - | 1.60 (1) | - | - | - | - | - |
Vitamin C (mg) | - | - | 10 (1) | - | 10 (1) | - | - | - | - | - |
Thiamine (mg) | - | - | 0.20 (1) | - | 0.20 (1) | - | - | - | - | - |
Riboflavin (mg) | 0.21 (1) | - | 0.21 (8) | 0.21–0.21 | 0.21 (1) | - | 0.21 (1) | - | 0.21 (3) | 0.21–0.21 |
Niacin (mg) | - | - | 1.60 (1) | - | 1.60 (1) | - | - | - | - | - |
Vitamin B6 (mg) | - | - | 0.12 (1) | - | 0.12 (1) | - | - | - | - | - |
Folic acid (µg) | - | - | 65 (1) | - | 65 (1) | - | - | - | - | - |
Vitamin B12 (µg) | 0.38 (1) | - | 0.38 (9) | 0.38–0.40 | 0.38 (1) | - | 0.38 (1) | - | 0.39 (4) | 0.38–0.40 |
Processing Technique | Effect on Nutritional Quality | References |
---|---|---|
Manothermosonication |
| [21] |
Ultrasound |
| [20,22,23,24] |
Microwave |
| [17] |
Microwave and ultrasound |
| [25,26] |
Low-intensity Pulsed Electric Fields |
| [27] |
Enzymatic pre-treatments |
| [28] |
Radio-frequency pre-treatment |
| [29] |
Dielectric barrier discharge plasma |
| [30] |
High-temperature pressure cooking |
| [31] |
Addition of natural compounds: tea polyphenols, steviose |
| [32,33,34] |
Immobilized Phytase System |
| [35] |
Pathology | Study Design | Target Population | Observed Effect | References |
---|---|---|---|---|
Cardiovascular risk |
| Healthy Nigerian (18–35 y) (n = 39; 18 men, 21 women) | Increase in serum antioxidant capacity and glutathione S-transferase activity. Decrease in malondialdehyde | [62] |
| Spanish moderate hypertensive patient (18–70 y) (n = 40; 25 men, 15 women) | Hypotensive action which correlated with genistein urinary excretion | [63] | |
Breast cancer |
| American women free of cancer (>30 y) (n = 52,795) | Substitution of dairy product with soy milk decreased the risk of breast cancer development | [64] |
| Malaysian women (n = 4663; 3683 cases, 3980 controls) | Breastfeeding, soy intake (including soy milk), and physical activity helped in managing breast cancer risk | [65] | |
Prostate cancer |
| American men (≥25 y) (n = 12,395; 225 cases) | Soy milk consumption higher than once a day was associated with 70% reduction in prostate cancer risk | [66] |
Menopause |
| Spanish peri- and post-menopausal women (>45 y) (n = 147) | Reduction in climacteric (20%) and urogenital (21%) symptoms. Improvement in health-related quality of life | [67] |
| UK post-menopausal women (44–63 y) (n = 101) | 350 mL/d soy milk containing 35 mg isoflavones decreased vasomotor symptoms | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olías, R.; Delgado-Andrade, C.; Padial, M.; Marín-Manzano, M.C.; Clemente, A. An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity. Foods 2023, 12, 2665. https://doi.org/10.3390/foods12142665
Olías R, Delgado-Andrade C, Padial M, Marín-Manzano MC, Clemente A. An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity. Foods. 2023; 12(14):2665. https://doi.org/10.3390/foods12142665
Chicago/Turabian StyleOlías, Raquel, Cristina Delgado-Andrade, María Padial, M. Carmen Marín-Manzano, and Alfonso Clemente. 2023. "An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity" Foods 12, no. 14: 2665. https://doi.org/10.3390/foods12142665
APA StyleOlías, R., Delgado-Andrade, C., Padial, M., Marín-Manzano, M. C., & Clemente, A. (2023). An Updated Review of Soy-Derived Beverages: Nutrition, Processing, and Bioactivity. Foods, 12(14), 2665. https://doi.org/10.3390/foods12142665