Physical-Chemical and Nutritional Characterization of Somali Laxoox Flatbread and Comparison with Yemeni Lahoh Flatbread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Bread and Flour Samples
2.2. Determination of the Nutritional Composition
2.3. Determination of the Content of Total Bioactive Compounds
2.4. Determination of the Antioxidant Activity
2.5. Color Determinations
2.6. Image Analysis of Breads
2.7. Statistical Analysis
3. Results and Discussion
3.1. Grain Diversity in the Starting Mix, and Other Ingredients
3.2. Nutritional Characteristics and Bioactive Compounds
3.3. Physical Characteristics Related to the Appearance of Breads
3.4. Comparison of the Breads
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasqualone, A. Traditional flat breads spread from the Fertile Crescent: Production process and history of baking systems. J. Ethn. Foods 2018, 5, 10–19. [Google Scholar] [CrossRef]
- Adde, L.; Kassim, A. Somali Anjero (Canjeero). Xawaash Somali Food Blog. 9 November 2011. Available online: http://xawaash.com/?p=1548 (accessed on 14 March 2023).
- Wolgamuth, E.; Yusuf, S.; Hussein, A.; Pasqualone, A. A survey of laxoox, a traditional Somali flatbread: Production styles. J. Ethn. Foods 2022, 9, 22. [Google Scholar] [CrossRef]
- Alpers, E.A. The Somali community at Aden in the nineteenth century. Northeast Afr. Stud. 1986, 8, 143–168. [Google Scholar]
- Mohamud, M. Somalia-Yemen links: Refugees and returnees. Forced Migr. Rev. 2016, 52, 55–56. [Google Scholar]
- Jones, M.O. Food choice, symbolism, and identity: Bread-and-butter issues for folkloristics and nutrition studies (American Folklore Society Presidential Address, October 2005). J. Am. Folk. 2007, 120, 129–177. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (AACC). International. Approved Methods of Analysis, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2009. [Google Scholar]
- Association of Official Agricultural Chemists (AOAC) International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Pasqualone, A.; Delvecchio, L.N.; Mangini, G.; Taranto, F.; Blanco, A. Variability of total soluble phenolic compounds and antioxidant activity in a collection of tetraploid wheat. Agric. Food Sci. 2014, 23, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M. Production trials to improve the nutritional quality of biscuits and to enrich them with natural anthocyanins. CYTA-J. Food 2013, 11, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Pasqualone, A.; Caponio, F. Grape pomace as innovative flour for the formulation of functional muffins: How particle size affects the nutritional, textural and sensory properties. Foods 2022, 11, 1799. [Google Scholar] [CrossRef]
- De Angelis, D.; Madodé, Y.E.; Briffaz, A.; Hounhouigan, D.J.; Pasqualone, A.; Summo, C. Comparing the quality of two traditional fried street foods from the raw material to the end product: The Beninese cowpea-based ata and the Italian wheat-based popizza. Legume Sci. 2020, 2, e35. [Google Scholar] [CrossRef] [Green Version]
- Belton, P.S.; Taylor, J.R. Sorghum and millets: Protein sources for Africa. Trends Food Sci. 2004, 15, 94–98. [Google Scholar] [CrossRef]
- Affrifah, N.S.; Phillips, R.D.; Saalia, F.K. Cowpeas: Nutritional profile, processing methods and products. A review. Legume Sci. 2022, 4, e131. [Google Scholar] [CrossRef]
- Dhull, S.B.; Chandak, A.; Bamal, P.; Malik, A.; Kidwai, M.K. Fenugreek (Trigonella foenum-graecum): Nutritional, Health Properties and Food Uses. In Fenugreek; Naeem, M., Aftab, T., Khan, M.M.A., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Takooree, H.; Aumeeruddy, M.Z.; Rengasamy, K.R.; Venugopala, K.N.; Jeewon, R.; Zengin, G.; Mahomoodally, M.F. A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications. Crit. Rev. Food Sci. Nutr. 2019, 59, S210–S243. [Google Scholar] [CrossRef]
- Széles, A.; Horváth, É.; Vad, A.; Harsányi, E. The impact of environmental factors on the protein content and yield of maize grain at different nutrient supply levels. Emir. J. Food Agric. 2018, 30, 764–777. [Google Scholar] [CrossRef]
- Cai, S.; Yu, G.; Chen, X.; Huang, Y.; Jiang, X.; Zhang, G.; Jin, X. Grain protein content variation and its association analysis in barley. BMC Plant Biol. 2013, 13, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pronin, D.; Börner, A.; Weber, H.; Scherf, K.A. Wheat (Triticum aestivum L.) breeding from 1891 to 2010 contributed to increasing yield and glutenin contents but decreasing protein and gliadin contents. J. Agric. Food Chem. 2020, 68, 13247–13256. [Google Scholar] [CrossRef] [PubMed]
- Koppelman, S.J.; Vlooswijk, R.A.A.; Knippels, L.M.J.; Hessing, M.; Knol, E.F.; Van Reijsen, F.C.; Bruijnzeel-Koomen, C.A.F.M. Quantification of major peanut allergens Ara h 1 and Ara h 2 in the peanut varieties Runner, Spanish, Virginia, and Valencia, bred in different parts of the world. Allergy 2001, 56, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A.R. Sub-Saharan African maize-based foods: Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. Glob. Food Sec. 2018, 17, 48–56. [Google Scholar] [CrossRef]
- Farag, M.A.; Xiao, J.; Abdallah, H.M. Nutritional value of barley cereal and better opportunities for its processing as a value-added food: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2022, 62, 1092–1104. [Google Scholar] [CrossRef]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of dietary fiber on human health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Fuller, S.; Beck, E.; Salman, H.; Tapsell, L. New Horizons for the Study of Dietary Fiber and Health: A Review. Plant Foods Hum. Nutr. 2016, 71, 1–12. [Google Scholar] [CrossRef]
- Raczyk, M.; Polanowska, K.; Kruszewski, B.; Grygier, A.; Michałowska, D. Effect of spirulina (Arthrospira platensis) supplementation on physical and chemical properties of semolina (Triticum durum) based fresh pasta. Molecules 2022, 27, 355. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, S.; Dalbhagat, C.G.; Mandliya, S.; Mishra, H.N. Investigation of natural food fortificants for improving various properties of fortified foods: A review. Food Res. Int. 2022, 156, 111186. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.P.S.; Peng, A.; Taniasuri, F.; Tan, D.; Kim, J.E. Impact of fiber-fortified food consumption on anthropometric measurements and cardiometabolic outcomes: A systematic review, meta-analyses, and meta-regressions of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022, 15, 1–19. [Google Scholar] [CrossRef]
- Abdulkadir, G. Assessment of drought recurrence in Somaliland: Causes, impacts and mitigations. J. Climatol. Weather Forecast. 2017, 5, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Jama, A.; Gebreyesus, H.; Wubayehu, T.; Gebregyorgis, T.; Teweldemedhin, M.; Berhe, T.; Berhe, N. Exclusive breastfeeding for the first six months of life and its associated factors among children age 6-24 months in Burao district, Somaliland. Int. Breastfeed. J. 2020, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- CREA. Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria. 2019. Tabelle di Composizione Degli Alimenti. Pane di Tipo Integrale. Available online: https://www.alimentinutrizione.it/tabelle-nutrizionali/000550 (accessed on 1 August 2023).
- Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Le Bouthillier, M.; Perron, J.; Pomerleau, S.; Gagnon, P.; Labonté, M.È.; Plante, C.; Guével, M.H.; Provencher, V. Nutritional content of sliced bread available in Quebec, Canada: Focus on sodium and fibre content. Nutrients 2021, 13, 4196. [Google Scholar] [CrossRef] [PubMed]
- Garzon, R.; Gasparre, N.; Pasqualone, A.; Papageorgiou, M.; Grgic, T.; Le-Bail, P.; Pablos, I.M.; El Tomb, C.; Magro, C.; Rosell, C.M. Flatbreads on the Rise, What about their Nutritional Quality? The Current State of the Mediterranean Market. Med. Res. Arch. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- Wang, Y.; Jian, C.; Salonen, A.; Dong, M.; Yang, Z. Designing healthier bread through the lens of the gut microbiota. Trends in Food Sci. Technol. 2023, 134, 13–28. [Google Scholar] [CrossRef]
- García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The role of oxidative stress in physiopathology and pharmacological treatment with pro-and antioxidant properties in chronic diseases. Oxid. Med. Cell Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Brandolini, A.; Pompei, C. Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours. Food Chem. 2010, 121, 746–751. [Google Scholar] [CrossRef]
- de Morais Cardoso, L.; Pinheiro, S.S.; da Silva, L.L.; de Menezes, C.B.; de Carvalho, C.W.P.; Tardin, F.D.; Queiroz, V.A.V.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Tocochromanols and carotenoids in sorghum (Sorghum bicolor L.): Diversity and stability to the heat treatment. Food Chem. 2015, 172, 900–908. [Google Scholar] [CrossRef]
- Van Hung, P. Phenolic compounds of cereals and their antioxidant capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Yones, H.A.; Karim, N.; Taha, E.M.; Chen, W. Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends Food Sci. Technol. 2021, 110, 168–182. [Google Scholar] [CrossRef]
- Adebo, O.A.; Medina-Meza, I.G. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A.; Laddomada, B.; Centomani, I.; Paradiso, V.M.; Minervini, D.; Caponio, F.; Summo, C. Bread making aptitude of mixtures of re-milled semolina and selected durum wheat milling by-products. LWT 2017, 78, 151–159. [Google Scholar] [CrossRef]
- Li, W.; Pickard, M.D.; Beta, T. Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem. 2007, 104, 1080–1086. [Google Scholar] [CrossRef]
- Awika, J.M.; Rooney, L.W.; Waniska, R.D. Properties of 3-deoxyanthocyanins from sorghum. J. Agric. Food Chem. 2004, 52, 4388–4394. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Santhakumar, A.B.; Chinkwo, K.A.; Wu, G.; Johnson, S.K.; Blanchard, C.L. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J. Cereal Sci. 2018, 84, 103–111. [Google Scholar] [CrossRef]
- Mareček, V.; Mikyška, A.; Hampel, D.; Čejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2017, 73, 40–45. [Google Scholar] [CrossRef]
- Aloğlu, H.Ş.; Öner, Z. Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt. J. Dairy Sci. 2011, 94, 5305–5314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raczyk, M.; Kruszewski, B.; Zachariasz, E. Effect of tomato, beetroot and carrot juice addition on physicochemical, antioxidant and texture properties of wheat bread. Antioxidants 2022, 11, 2178. [Google Scholar] [CrossRef] [PubMed]
- Čechovská, L.; Konečný, M.; Velíšek, J.; Cejpek, K. Effect of Maillard reaction on reducing power of malts and beers. Czech J. Food Sci. 2012, 30, 548–556. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A.; Vurro, F.; Summo, C.; Abd-El-Khalek, M.H.; Al-Dmoor, H.H.; Grgic, T.; Ruiz, M.; Magro, C.; Deligeorgakis, C.; Helou, C.; et al. The large and diverse family of Mediterranean flat breads: A database. Foods 2022, 11, 2326. [Google Scholar] [CrossRef]
- Crowley, P.; Grau, H.; Arendt, E.K. Influence of additives and mixing time on crumb grain characteristics of wheat bread. Cereal Chem. 2000, 77, 370–375. [Google Scholar] [CrossRef]
Code | Grain Composition of the Budo Flour Mixture | Ratio of Refined Wheat Flour: Budo Flour | Other Ingredients |
---|---|---|---|
A | Red sorghum | 1:1 | Microbial starter from previous batch, salt |
B | Wheat and corn | Not specified | Cow yogurt, black cumin seeds, microbial starter from previous batch |
C | White and red sorghum, millet | 1:1 | Commercial baker’s yeast (Saccharomyces cerevisiae), salt |
D | Red sorghum | Not specified | Salt, microbial starter from previous batch |
E | Red sorghum | 2:1 | Salt, microbial starter from previous batch |
F | White and red sorghum, barley and wheat | 1:1 | Ground peanuts, ground fenugreek, black pepper, microbial starter from previous batch |
G | Yellow corn, cowpea, wheat | 1:1 | Microbial starter from previous batch |
H | Barley | 3:1 | Microbial starter from previous batch |
I | Red sorghum, white corn, barley and wheat | None | Overnight fermentation without starter |
Sample | Proteins | Lipids | Fibers | Available Carbohydrates |
---|---|---|---|---|
Flours | ||||
A * | 9.41 ± 0.38 d | 2.59 ± 0.26 abc | 6.68 ± 0.47 b | 88.00 ± 0.64 a |
E | 11.50 ± 0.69 c | 2.21 ± 0.14 bc | 5.14 ± 0.23 c | 86.29 ± 0.83 b |
F | 13.06 ± 0.41 b | 2.90 ± 0.27 a | 8.61 ± 0.46 a | 84.04 ± 0.14 c |
G | 15.65 ± 0.18 a | 2.15 ± 0.17 c | 6.06 ± 0.51 bc | 82.19 ± 0.01 d |
I | 12.58 ± 0.43 bc | 2.76 ± 0.25 ab | 6.76 ± 0.84 b | 84.65 ± 0.18 c |
Breads ** | ||||
A | 12.97 ± 0.43 b | 2.67 ± 0.02 c | 4.72 ± 0.17 d | 84.36 ± 0.45 ab |
B | 15.06 ± 0.83 a | 3.14 ± 0.08 b | 6.13 ± 0.25 b | 81.81 ± 0.74 c |
C | 14.72 ± 0.47 a | 2.52 ± 0.21 cd | 5.49 ± 0.13 c | 83.45 ± 0.61 ab |
D | 12.78 ± 0.33 b | 3.89 ± 0.03 a | 6.29 ± 0.40 ab | 83.33 ± 0.30 b |
E | 12.99 ± 0.28 b | 2.61 ± 0.27 cd | 5.28 ± 0.13 c | 84.40 ± 0.01 ab |
F | 15.25 ± 0.02 a | 4.11 ± 0.01 a | 6.85 ± 0.15 a | 80.63 ± 0.03 c |
G | 15.94 ± 0.34 a | 2.47 ± 0.05 d | 6.02 ± 0.12 b | 81.59 ± 0.29 c |
H | 12.47 ± 0.55 b | 2.86 ± 0.05 bcd | 4.75 ± 0.33 d | 84.68 ± 0.50 a |
I | 12.70 ± 0.11 b | 2.89 ± 0.01 bc | 7.03 ± 0.34 a | 84.41 ± 0.39 ab |
Range Somali (min–max) | 12.47–15.94 | 2.47–4.11 | 4.72–7.03 | 80.63–84.68 |
Sample | Total Carotenoids (mg β-Carotene/kg d.m.) | Total Phenolic Compounds (mg GAE/g d.m.) | Total Anthocyanins (mg Cyanidin 3-O-Glucoside/g d.m.) | Antioxidant Activity * (µmol TE/g d.m.) |
---|---|---|---|---|
Flours | ||||
A ** | 22.58 ± 0.11 a | 7.38 ± 0.24 a | 0.32 ± 0.01 a | 2.15 ± 0.01 a |
E | 6.61 ± 0.11 d | 6.93 ± 0.07 a | 0.01 ± 0.00 b | 0.72 ± 0.07 c |
F | 7.88 ± 0.17 c | 6.82 ± 0.23 a | 0.02 ± 0.01 b | 1.26 ± 0.03 b |
G | 4.10 ± 0.01 e | 7.42 ± 0.06 a | n.d. | 0.71 ± 0.04 c |
I | 9.34 ± 0.16 b | 7.21 ± 0.04 a | 0.03 ± 0.01 b | 2.38 ± 0.10 a |
Breads *** | ||||
A | 10.48 ± 0.24 b | 5.55 ± 0.66 bc | n.d. | 1.06 ± 0.07 c |
B | 12.51 ± 0.17 a | 7.11 ± 0.12 a | n.d. | 2.84 ± 0.09 a |
C | 5.86 ± 0.01 f | 6.01 ± 0.11 b | n.d. | 1.14 ± 0.03 c |
D | 6.77 ± 0.18 e | 6.07 ± 0.03 b | n.d. | 1.08 ± 0.05 c |
E | 6.18 ± 0.17 e | 5.85 ± 0.12 b | n.d. | 0.76 ± 0.10 d |
F | 7.44 ± 0.25 d | 6.15 ± 0.08 b | n.d. | 0.82 ± 0.04 d |
G | 2.49 ± 0.05 g | 5.02 ± 0.15 c | n.d. | 0.36 ± 0.02 e |
H | 2.44 ± 0.06 g | 5.56 ± 0.26 bc | n.d. | 0.42 ± 0.06 e |
I | 8.37 ± 0.05 c | 5.69 ± 0.43 bc | n.d. | 1.53 ± 0.08 b |
Range Somali (min–max) | 2.44–10.48 | 5.02–6.15 | - | 0.36–1.53 |
Code | Typical Surface Pattern | Thickness (mm) | Thickness in Spiral (mm) | Diameter (cm) | Cell Size Distribution (%) | Cell Density (Cells/cm2) | |||
---|---|---|---|---|---|---|---|---|---|
0.05–0.5 mm2 | 0.5–1 mm2 | 1–5 mm2 | 5–10 mm2 | ||||||
A | Spiral relief | 2.1 ± 0.1 b | 5.1 ± 0.1 a | 16.3 ± 0.6 c | 76.2 ± 3.5 de | 9.5 ± 2.2 cd | 13.4 ± 1.5 ab | 0.4 ± 0.4 bc | 22.4 ± 7.7 c |
B | Parallel stripes (zebra effect) | 1.0 ± 0.1 c | n.d. | 55.0 ± 1.1 a* | 93.7 ± 0.5 a | 4.5 ± 0.3 e | 1.8 ± 0.3 d | 0 ± 0 c | 145 ± 15 a |
C | None | 4.0 ± 0.2 a | n.d. | 15.0 ± 0.1 d | 65.7 ± 1.5 f | 15.0 ± 1.2 a | 17.3 ± 0.1 a | 1.4 ± 0.3 a | 27.5 ± 1.5 c |
D | Spiral relief | 2.0 ± 0.1 b | 4.0 ± 0.8 bc | 16.5 ± 0.4 c | 84.4 ± 0.7 bc | 7.6 ± 1.1 de | 6.3 ± 0.1 cd | 1.1 ± 0.1 ab | 44.1 ± 0.9 bc |
E | Spiral relief | 2.1 ± 0.1 b | 4.8 ± 0.5 ab | 20.2 ± 0.4 b | 68.9 ± 1.9 ef | 14.1 ± 0.6 ab | 15.2 ± 1.1 a | 1.3 ± 0.1 a | 42.9 ± 4.7 bc |
F | Spiral relief | 1.1 ± 0.1 c | 3.3 ± 0.5 c | 13.4 ± 0.3 e | 75.9 ± 3.3 e | 12.2 ± 2.6 abc | 9.9 ± 3.1 bc | 1.2 ± 0.6 ab | 31.9 ± 7.5 c |
G | Spiral relief | 1.7 ± 0.6 b | 4.1 ± 0.1 abc | 14.5 ± 0.1 d | 83.4 ± 2.3 cd | 12.1 ± 1.2 abc | 4.3 ± 0.9 d | 0.1 ± 0.0 c | 57.4 ± 4.6 b |
H | Spiral relief | 2.0 ± 0.1 b | 4.7 ± 0.6 ab | 17.1 ± 0.4 c | 91.1 ± 2.1 ab | 4.3 ± 0.6 e | 3.9 ± 1.6 d | 0.7 ± 0.1 abc | 49.2 ± 19.4 bc |
I | Spiral relief | 2.1 ± 0.1 b | 4.1 ± 0.1 abc | 15.2 ± 0.2 d | 76.3 ± 4.6 de | 10.6 ± 1.6 bcd | 12.8 ± 2.8 ab | 0.2 ± 0.2 c | 33.9 ± 8.2 bc |
Range Somali (min–max) | - | 1.1–2.1 | 3.3–5.1 | 13.4–20.2 | 75.9–91.1 | 4.3–14.1 | 3.9–15.2 | 0.2–1.3 | 22.4–57.4 |
Sample | L* | a* | b* |
---|---|---|---|
Flours | |||
A * | 70.96 ± 0.11 c | 3.48 ± 0.01 a | 9.23 ± 0.04 b |
E | 83.40 ± 0.78 a | 0.13 ± 0.04 d | 7.72 ± 0.06 c |
F | 78.39 ± 0.66 b | 1.13 ± 0.14 c | 9.36 ± 0.73 b |
G | 80.11 ± 0.14 ab | 1.42 ± 0.02 b | 11.25 ± 0.01 a |
I | 77.36 ± 0.08 b | 1.02 ± 0.01 c | 11.19 ± 0.01 a |
Breads—Bottom side | |||
A | 38.25 ± 3.05 cd | 12.44 ± 1.00 bc | 24.33 ± 2.03 ab |
B | 37.84 ± 2.02 cde | 14.57 ± 0.64 a | 19.74 ± 1.97 cd |
C | 34.60 ± 2.53 e | 11.88 ± 0.67 cd | 22.49 ± 1.21 bc |
D | 41.24 ± 2.81 b | 11.41 ± 1.06 d | 23.19 ± 1.75 b |
E | 38.06 ± 3.63 cd | 12.98 ± 0.64 b | 22.59 ± 2.42 b |
F | 39.93 ± 3.21 bc | 10.36 ± 0.51 e | 23.74 ± 1.24 b |
G | 52.40 ± 2.53 a | 7.84 ± 0.70 g | 24.18 ± 1.85 ab |
H | 51.22 ± 4.07 a | 9.85 ± 1.96 ef | 25.87 ± 3.37 a |
I | 34.94 ± 2.39 de | 9.31 ± 0.95 f | 17.71 ± 0.66 d |
Breads—Superior side, clear areas | |||
A | 47.52 ± 3.39 cd | 8.32 ± 0.43 b | 18.91 ± 1.18 c |
B | 56.80 ± 1.73 a | 6.14 ± 0.68 ef | 25.73 ± 1.36 a |
C | 34.12 ± 0.41 f | 6.72 ± 0.19 def | 18.02 ± 0.41 cde |
D | 50.88 ± 2.96 b | 8.96 ± 1.00 a | 22.17 ± 1.14 b |
E | 48.39 ± 2.31 bc | 7.74 ± 0.51 bc | 16.89 ± 0.93 e |
F | 40.41 ± 4.12 e | 6.86 ± 0.8 de | 16.36 ± 2.54 e |
G | 44.68 ± 3.76 d | 6.19 ± 0.52 f | 18.53 ± 1.56 cd |
H | 50.71 ± 2.54 b | 6.31 ± 0.69 ef | 17.38 ± 1.77 de |
I | 32.92 ± 1.99 f | 7.13 ± 0.45 cd | 14.06 ± 0.95 f |
Range: Somali (min–max) | 32.92–50.88 | 6.19–8.96 | 14.06–22.17 |
Breads—Superior side, dark pattern (spiral or strip) | |||
A | 42.94 ± 3.28 d | 8.55 ± 0.77 b | 19.07 ± 1.45 bc |
B | 37.23 ± 1.43 e | 14.8 ± 0.46 a | 19.87 ± 2.03 abc |
C | - | - | - |
D | 47.41 ± 2.44 b | 9.13 ± 0.71 b | 21.36 ± 1.18 a |
E | 46.13 ± 2.87 cd | 7.15 ± 0.65 cd | 15.14 ± 1.15 e |
F | 39.63 ± 2.29 e | 7.38 ± 0.72 c | 17.41 ± 2.19 d |
G | 46.63 ± 3.34 bc | 6.72 ± 0.80 de | 19.79 ± 0.78 b |
H | 50.51 ± 1.86 a | 6.19 ± 0.82 e | 18.15 ± 1.35 cd |
I | 27.78 ± 0.76 f | 3.59 ± 0.25 f | 5.42 ± 0.86 f |
Range: Somali (min–max) | 27.78–50.51 | 3.59–9.13 | 5.42–21.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasqualone, A.; Vurro, F.; Wolgamuth, E.; Yusuf, S.; Squeo, G.; De Angelis, D.; Summo, C. Physical-Chemical and Nutritional Characterization of Somali Laxoox Flatbread and Comparison with Yemeni Lahoh Flatbread. Foods 2023, 12, 3050. https://doi.org/10.3390/foods12163050
Pasqualone A, Vurro F, Wolgamuth E, Yusuf S, Squeo G, De Angelis D, Summo C. Physical-Chemical and Nutritional Characterization of Somali Laxoox Flatbread and Comparison with Yemeni Lahoh Flatbread. Foods. 2023; 12(16):3050. https://doi.org/10.3390/foods12163050
Chicago/Turabian StylePasqualone, Antonella, Francesca Vurro, Erin Wolgamuth, Salwa Yusuf, Giacomo Squeo, Davide De Angelis, and Carmine Summo. 2023. "Physical-Chemical and Nutritional Characterization of Somali Laxoox Flatbread and Comparison with Yemeni Lahoh Flatbread" Foods 12, no. 16: 3050. https://doi.org/10.3390/foods12163050
APA StylePasqualone, A., Vurro, F., Wolgamuth, E., Yusuf, S., Squeo, G., De Angelis, D., & Summo, C. (2023). Physical-Chemical and Nutritional Characterization of Somali Laxoox Flatbread and Comparison with Yemeni Lahoh Flatbread. Foods, 12(16), 3050. https://doi.org/10.3390/foods12163050