Assessment of Nitrite Content in Vienna Chicken Sausages Using Near-Infrared Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Instrumentation
2.3. Residual Nitrite Content Determination
2.4. Spectral Data of Sausages
2.5. Data Analysis
3. Results and Discussion
3.1. Calibration Curve of the Nitrite Standard Solution
3.2. Spectral Data of Sausage
3.3. Quantitative Analysis
3.4. The Visualization of Nitrite Content in Sausage
3.5. Qualitative Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, N.; Ahlawat, S.S.; Sharma, D.P.; Dabur, R.S. Novel trends in development of dietary fiber rich meat products—A critical review. J. Food Sci. Technol. 2015, 52, 633–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agency for Toxic Substances and Disease Registry. ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity. 2017. Available online: https://www.atsdr.cdc.gov/csem/nitrate-nitrite/health_effects.html (accessed on 20 June 2023).
- FAO and WHO Food Standard. Food Additive Groub Details of Nitrite. Available online: https://www.fao.org/fileadmin/user_upload/jecfa_additives/docs/Monograph1/Additive-417.pdf (accessed on 20 May 2023).
- Ludlow, J.T.; Wilkerson, R.G.; Nappe, T.M. Methemoglobinemia; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Neth, M.R.; Love, J.S.; Horowitz, B.Z.; Shertz, M.D.; Sahni, R.; Daya, M.R. Fatal Sodium Nitrite Poisoning: Key Considerations for Prehospital Providers. Prehosp. Emerg. Care 2021, 25, 844–850. [Google Scholar] [CrossRef]
- Safe Food Advocacy Europe. New Anses Opinion Confirms Link between Nitrite Consumption and Cancer. Available online: https://www.safefoodadvocacy.eu/new-anses-opinion-confirms-link-between-nitrite-consumption-and-cancer/ (accessed on 27 June 2023).
- Codex Committee on Food Additives. Discussion Paper on the Use of Nitrate (INS 251,252) and Nitrite (INS 249,250); FAO: Rome, Italy, 2016. [Google Scholar]
- Saengprakay, C. Nitrite contamination in food and potential poisoning. Kasetsart Universiity 2015, 2, 37–39. Available online: https://kukr.lib.ku.ac.th/kukr_es/index.php/bkn/search_detail/result/132661 (accessed on 1 June 2023).
- The Nation News Thailand. Half of the Sausages Sampled in a Recent Survey Contained Unsafe Levels of Nitrite, Says Thailand’s Food and Drug Administration (FDA). Available online: https://www.nationthailand.com/in-focus/40013361 (accessed on 10 June 2023).
- AOAC. Nitrites in Cured Meats—Colorimetric Method, Adopted as Codex Reference Method (Type II), Official Method, 17th ed.; 973.31 ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Emil, W.; Ciurczak, B.I.; Workman, J., Jr.; Burns, D.A. Handbook of Near-Infrared Analysis; Taylor & Francis Group: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Amigo, J.M.; Babamoradi, H.; Elcoroaristizabal, S. Hyperspectral image analysis. A tutorial. Anal. Chim. Acta 2015, 896, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Laub-Ekgreen, M.H.; Martinez-Lopez, B.; Jessen, F.; Skov, T. Non-destructive measurement of salt using NIR spectroscopy in the herring marinating process. Food Sci. Technol. 2018, 97, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Rebellato, A.P.; Caramês, E.T.d.S.; Moraes, P.P.d.; Pallone, J.A.L. Minerals assessment and sodium control in hamburger by fast and green method and chemometric tools. Food Sci. Technol. 2020, 128, 109438. [Google Scholar] [CrossRef]
- Jiang, H.; Ru, Y.; Chen, Q.; Wang, J.; Xu, L. Near-infrared hyperspectral imaging for detection and visualization of offal adulteration in ground pork. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119307. [Google Scholar] [CrossRef] [PubMed]
- Achata, E.M.; Oliveira, M.; Esquerre, C.A.; Tiwari, B.K.; O’Donnell, C.P. Visible and NIR hyperspectral imaging and chemometrics for prediction of microbial quality of beef Longissimus dorsi muscle under simulated normal and abuse storage conditions. LWT 2020, 128, 109463. [Google Scholar] [CrossRef]
- Li, X.; Cai, M.; Li, M.; Wei, X.; Liu, Z.; Wang, J.; Jia, K.; Han, Y. Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for the rapid qualitative evaluation of multiple qualities in chicken. Food Control 2023, 145, 109416. [Google Scholar] [CrossRef]
- Kong, D.; Sun, D.; Qiu, R.; Zhang, W.; Liu, Y.; He, Y. Rapid and nondestructive detection of marine fishmeal adulteration by hyperspectral imaging and machine learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 273, 120990. [Google Scholar] [CrossRef]
- Khamsopha, D.; Woranitta, S.; Teerachaichayut, S. Utilizing near infrared hyperspectral imaging for quantitatively predicting adulteration in tapioca starch. Food Control 2021, 123, 107781. [Google Scholar] [CrossRef]
- Florián-Huamán, J.; Cruz-Tirado, J.P.; Fernandes Barbin, D.; Siche, R. Detection of nutshells in cumin powder using NIR hyperspectral imaging and chemometrics tools. J. Food Compos. Anal. 2022, 108, 104407. [Google Scholar] [CrossRef]
- Saha, D.; Senthilkumar, T.; Singh, C.B.; Manickavasagan, A. Quantitative detection of metanil yellow adulteration in chickpea flour using line-scan near-infrared hyperspectral imaging with partial least square regression and one-dimensional convolutional neural network. J. Food Compos. Anal. 2023, 120, 105290. [Google Scholar] [CrossRef]
- Tantinantrakun, A.; Sukwanit, S.; Thompson, A.K.; Teerachaichayut, S. Nondestructive evaluation of SW-NIRS and NIR-HSI for predicting the maturity index of intact pineapples. Postharvest Biol. Technol. 2023, 195, 112141. [Google Scholar] [CrossRef]
- Sahachairungueng, W.; Teerachaichayut, S. Nondestructive quality assessment of longans using near infrared hyperspectral imaging. Agric. Eng. Int. CIGR J. 2022, 24, 217–227. [Google Scholar]
- Savic, I.V. Small-Scale Sausage Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- Bai, X.; Zhang, C.; Xiao, Q.; He, Y.; Bao, Y. Application of near-infrared hyperspectral imaging to identify a variety of silage maize seeds and common maize seeds. RSC Adv. 2020, 10, 11707–11715. [Google Scholar] [CrossRef]
- Osborne, B.G. Near-infrared spectroscopy in food analysis. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Morra, M.J.; Hall, M.H.; Freeborn, L.L. Carbon and Nitrogen Analysis of Soil Fractions Using Near-Infrared Reflectance Spectroscopy. Soil Sci. Soc. Am. J. 1991, 55, 288–291. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 1–14. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, D.-W. Application of Hyperspectral Imaging in Food Safety Inspection and Control: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef]
- Chandrasekaran, I.; Panigrahi, S.; Ravikanth, L.; Singh, C. Potential of Near-Infrared (NIR) Spectroscopy and Hyperspectral Imaging for Quality and Safety Assessment of Fruits: An Overview. Food Anal. Methods 2019, 12, 2438–2458. [Google Scholar] [CrossRef]
- Mendez, J.; Mendoza, L.; Cruz-Tirado, J.P.; Quevedo, R.; Siche, R. Trends in application of NIR and hyperspectral imaging for food authentication. Sci. Agropecu. 2019, 10, 143–161. [Google Scholar] [CrossRef]
- Sricharoonratana, M.; Thompson, A.; Teerachaichayut, S. Use of near infrared hyperspectral imaging as a nondestructive method of determining and classifying shelf life of cakes. LWT 2021, 136, 110369. [Google Scholar] [CrossRef]
- Sahachairungrueng, W.; Meechan, C.; Veerachat, N.; Thompson, A.K.; Teerachaichayut, S. Assessing the Levels of Robusta and Arabica in Roasted Ground Coffee Using NIR Hyperspectral Imaging and FTIR Spectroscopy. Foods 2022, 11, 3122. [Google Scholar] [CrossRef] [PubMed]
- Badaró, A.T.; Garcia-Martin, J.F.; López-Barrera, M.D.C.; Barbin, D.F.; Alvarez-Mateos, P. Determination of pectin content in orange peels by near infrared hyperspectral imaging. Food Chem. 2020, 323, 126861. [Google Scholar] [CrossRef]
- Kucha, C.T.; Liu, L.; Ngadi, M.; Claude, G. Hyperspectral imaging and chemometrics as a non-invasive tool to discriminate and analyze iodine value of pork fat. Food Control 2021, 127, 108145. [Google Scholar] [CrossRef]
- Talens, P.; Mora, L.; Morsy, N.; Barbin, D.F.; ElMasry, G.; Sun, D.-W. Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging. J. Food Eng. 2013, 117, 272–280. [Google Scholar] [CrossRef]
Variable | Descriptions | Calibration | Prediction |
---|---|---|---|
Residual nitrite content | Number of samples | 94 | 46 |
Range (mg/kg) | 0–126.4 | 0–118.5 | |
Average (mg/kg) | 65.42 | 65.46 | |
Standard derivation (mg/kg) | 39.87 | 39.49 |
No. | Pre-Processing Techniques | PLSR | SVMR | |||||
---|---|---|---|---|---|---|---|---|
N | F | Rcv | RMSECV (mg/kg) | N | Rcv | RMSECV (mg/kg) | ||
1 | Original | 94 | 11 | 0.897 | 17.62 | 94 | 0.599 | 32.05 |
2 | Smoothing | 94 | 11 | 0.889 | 18.24 | 94 | 0.589 | 32.41 |
3 | 1st Derivative | 94 | 6 | 0.869 | 19.77 | 94 | 0.791 | 24.49 |
4 | 2nd Derivative | 94 | 7 | 0.799 | 24.23 | 94 | 0.659 | 0.71 |
5 | MSC | 94 | 9 | 0.882 | 18.78 | 94 | 0.800 | 23.98 |
6 | SNV | 94 | 9 | 0.897 | 17.57 | 94 | 0.800 | 23.97 |
7 | Smoothing + 1st Derivative | 94 | 8 | 0.890 | 18.12 | 94 | 0.765 | 25.67 |
Analytical Method | Pre-Treatment | Calibration | Prediction | ||||
---|---|---|---|---|---|---|---|
N | Rc | RMSEC (mg/kg) | N | Rp | RMSEP (mg/kg) | ||
PLSR | SNV | 94 | 0.958 | 11.31 | 46 | 0.920 | 15.60 |
Parameter | Items | Calibration | Prediction | ||
---|---|---|---|---|---|
Nitrite content | Group 0 (<80 mg/kg) | Group 1 (≥80 mg/kg) | Group 0 (<80 mg/kg) | Group 1 (≥80 mg/kg) | |
Number of samples | 47 | 47 | 23 | 23 | |
Range (mg/kg) | 0–78.14 | 81.00–126.40 | 0–79.64 | 83.89–118.49 | |
Average (mg/kg) | 32.02 | 80.60 | 33.53 | 103.47 | |
Standard derivation (mg/kg) | 22.49 | 9.55 | 23.16 | 8.53 |
Methods | Original | Smoothing | 1st Derivative | 2nd Derivative | MSC | SNV | ||
---|---|---|---|---|---|---|---|---|
PLS-DA | 0 (<80 mg/kg) | correct | 45/47 | 46/47 | 46/47 | 38/47 | 46/47 | 46/47 |
incorrect | 2/47 | 1/47 | 1/47 | 9/47 | 1/47 | 1/47 | ||
1 (≥80 mg/kg) | correct | 45/47 | 46/47 | 45/47 | 35/47 | 47/47 | 45/47 | |
incorrect | 2/47 | 1/47 | 2/47 | 12/47 | 0/47 | 2/47 | ||
Total accuracy | 90/94 | 92/94 | 91/94 | 73/94 | 93/94 | 91/94 | ||
Total accuracy (%) | 95.74 | 97.87 | 96.81 | 77.66 | 98.94 | 96.81 | ||
SVMC | 0 (<80 mg/kg) | correct | 38/47 | 38/47 | 39/47 | 14/47 | 45/47 | 47/47 |
incorrect | 9/47 | 9/47 | 8/47 | 33/47 | 2/47 | 0/47 | ||
1 (≥80 mg/kg) | correct | 25/47 | 40/47 | 30/47 | 43/47 | 31/47 | 35/47 | |
incorrect | 22/47 | 7/47 | 17/47 | 4/47 | 16/47 | 12/47 | ||
Total accuracy | 63/94 | 78/94 | 69/94 | 57/94 | 76/94 | 82/94 | ||
Total accuracy (%) | 67.02 | 82.98 | 73.40 | 60.64 | 80.85 | 87.23 |
Analytical Method | Pre-Treatment | Calibration | Prediction | ||
---|---|---|---|---|---|
N | Total Accuracy (%) | N | Total Accuracy (%) | ||
PLS-DA | MSC | 94 | 98.94 | 46 | 91.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tantinantrakun, A.; Thompson, A.K.; Terdwongworakul, A.; Teerachaichayut, S. Assessment of Nitrite Content in Vienna Chicken Sausages Using Near-Infrared Hyperspectral Imaging. Foods 2023, 12, 2793. https://doi.org/10.3390/foods12142793
Tantinantrakun A, Thompson AK, Terdwongworakul A, Teerachaichayut S. Assessment of Nitrite Content in Vienna Chicken Sausages Using Near-Infrared Hyperspectral Imaging. Foods. 2023; 12(14):2793. https://doi.org/10.3390/foods12142793
Chicago/Turabian StyleTantinantrakun, Achiraya, Anthony Keith Thompson, Anupun Terdwongworakul, and Sontisuk Teerachaichayut. 2023. "Assessment of Nitrite Content in Vienna Chicken Sausages Using Near-Infrared Hyperspectral Imaging" Foods 12, no. 14: 2793. https://doi.org/10.3390/foods12142793
APA StyleTantinantrakun, A., Thompson, A. K., Terdwongworakul, A., & Teerachaichayut, S. (2023). Assessment of Nitrite Content in Vienna Chicken Sausages Using Near-Infrared Hyperspectral Imaging. Foods, 12(14), 2793. https://doi.org/10.3390/foods12142793