Radio Frequency Treatment of Food: A Review on Pasteurization and Disinfestation
Abstract
:1. Introduction
2. Basic Principles
2.1. Dielectric Properties
- a.
- Open-ended coaxial probe (OCP). This method allows for the quantification of the permittivity in semisolids and liquids. The sample preparation is easy, and the results have high accuracy. The probe of the equipment works by flashing signals; in solids, the probe touches a flat surface of the material, and in liquids, the probe plunges inside the product. The main drawback is the presence of air gaps that can provide erroneous measurements.
- b.
- Transmission line method (TLM). This methodology has high accuracy and sensitivity for solids and liquids, though the main limitations are the restricted range of frequencies (<100 MHz) and the time-consuming sample preparation. The dielectric properties are quantified via the phase and amplitude of a microwave signal reflected from a material sample placed by the end of a transmission line.
- c.
- Resonant cavity method. This method is suitable for high-temperature solid materials and is the most accurate. The sample is placed in the middle of a waveguide, and changes in frequency are recorded. This method is quick, and sample preparation is easy (non-destructive). However, the analysis of data can become complex.
- d.
- Parallel plates. The sample is placed between two electrodes, and an alternate current is applied. The sample needs to be added as a flat sheet. It is an inexpensive and highly accurate method but with limited frequency (20 Hz–1 GHz).
- e.
- Free space. In this method, the solid sample is placed between two antennas to apply energy together with a vector network analyzer. Samples are analyzed in the microwave range, a non-contact, non-destructive technique.
2.1.1. Effect of Moisture Content
2.1.2. Effect of Temperature
2.1.3. Effect of Food Composition
2.1.4. Other Effects
3. Equipment
4. Food Pasteurization
Pasteurization * | ||||
---|---|---|---|---|
Product | Microorganism | Processing Conditions | Log Reduction | Reference |
Corn flour | Salmonella enterica Enteritidis PT30 | 27.12 MHz, 6 kW, 85 °C, 10 min, followed by −20 °C 48 h | 6.6 | [66] |
Wheat flour | Salmonella Enteritidis PT30 | 27.12 MHz, 6 kW, 30 min | >5 | [67] |
Liquid whole egg (LWE) and liquid egg yolk (LEY) | Salmonella Enteritidis | 27.12 MHz, 12 kW, 180–285 s | 5.6 (LWE) 5.3 (LEY) | [68] |
Cumin seeds | Salmonella enterica | 27.12 MHz, 6 kW, 90–106 s | >5.8 | [69] |
Sesame seeds | Salmonella Montevideo and Salmonella Typhimurium | 27.12 MHz, 6 kW, 80 °C, 5 min, plus 0.83 μL/mL Cinnamon Vapor Oil | >5 | [64] |
Flaxseed seeds | Salmonella Montevideo and Salmonella Typhimurium | 27.12 MHz, 6 kW, 85 °C, 5 min, plus 0.83 μL/mL Cinnamon Vapor Oil | >5 | [64] |
Ground black pepper | Salmonella spp. | 27.12 MHz, 6 kW, 130 s | 5.98 | [70] |
Paprika | Salmonella spp. | 27.12 MHz, 6 kW, 80 °C, 5 min | >6 | [71] |
Shell egg | Salmonella Typhimurium | 27.12 MHz, 1 kW, 56.7 °C, 21 min | >6.1 | [52] |
Black pepper kernels | Salmonella Typhimurium ATCC 14028 | 27.12 MHz, 12 kW, 100 °C, 8 min | >6 | [72] |
Basil leaves | Salmonella spp. and Enterobacter faecium | 27.12 MHz, 6 W, 65 s | >6.5 | [73] |
Buckwheat kernels | Salmonella Typhimurium, Escherichia coli ATCC 25922, Cronobacter sakazakii | 27.12 MHz, 6 kW, 85 °C, 5 min | ≈5 | [74] |
Cocoa powder | Enterobacter faecium NRRL B-2354 | 27.12 MHz, 6 kW, 75 °C, 48 min | 5.5 | [75] |
Almonds (in-shell) | Escherichia coli ATCC 25922 | 27.12 MHz, 6 kW, 55 °C, 1.5 min | 5 | [76] |
Eggshell | Escherichia coli ATCC 35218 | 27.12 MHz, 3.5 min, 35 °C and hot water (56.7 °C) for 20 min | 6.5 | [77] |
Chunky peanut butter cracker sandwiches | Escherichia coli O157:H7 | 27.12 MHz, 9 kW, 90 s | 5.3 | [78] |
Dried red pepper | Escherichia coli O157:H7 | 27.12 MHz, 9 kW, 50 s | >5 | [79] |
Black pepper kernels | Escherichia coli O157:H7 | 27.12 MHz, 12 kW, 90 °C, 7 min | >6 | [72] |
Ground beef | Escherichia coli (non-pathogenic cocktail) | 27.12 MHz, 6 kW, 55 °C | 5 | [80] |
Infant formula | Cronobacter sakazakii | 27.12 MHz, 6 kW, 116.5 min, 70 °C (Dry heat) | 5 | [81] |
Salmon caviar | Listeria innocua | 27.12 MHz, 6 kW, 65 °C, 500 IU/mL nisin | >7 | [82] |
Fungi Inactivation | ||||
Product | Microorganism | Processing Conditions | Log Reduction | Reference |
Peanut kernels | Aspergillus flavus | 27.12 MHz, 6 kW, and hot air (65 °C—9 min, 0.735 aw/70 °C—15 min, 0.876 aw) | 3.0 and 3.4, respectively | [60] |
Wheat seeds | Aspergillus flavus | 27.12 MHz, 12 kW, and hot air (65 °C—10 min) | 2 (when moisture content of seeds was 12%), 3 (when moisture content of seeds was 15%) | [83] |
Corn seeds | Aspergillus flavus | 27.12 MHz, 12 kW, and hot air (65 °C—10 min) | 3 (when moisture content of seeds was 12%), 4 (when moisture content of seeds was 15%) | [83] |
Corn grains | Aspergillus parasiticus | 27.12 MHz, 6 kW, and hot air (70 °C—12 min) | 5–6 | [84] |
Enriched white bread | Penicillium citrinum | 27.12 MHz, 6 kW, and hot air (58 °C—5 min) | 4 | [85] |
Chestnuts | Penicillium crustosum | 27.12 MHz, 6 kW, and hot air (60 °C) | 4 | [86] |
5. Disinfestation
6. Food Quality
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Statement
References
- C.D.C. Centers for Disease Control and Prevention. Available online: www.cdc.gov (accessed on 1 July 2022).
- Liao, X.; Ma, Y.; Daliri, E.B.M.; Koseki, S.; Wei, S.; Liu, D.; Ye, X.; Chen, S.; Ding, T. Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends Food Sci. Technol. 2020, 95, 97–106. [Google Scholar] [CrossRef]
- Valdramidis, V.P.; Geeraerd, A.H.; Bernaerts, K.; Van Impe, J.F. Microbial dynamics versus mathematical model dynamics: The case of microbial heat resistance induction. Innov. Food Sci. Emerg. 2006, 7, 80–87. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Bressan, F.; Leone, F.; Falqui, L.; Chiofalo, V. Radio frequency heating on food of animal origin: A review. Eur. Food Res. Technol. 2019, 245, 1787–1797. [Google Scholar] [CrossRef]
- Datta, A.K.; Davidson, P.M. Microwave and radio frequency processing. J. Food Sci. 2011, 65 (Suppl. 8), 32–41. [Google Scholar] [CrossRef]
- Nelson, S.O.; Trabelsi, S. Factors influencing the dielectric properties of agricultural and food products. J. Microw. Power Electromagn. Energy 2012, 46, 93–107. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, S. Recent developments in radio frequency drying for food and agricultural products using a multi-stage strategy: A review. Crit. Rev. Food Sci. 2023, 63, 2654–2671. [Google Scholar] [CrossRef]
- Jiao, S.; Salazar, E.; Wang, S. Radiofrequency. In Electromagnetic Technologies in Food Science; Gomez-Lopez, V.M., Bhat, R., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2022; pp. 272–297. [Google Scholar] [CrossRef]
- Chen, J.; Lau, S.K.; Chen, L.; Wang, S.; Subbiah, J. Modeling radio frequency heating of food moving on a conveyor belt. Food Bioprod Process. 2017, 102, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Al-Faruq, A.; Zhang, M.; Bhandari, B.; Azam, S.M.R.; Khatun, M.H.A. New understandings on how dielectric properties of fruit and vegetables are affected by heat-induced dehydration: A review. Dry. Technol. 2019, 37, 1780–1792. [Google Scholar] [CrossRef]
- Birla, S.I.; Wang, S.; Tang, J.; Tiwari, G. Characterization of radio frequency heating of fresh fruits influenced by dielectric properties. J. Food Eng. 2008, 89, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Tang, J.; Johnson, J.A.; Mitcham, E.; Hansen, J.D.; Hallman, G.; Drake, S.R.; Wang, Y. Dielectric properties of foods and insect pests as related to radio frequency and microwave treatments. Biosyst. Eng. 2003, 85, 201–212. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, W.; Wu, X. Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. J. Food Eng. 2012, 109, 258–266. [Google Scholar] [CrossRef]
- Alfaifi, B.; Wang, S.; Tang, J.; Rasco, B.; Sablani, S.; Jiao, Y. Radio frequency disinfection treatments for dried fruit: Dielectric properties. LWT–Food Sci. Technol. 2013, 50, 746–754. [Google Scholar] [CrossRef]
- Wang, S.; Monzon, M.; Gazit, Y.; Tang, J.; Mitcham, E.J.; Armstrong, J.W. Temperature dependent dielectric properties of selected subtropical and tropical fruits and associated insect pests. Trans. ASAE 2005, 48, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, R.; Lyng, J.G.; Wang, S. Dielectric properties of kiwifruit associated with a combined radio frequency vacuum and osmotic drying. J. Food Eng. 2018, 239, 72–82. [Google Scholar] [CrossRef]
- Ferrari-John, R.S.; Katrib, J.; Palade, P.; Batchelor, A.R.; Dodds, C.; Kingman, S.W. A tool for predicting heating uniformity in industrial radio frequency processing. Food Bioprocess Technol. 2016, 9, 1865–1873. [Google Scholar] [CrossRef]
- Guan, D.; Cheng, M.; Wang, Y.; Tang, J. Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization process. J. Food Sci. 2004, 69, FEP30–FEP37. [Google Scholar] [CrossRef]
- Wang, J.; Luechapattanaporn, K.; Wang, Y.; Tang, J. Radio-frequency heating of heterogenous food- Meat lasagna. J. Food Eng. 2012, 108, 183–193. [Google Scholar] [CrossRef]
- Lyng, J.G.; Zhang, L.; Bruton, N.P. A survey on the dielectric properties of meats and ingredients used in meat product manufacture. Meat Sci. 2005, 69, 589–602. [Google Scholar] [CrossRef]
- Farag, K.W.; Lyng, J.G.; Morgan, D.J.; Cronin, D.A. Dielectric and thermophysical properties of different beef meat blends over a temperature range of −18 to +10 °C. Meat Sci. 2008, 79, 740–747. [Google Scholar] [CrossRef]
- Basaran, P.; Basaran-Akgul, N.; Rasco, B.A. Dielectric properties of chicken and fish muscle treated with microbial transglutaminase. Food Chem. 2010, 120, 361–370. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J.; Wang, Y.; Swanson, B. Dielectric properties of egg whites and whole eggs as influenced by thermal treatments. LWT–Food Sci. Technol. 2009, 42, 1204–1212. [Google Scholar] [CrossRef]
- Guo, W.; Trabelsi, S.; Nelson, S.O.; Jones, D.R. Storage effects on dielectric properties of eggs from 10 to 1800 MHz. J. Food Sci. 2007, 72, E335–E340. [Google Scholar] [CrossRef]
- Muñoz, I.; Gou, P.; Picouet, P.A.; Barlabé, A.; Felipe, X. Dielectric properties of milk during ultra-heat treatment. J. Food Eng. 2018, 219, 137–146. [Google Scholar] [CrossRef]
- Dag, D.; Singh, R.K.; Kong, F. Dielectric properties, effect of geometry, and quality changes of whole, nonfat milk powder and their mixtures associated with radio frequency heating. J. Food Eng. 2019, 261, 40–50. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, X.; Liu, H.; Yue, R.; Wang, S. Effects of milk concentration and freshness on microwave dielectric properties. J. Food Eng. 2010, 99, 344–350. [Google Scholar] [CrossRef]
- Al-Holy, M.; Wang, Y.; Tang, J.; Rasco, B. Dielectric properties of salmon (Oncorhynchus keta) and sturgeon (Acipenser transmontanus) caviar at radio frequency (RF) and microwave (MW) pasteurization frequencies. J. Food Eng. 2005, 70, 564–570. [Google Scholar] [CrossRef]
- Guo, W.; Xu, X.; Zhu, X.; Wang, S. Temperature-dependent dielectric properties of chestnut and chestnut weevil from 10 to 4500 MHz. Biosyst. Eng. 2011, 110, 340–347. [Google Scholar] [CrossRef]
- Guo, W.; Tiwari, G.; Tang, J.; Wang, S. Frequency, moisture and temperature dependent dielectric properties of chickpea flour. Biosyst. Eng. 2008, 101, 217–224. [Google Scholar] [CrossRef]
- Guo, W.; Wang, S.; Tiwari, G.; Johnson, J.A.; Tang, J. Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating. LWT–Food Sci. Technol. 2010, 43, 193–201. [Google Scholar] [CrossRef]
- Ozturk, S.; Kong, F.; Trabelsi, S.; Singh, R.K. Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating. J. Food Eng. 2016, 169, 91–100. [Google Scholar] [CrossRef]
- Lin, B.; Wang, S. Dielectric properties, heating rate, and heating uniformity of wheat flour with added bran associated with radio frequency treatments. Innov. Food Sci. Emerg. 2020, 60, 102290. [Google Scholar] [CrossRef]
- Ling, B.; Lyng, J.G.; Wang, S. Radio-frequency treatment for stabilization of wheat germ: Dielectric properties and heating uniformity. Innov. Food Sci. Emerg. 2018, 48, 66–74. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, J.; Mao, Z. Analysis of bread dielectric properties using mixture equations. J. Food Eng. 2009, 93, 72–79. [Google Scholar] [CrossRef]
- Gao, M.; Tang, J.; Johnson, J.A.; Wang, S. Dielectric properties of ground almond shells in the development of radio frequency and microwave pasteurization. J. Food Eng. 2012, 112, 282–287. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Gao, M.; Tang, J.; Wang, S. Temperature- and moisture-dependent dielectric properties of Macadamia Nut Kernels. Food Bioprocess Technol. 2013, 6, 2165–2176. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, L.; Ling, B.; Wang, S. Dielectric properties of peanuts kernels associated with microwave and radio frequency drying. Biosyst. Eng. 2016, 145, 108–117. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Cheng, J.; Wang, J.; Ding, Z.; Yuan, X.; Zhou, S.; Liu, X. Effects of moisture, temperature, and salt content on the dielectric properties of pecan kernels during microwave and radio frequency drying processes. Foods 2019, 8, 385. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.G.; Ryu, S.; Kang, D.H. Salt content dependent dielectric properties of pistachios relevant to radio-frequency pasteurization. Sci. Rep. 2019, 9, 2400. [Google Scholar] [CrossRef] [Green Version]
- Ling, B.; Guo, X.; Hou, L.; Li, R.; Wang, S. The dielectric properties of pistachio kernels are influenced by frequency, temperature, moisture and salt content. Food Bioprocess Technol. 2015, 8, 420–430. [Google Scholar] [CrossRef]
- Ozturk, S.; Kong, F.; Singh, R.K.; Kuzy, J.D.; Li, C.; Trabelsi, S. Dielectric properties, heating rate, and heating uniformity of various seasoning spices and their mixtures with radio frequency heating. J. Food Eng. 2018, 228, 128–141. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, X. Dielectric properties of red pepper powder related to radio frequency and microwave drying. Food Bioprocess Technol. 2014, 7, 3591–3601. [Google Scholar] [CrossRef]
- Jiao, S.; Johnson, J.A.; Tang, J.; Tiwari, G.; Wang, S. Dielectric properties of cowpea weevil, black-eyed peas and mung beans with respect to the development of radio frequency heat treatments. Biosyst. Eng. 2011, 108, 280–291. [Google Scholar] [CrossRef]
- Qi, S.; Han, J.; Lagnika, C.; Jiang, N.; Qian, C.; Liu, C.; Li, D.; Tao, Y.; Yu, Z.; Wang, L.; et al. Dielectric properties of edible fungi powder related to microwave and radio frequency drying. Food Prod. Process. Nutr. 2021, 3, 15. [Google Scholar] [CrossRef]
- Guo, W.; Liu, Y.; Zhu, X.; Wang, S. Dielectric properties of honey adulterated with sucrose syrup. J. Food Eng. 2011, 107, 1–7. [Google Scholar] [CrossRef]
- Farag, K.W.; Marra, F.; Lyng, J.G.; Morgan, D.J.; Cronin, D.A. Temperature changes and power consumption during radio frequency tempering of beef lean/fat formulations. Food Bioprocess Technol. 2010, 3, 732–740. [Google Scholar] [CrossRef]
- Wang, S.; Llave, Y.; Kong, F.; Marra, F.; Erdoǧdu, F. Update on emerging technologies including novel applications: Radio frequency. In Food Engineering Innovations Across the Food Supply Chain; Juliano, P., Buckow, R., Nguyen, M.H., Knoerzer, K., Sellahewa, J., Eds.; Academic Press: London, UK, 2022; pp. 163–186. [Google Scholar] [CrossRef]
- Wang, S.; Monzon, M.; Johnson, J.A.; Mitcham, E.J.; Tang, J. Industrial scale-radio frequency treatments for insect control in walnuts I: Heating uniformity and energy efficiency. Postharvest Biol. Technol. 2007, 45, 240–246. [Google Scholar] [CrossRef]
- Yang, Y.; Geveke, D.J. Shell egg pasteurization using radio frequency in combination with hot air or hot water. Food Microbiol. 2020, 85, 103281. [Google Scholar] [CrossRef]
- Yang, Y.; Geveke, D.J.; Brunkhorst, C.D.; Sites, J.E.; Geveke, N.J.; Tilman, E.D. Optimization of the radio frequency power, time and cooling water temperature for pasteurization of Salmonella Typhimurium in shell eggs. J. Food Eng. 2019, 247, 130–135. [Google Scholar] [CrossRef]
- Geveke, D.J.; Bigley, A.B.W.; Brunkhorst, C.D.; Jones, D.R.; Tilman, E.D. Improvement in the radio frequency method to pasteurize shell eggs by automation and cost reduction. Int. J. Food Sci. Technol. 2018, 53, 2500–2508. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhou, B.; Wang, S.; Hou, K. Heating uniformity in radio frequency treated walnut kernels with different size and density. Innov. Food Sci. Emerg. 2022, 75, 102899. [Google Scholar] [CrossRef]
- Hao, Y.; Mao, Y.; Hou, L.; Wang, S. Developing a rotation device in radio frequency systems for improving the heating uniformity in granular foods. Innov. Food Sci. Emerg. 2021, 72, 102751. [Google Scholar] [CrossRef]
- Guan, X.; Lin, B.; Xu, Y.; Yang, G.; Xu, J.; Zhang, S.; Li, R.; Wang, S. Recent developments in pasteurizing seeds and their products using radio frequency heating. Int. J. Food Sci. Technol. 2022, 57, 3223–3243. [Google Scholar] [CrossRef]
- Huang, Z.; Marra, F.; Wang, S. A novel strategy for improving radio frequency heating uniformity of dry food products using computational modeling. Innov. Food Sci. Emerg. 2016, 34, 100–111. [Google Scholar] [CrossRef]
- Jiao, Y.; Tang, J.; Wang, S. A new strategy to improve heating uniformity of low moisture foods in radio frequency treatment for pathogen control. J. Food Eng. 2014, 141, 128–138. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Gao, M.; Tang, J.; Wang, S. Evaluating radio frequency heating uniformity using polyurethane foams. J. Food Eng. 2014, 136, 28–33. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, H.; Yan, R.; Wang, S. Simulation and prediction of radio frequency heating in dry soybeans. Biosyst. Eng. 2015, 129, 34–47. [Google Scholar] [CrossRef]
- Fellows, P.J. Food Processing Technology, 3rd ed.; Woodhead Publishing: Cambridge, UK, 2009; pp. 381–395. [Google Scholar] [CrossRef]
- Zhang, S.; Lan, R.; Zhang, L.; Wang, S. Computational modelling of survival of Aspergillus flavus in peanut kernels during hot air-assisted radio frequency pasteurization. Food Microbiol. 2021, 95, 103682. [Google Scholar] [CrossRef]
- Marx, G.; Moody, A.; Bermudez-Aguirre, D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: High hydrostatic pressure, pulsed electric field and thermo-sonication. Int. J. Food Microbiol. 2011, 151, 327–337. [Google Scholar] [CrossRef]
- Akhila, P.P.; Sunooj, K.V.; Aaliya, B.; Navaf, M.; Sudheesh, C.; Sabu, S.; Sasidharan, A.; Mir, S.A.; George, J.; Khaneghah, A.M. Application of electromagnetic radiations for decontamination of fungi and mycotoxins in food products: A comprehensive review. Trends Food Sci. Technol. 2021, 114, 399–409. [Google Scholar] [CrossRef]
- Xu, Y.; Li, R.; Li, K.; Yu, J.; Bai, J.; Wang, S. Inactivation of inoculated Salmonella and natural microflora on two kinds of edible seeds by radio frequency heating combined with cinnamon oil vapor. LWT–Food Sci. Technol. 2022, 154, 112603. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, J.; Yang, G.; Quan, X.; Li, R.; Wang, S. Combined effects of intermittent radio frequency heating with cinnamon oil vapor on microbial control and quality changes of alfalfa seeds. Int. J. Food Microbiol. 2022, 367, 109586. [Google Scholar] [CrossRef]
- Ozturk, S.; Liu, S.; Xu, J.; Tang, J.; Chen, J.; Singh, R.K.; Kong, F. Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing. LWT Food Sci. Technol. 2019, 111, 782–789. [Google Scholar] [CrossRef]
- Liu, S.; Ozturk, S.; Xu, J.; Kong, F.; Gray, P.; Zhu, M.J.; Sablani, S.S.; Tang, J. Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. J. Food Eng. 2018, 217, 68–74. [Google Scholar] [CrossRef]
- Zhu, X.; Cui, Y.; Jiao, S.; Shi, X. Development of a pasteurization method based on radio frequency heating to ensure microbial safety of liquid egg. Food Control 2021, 123, 107035. [Google Scholar] [CrossRef]
- Chen, L.; Wei, X.; Irmak, S.; Chaves, B.D.; Subbiah, J. Inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in cumin seeds by radiofrequency heating. Food Control 2019, 103, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Lau, S.K.; Stratton, J.; Irmak, S.; Subbiah, J. Radiofrequency pasteurization process for inactivation of Salmonella spp. and Enterococcus faecium NRRL B-2354 on ground black pepper. Food Microbiol. 2019, 82, 388–397. [Google Scholar] [CrossRef]
- Ozturk, S.; Kong, F.; Singh, R.K. Evaluation of Enterococcus faecium NRRL B-2354 as a potential surrogate of Salmonella in packaged paprika, white pepper and cumin powder during radio frequency heating. Food Control 2020, 10, 106833. [Google Scholar] [CrossRef]
- Tong, T.; Wang, P.; Shi, H.; Li, F.; Jiao, Y. Radio frequency inactivation of E. coli O157: H7 and Salmonella Typhimurium ATCC 14028 in black pepper (piper nigrum) kernels: Thermal inactivation kinetic study and quality evaluation. Food Control 2022, 132, 108553. [Google Scholar] [CrossRef]
- Verma, T.; Chaves, B.D.; Irmak, S.; Subbiah, J. Pasteurization of dried basil leaves using radio frequency heating: A microbial challenge study and quality analysis. Food Control 2021, 124, 107932. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, G.; Li, R.; Xu, Y.; Lin, B.; Wang, S. Effects of radio frequency heating on microbial populations and physiochemical properties of buckwheat. Int. J. Food Microbiol. 2022, 363, 109500. [Google Scholar] [CrossRef]
- Ballom, K.; Dhowlaghar, N.; Tsai, H.C.; Yang, R.; Tang, J.; Zhu, M.J. Radiofrequency pasteurization against Salmonella and Listeria monocytogenes in cocoa powder. LWT–Food Sci. Technol. 2021, 145, 111490. [Google Scholar] [CrossRef]
- Li, R.; Kou, X.; Cheng, T.; Zheng, A.; Wang, S. Verification of radio frequency pasteurization process for in-shell almonds. J. Food Eng. 2017, 192, 103–110. [Google Scholar] [CrossRef]
- Geveke, D.J.; Bigley, A.B.W.; Brunkhorst, C.D. Pasteurization of shell eggs using radio frequency heating. J. Food Eng. 2017, 193, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.W.; Kim, S.Y.; Ryu, S.R.; Kang, D.H. Inactivation of Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 in peanut butter cracker sandwiches by radio frequency heating. Food Microbiol. 2013, 34, 145–150. [Google Scholar] [CrossRef]
- Kim, S.Y.; Sagong, H.G.; Choi, S.H.; Ryu, S.; Kang, D.H. Radio frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157:H7 on black and red pepper spice. Int. J. Food Microbiol. 2012, 153, 171–175. [Google Scholar] [CrossRef]
- Nagaraj, G.; Purohit, A.; Harrison, M.; Singh, R.; Hung, Y.C.; Mohan, A. Radiofrequency pasteurization of inoculated ground beef homogenate. Food Control 2016, 59, 59–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y.; Chen, Y.; Pandiselvam, R.; Liu, Y. Surface free fat bridging contributes to the stickiness of powdered infant formula milk pasteurized by radio frequency dry heat treatment. J. Food Eng. 2022, 323, 111001. [Google Scholar] [CrossRef]
- Al-Holy, M.; Ruiter, J.; Lin, M.; Kang, D.H.; Rasco, B. Inactivation of Listeria innocua in nisin- treated salmon (Oncorhynchus keta) and Sturgeon (Acipenser transmontanus) caviar heated by radio frequency. J. Food Prot. 2004, 67, 1848–1854. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.; Zhong, Y.; Deng, Y. Hot air-assisted radio frequency heating effects on wheat and corn seeds: Quality change and fungi inhibition. J. Stored Prod. Res. 2016, 69, 265–271. [Google Scholar] [CrossRef]
- Zheng, A.; Zhang, L.; Wang, S. Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grain. Int. J. Food Microbiol. 2017, 249, 27–34. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, J.; Mao, Z.; Mah, J.H.; Jiao, S.; Wang, S. Quality and mold control of enriched white bread by combined radio frequency and hot air treatment. J. Food Eng. 2011, 104, 492–498. [Google Scholar] [CrossRef]
- Hou, L.; Kou, X.; Li, R.; Wang, S. Thermal inactivation of fungal in chestnuts by hot air assisted radio frequency treatments. Food Control 2018, 93, 297–304. [Google Scholar] [CrossRef]
- Awuah, G.B.; Ramaswamy, H.S.; Economides, A.; Mallikarjunan, K. Inactivation of Escherichia coli K12 and Listeria innocua in milk using radio frequency heating. Innov. Food Sci. Emerg. 2005, 6, 396–402. [Google Scholar] [CrossRef]
- Boreddy, S.R.; Subbiah, J. Temperature and moisture dependent dielectric properties of egg white powder. J. Food Eng. 2016, 168, 60–67. [Google Scholar] [CrossRef]
- Deng, L.Z.; Sutar, P.P.; Mujumdar, A.S.; Tao, Y.; Pan, Z.; Liu, Y.H.; Xiao, H.W. Thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Annu. Rev. Food Sci. Technol. 2021, 12, 287–305. [Google Scholar] [CrossRef]
- Sisquella, M.; Viñas, I.; Picouet, P.; Torres, R.; Usall, J. Effect of host and Monilinia spp. variables on the efficacy of radio frequency treatment on peaches. Postharvest Biol. Technol. 2014, 87, 6–12. [Google Scholar] [CrossRef]
- Martinez-Sastre, R.; Peña, R.; González-Ibáñez, A.; García, D.; Miñarro, M. Top-down and bottom-up regulation of codling moth populations in cider apple orchards. Crop Prot. 2021, 143, 105545. [Google Scholar] [CrossRef]
- Gao, M.; Tang, J.; Wang, Y.; Powers, J.; Wang, S. Almond quality as influenced by radio frequency heat treatments for disinfestation. Postharvest Biol. Technol. 2010, 58, 225–231. [Google Scholar] [CrossRef]
- Macana, R.J.; Baik, O.D. Disinfestation of insect pests in stored agricultural materials using microwave and radio-frequency heating: A review. Food Res. Int. 2018, 34, 483–510. [Google Scholar] [CrossRef]
- Zhou, L.; Ling, B.; Zheng, A.; Zhang, B.; Wang, S. Developing radio frequency technology for postharvest insect control in milled rice. J. Stored Prod. Res. 2015, 62, 22–31. [Google Scholar] [CrossRef]
- Wang, S.; Tang, J.; Johnson, J.A.; Cavalieri, R.P. Heating uniformity and differential heating of insects in almonds associated with radio frequency energy. J. Stored Prod. Res. 2013, 55, 15–20. [Google Scholar] [CrossRef]
- Yu, D.; Shrestha, B.; Baik, O.D. Radio frequency (RF) control of red flour beetle (Tribolium castaneum) in store rapeseeds (Brassica napus L.). Biosyst. Eng. 2016, 151, 248–260. [Google Scholar] [CrossRef]
- Jiao, S.; Sun, W.; Yang, T.; Zou, Y.; Zhu, X.; Zhao, Y. Investigation of the feasibility of radio frequency energy for controlling insects in milled rice. Food Bioprocess Technol. 2017, 10, 781–788. [Google Scholar] [CrossRef]
- Hou, L.; Liu, Q.; Wang, S. Efficiency of industrial-scale radio frequency treatments to control Rhyzopertha dominica (Fabricius) in rough, brown and milled rice. Biosyst. Eng. 2019, 186, 246–258. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, P.; Wu, Y.; Hou, L.; Wang, S. Effects of various radio frequencies on combined drying and disinfestation treatments for in-shell walnuts. LWT–Food Sci. Technol. 2021, 144, 111246. [Google Scholar] [CrossRef]
- Wang, S.; Monzon, M.; Johnson, J.A.; Mitcham, E.J.; Tang, J. Industrial scale-radio frequency treatments for insect control in walnuts II: Insect mortality and product quality. Postharvest Biol. Technol. 2007, 45, 247–253. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, L.; Gou, M.; Xia, T.; Li, N.; Song, X.; Jiang, H. Characteristics of pitaya after radio frequency treating: Structure, phenolic compounds, antioxidant, and antiproliferative activity. Food Bioprocess Technol. 2020, 13, 180–186. [Google Scholar] [CrossRef]
- Lyu, X.; Peng, X.; Wang, S.; Yang, B.; Wang, X.; Yang, H.; Xiao, Y.; Baloch, A.B.; Xia, X. Quality and consumer acceptance of radio frequency and traditional heat pasteurized kiwi puree during storage. Int. J. Food Sci. Technol. 2018, 53, 209–218. [Google Scholar] [CrossRef]
- Liao, N.; Damayanti, W.; Zhao, Y.; Xu, X.; Zheng, Y.; Wu, J.; Jiao, J. Hot air-assisted radio frequency treatment effects on physicochemical properties, enzyme activities and nutritional quality of wheat germ. Food Bioprocess Technol. 2020, 13, 901–910. [Google Scholar] [CrossRef]
- Ling, B.; Hou, L.; Li, R.; Wang, S. Storage stability of pistachios as influenced by radio frequency treatments for postharvest disinfestation. Innov. Food Sci. Emerg. 2016, 33, 357–364. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, Z.; Chen, J.; Fu, H.; Subbiah, J.; Chen, X.; Wang, Y. Effects of radio frequency heating treatment on structure changes of soy protein isolate for protein modification. Food Bioprocess Technol. 2017, 10, 1574–1583. [Google Scholar] [CrossRef]
Product | Temperature (°C) | Moisture Content (%) | Dielectric Constant (ε′) | Loss Factor (ε″) | Penetration Depth (m) | Reference | |||
---|---|---|---|---|---|---|---|---|---|
27.12 MHz | 40.68 MHz | 27.12 MHz | 40.68 MHz | 27.12 MHz | 40.68 MHz | ||||
Golden Delicious apple (pulp) | 20 | - | 63.58 | - | 67.88 | - | - | - | [11] |
Red Delicious apple (pulp) | 20 | - | 62.38 | - | 67.37 | - | - | - | [11] |
Red Delicious apple | 20 40 60 | 87 | 74.6 70.6 66.8 | 74.7 70.8 66.8 | 92.0 130.7 178.6 | 61.1 87.5 119.9 | 0.189 | - | [12] |
Apple juice | 25 55 85 | - | 81.9 74.7 68.9 | 79.9 71.5 64.4 | 135.5 224.3 314.8 | 88.7 146.5 205.4 | - | - | [13] |
Apricots (dried) | 20 40 60 | 24.6 | 33.9 37.4 40.8 | 32.3 35.7 38.9 | 11.8 19.9 37.4 | 10.6 16.2 28.9 | 88.8 × 10−2 56.3 × 10−2 32.8 × 10−2 | 64.9 × 10−2 45.0 × 10−2 27.4 × 10−2 | [14] |
Avocado (pulp) | 20 | - | 146.73 | - | 574.71 | - | - | - | [11] |
Avocado | 20 40 60 | - | 115.7 131.6 140.5 | 92.7 100.0 105.4 | 699.6 951.6 1422.0 | 477.2 648.6 965.1 | 5.1 × 10−2 | - | [15] |
Cherimoya | 20 40 60 | - | 71.5 68.4 70.0 | - | 68.6 64.5 65.4 | - | 9.4 × 10−2 | - | [15] |
Dates | 20 40 60 | 19.7 | 27.2 31.0 35.0 | 25.5 28.9 32.9 | 10.1 15.0 26.9 | 9.0 12.2 20.0 | 93.0 × 10−2 67.5 × 10−2 41.4 × 10−2 | 68.2 × 10−2 53.9 × 10−2 35.7 × 10−2 | [14] |
Figs (dried) | 20 40 60 | 27.3 | 37.7 42.3 46.5 | 35.7 40.1 44.2 | 14.4 23.8 42.2 | 13.1 19.2 32.7 | 76.7 × 10−2 50.0 × 10−2 31.0 × 10−2 | 55.5 × 10−2 40.5 × 10−2 25.7 × 10−2 | [14] |
Grape juice | 25 55 85 | 81.3 74.6 68.8 | 79.1 70.9 63.5 | 209.1 339.8 507.2 | 136.7 221.6 330.7 | - | - | [13] | |
Grapefruit (pulp) | 20 | - | 99.42 | - | 245.7 | - | - | - | [11] |
Kiwi slices (airdried) | 20 80 20 80 | 59.5 70 | 81.49 90.68 97.53 96.74 | 74.12 82.98 88.62 86.06 | 332.14 777.66 407.45 808.19 | 235.17 546.03 284.32 576.96 | 7.71 × 10−2 4.73 × 10−2 6.94 × 10−2 4.64 × 10−2 | 6.42 × 10−2 3.89 × 10−2 5.83 × 10−2 3.78 × 10−2 | [16] |
Kiwi slices (osmotic dehydrated) | 20 80 20 80 | 60.5 70.2 | 73.15 82.00 91.28 89.71 | 67.46 75.91 82.48 80.76 | 291.92 703.63 371.19 757.67 | 201.50 494.31 258.78 545.84 | 8.25 × 10−2 4.97 × 10−2 7.30 × 10−2 4.80 × 10−2 | 7.01 × 10−2 4.10 × 10−2 6.14 × 10−2 3.89 × 10−2 | [16] |
Longan | 20 40 60 | - | 75.2 71.6 67.5 | 73.8 69.5 65.0 | 230.1 326.4 431.4 | 156.5 221.9 293.3 | 9.7 × 10−2 | - | [15] |
Orange juice | 25 55 85 | - | 83.5 76.4 65.4 | 81.1 72.6 60.3 | 222.1 372.4 522.5 | 144.9 242.5 340.0 | - | - | [13] |
Orange, navel (pulp) | 20 | - | 84.57 | - | 222.48 | - | - | - | [11] |
Orange, Valencia (pulp) | 20 | - | 85.29 | - | 240.09 | - | - | - | [11] |
Passion fruit | 20 40 60 | - | 82.7 88.1 96.6 | 73.5 74.7 77.7 | 264.1 373.6 523.9 | 179.7 254.1 356.3 | 9.0 × 10−2 | - | [15] |
Peach (pulp) | 20 | - | 90.09 | - | 269.5 | - | - | - | [11] |
Pear juice | 25 55 85 | - | 80.9 71.2 61.9 | 79.7 69.4 59.8 | 182.2 300.5 435.8 | 119.1 196.0 284.2 | - | - | [13] |
Persimmon | 20 40 60 | - | 76.0 75.5 69.1 | 73.6 72.2 64.9 | 258.6 369.9 470.8 | 176.0 251.3 319.4 | 10.5 × 10−2 | - | [15] |
Pineapple juice | 25 55 85 | - | 84.9 75.1 65.5 | 81.2 69.4 58.1 | 276.8 436.2 586.2 | 180.7 284.5 382.3 | - | - | [13] |
Potatoes | 20 40 60 | 83.3 79.8 73.3 | 48.7 57.2 118.2 | - | 293.5 623.4 693.0 | - | - | - | [17] |
Potatoes, mashed (0.8% NaCl) | 20 60 120 | 84.7 | 88.6 89.9 102.8 | 82.4 79.5 81.6 | 297.5 541.0 1153.8 | 203.6 367.9 782.4 | 84.0 × 10−3 58.4 × 10−3 38.5 × 10−3 | 72.1 × 10−3 49.0 × 10−3 31.8 × 10−3 | [18] |
Potatoes, mashed (1.8% NaCl) | 20 60 120 | 85.9 | 78.2 79.9 112.2 | 71.4 68.6 84.3 | 713.3 1306.7 3152.2 | 480.5 878.2 2104.4 | 49.5 × 10−3 35.7 × 10−3 22.8 × 10−3 | 41.5 × 10−3 29.6 × 10−3 18.8 × 10−3 | [18] |
Prunes (dried) | 20 40 60 | 30.2 | 40.6 44.4 48.9 | 38.7 42.7 47.2 | 17.2 25.4 47.8 | 15.7 20.6 38.4 | 66.9 × 10−2 48.1 × 10−2 28.4 × 10−2 | 48.3 × 10−2 38.9 × 10−2 22.9 × 10−2 | [14] |
Raisins | 20 40 60 | 15 | 21.9 28 33.8 | 20.2 26.1 31.9 | 8.1 9.8 11.4 | 7.4 9.0 10.6 | 103.7 × 10−2 96.9 × 10−2 91.3 × 10−2 | 74.0 × 10−2 68.7 × 10−2 64.4 × 10−2 | [14] |
White sapote | 20 40 60 | - | 76.0 75.5 69.1 | 73.6 72.2 64.9 | 258.6 369.9 470.8 | 176.0 251.3 319.4 | 9.0 × 10−2 | - | [15] |
Product | Temperature (°C) | Moisture Content (%) | Dielectric Constant (ε′) | Loss Factor (ε″) | Penetration Depth (m) | Reference | |||
---|---|---|---|---|---|---|---|---|---|
27.12 MHz | 40.69 MHz | 27.12 MHz | 40.68 MHz | 27.12 MHz | 40.68 MHz | ||||
Meat | |||||||||
Beef meatball | 20 60 100 | 66.9 | 68.8 79.1 95.8 | 56.6 69.1 79.0 | 474.4 922.0 1557.5 | 323.9 625.4 1054.1 | 61.7 × 10−3 43.0 × 10−3 32.7 × 10−3 | 51.1 × 10−3 35.6 × 10−3 27.0 × 10−3 | [19] |
Beef (lean) | Heating | 71.5 | 70.5 | - | 418.7 | - | 0.132 | - | [20] |
Lamb (lean) | Heating | 73 | 77.9 | - | 387.2 | - | 0.140 | - | [20] |
Pork (lean) | Heating | 73.9 | 69.6 | - | 392.0 | - | 0.137 | - | [20] |
Pork (fat) | Heating | 19.0 | 12.5 | - | 13.1 | - | 1.054 | - | [20] |
Lean beef (11.8% fat content) | 5 10 | 67.8 | 74 72 | - | 290 310 | - | 0.100 0.100 | - | [21] |
Beef (50:50, 36.1% fat content) | 5 10 | 48.2 | 42 40 | - | 110 120 | - | 0.260 0.220 | - | [21] |
Fatty beef (65.7% fat content) | 5 10 | 26.3 | 19 18 | - | 20 18 | - | 0.580 0.620 | - | [21] |
Poultry | |||||||||
Chicken breast | 20 60 100 | 75.1 | 91.64 109.18 126.03 | 83.50 94.59 106.28 | 332.33 567.21 618.96 | 227.34 388.57 427.76 | 78.55 × 10−3 57.74 × 10−3 55.57 × 10−3 | 66.96 × 10−3 48.27 × 10−3 46.12 × 10−3 | [22] |
Chicken (lean) | Heating | 73.6 | 75.0 | - | 480.8 | - | 0.123 | - | [20] |
Turkey (lean) | Heating | 74.5 | 73.5 | - | 458.4 | - | 0.126 | - | [20] |
Eggs | |||||||||
Liquid egg whites | 20 60 100 | 85 | 84.6 81.3 118.1 | 76.6 68.0 88.9 | 427.0 646.4 1242.3 | 256.4 427.7 784.3 | - | - | [23] |
Pre-cooked egg whites | 20 60 100 | - | 89.3 92.5 106.8 | 81.9 82.3 88.2 | 411.8 732.1 1145.0 | 256.3 460.0 698.9 | - | - | [23] |
Liquid whole egg | 20 60 100 | 73.7 | 76.3 77.4 96.9 | 68.8 66.0 77.5 | 335.9 612.0 956.4 | 208.4 377.1 589.8 | - | - | [23] |
Pre-cooked whole eggs | 20 60 100 | - | 79.6 85.2 94.2 | 71.0 72.1 75.4 | 336.8 594.1 874.1 | 209.5 367.4 539.5 | - | - | [23] |
Egg albumen | 24 | 87.8 | 89 | 81 | 507 | 362 | - | - | [24] |
Egg yolk | 24 | 52.1 | 56 | 51 | 200 | 145 | - | - | [24] |
Dairy | |||||||||
Mozzarella cheese | 20 60 100 | 59.1 | 55.6 74.6 82.2 | 49.4 63.0 66.1 | 358.5 853.6 1266.9 | 245.5 579.9 858.9 | 71.3 × 10−3 44.7 × 10−3 36.3 × 10−3 | 59.5 × 10−3 37.0 × 10−3 29.9 × 10−3 | [19] |
Raw milk | 20 60 120 | 88.20 | 90.4 93.3 109.3 | 83.3 80.0 84.5 | 299.8 562.6 979.8 | 203.6 379.8 661.9 | 0.098 0.068 0.050 | 0.076 0.048 0.038 | [25] |
Skimmed milk | 20 60 120 | 90.44 | 89.7 91.1 102.0 | 84.5 80.6 83.3 | 310.0 590.6 1020.2 | 209.4 399.0 690.1 | 0.096 0.065 0.040 | 0.072 0.048 0.036 | [25] |
Whole milk powder | 20 50 90 | 1.8 | 1.51 2.09 4.46 | - | 0.007 0.100 2.511 | - | - | - | [26] |
Non-fat milk powder | 20 50 90 | 4.8 | 1.12 2.00 3.16 | - | 0.004 0.100 1.580 | - | - | - | [26] |
Concentrated non-fat milk (35%) | 20 60 120 | 65.45 | 99.1 119.6 152.9 | 87.5 99.0 117.6 | 536.8 1121.6 1953.5 | 365.6 760.0 1319.2 | 0.069 0.048 0.038 | 0.052 0.032 0.028 | [25] |
Concentrated milk 70% 85% 100% | 22 | - | 76.4 76.3 75.8 | - | 233.8 266.4 282.1 | - | 0.142 - 0.130 | - | [27] |
Fish and seafood | |||||||||
Salmon | 20 60 100 | 75.7 | 77.61 96.84 116.37 | - | 462.66 809.98 1185.56 | - | 63.10 × 10−3 46.61 × 10−3 38.11 × 10−3 | - | [22] |
Salted (2.3%) salmon caviar | 20 50 80 | - | 129.8 121.5 182.0 | - | 1349.4 1501.1 2614.5 | - | 3.7 × 10−2 3.4 × 10−2 2.6 × 10−2 | - | [28] |
Unsalted (0.8%) salmon caviar | 20 50 80 | - | 70.7 46.4 59.6 | - | 470.8 375.9 642.7 | - | 6.3 × 10−2 7.2 × 10−2 5.5 × 10−2 | - | [28] |
Salted (3.3%) sturgeon caviar | 20 50 80 | - | 81.5 111.5 202.8 | - | 1004.0 1769.5 2873.3 | - | 4.2 × 10−2 3.1 × 10−2 2.5 × 10−2 | - | [28] |
Unsalted (0.2%) sturgeon caviar | 20 50 80 | - | 61.0 77.4 92.5 | - | 105.5 210.8 352.2 | - | 16.0 × 10−2 11.0 × 10−2 7.80 × 10−2 | - | [28] |
Trout | 20 60 100 | 72.8 | 83.64 103.55 100.34 | - | 343.83 645.04 806.62 | - | 76.02 × 10−3 53.30 × 10−3 46.82 × 10−3 | - | [22] |
Product | Temperature (°C) | Moisture Content (%) | Dielectric Constant (ε′) | Loss Factor (ε″) | Penetration Depth (m) | Reference | |||
---|---|---|---|---|---|---|---|---|---|
13.56 MHz | 27.12 MHz | 13.56 MHz | 27.12 MHz | 13.56 MHz | 27.12 MHz | ||||
Flour, starch, bread | |||||||||
Chestnut flour (compressed) | 20 40 60 | 45.3 | - | 31.2 38.8 57.7 | - | 45.9 77.9 158.1 | - | 0.280 0.190 0.130 | [29] |
Chickpea flour | 20 50 90 | 7.9 | - | 2.99 3.44 11.20 | - | 0.16 0.19 4.27 | - | 17.92 - 13.6 | [30,31] |
Chickpea flour | 20 50 90 | 20.9 | - | 4.50 11.43 71.59 | - | 0.81 7.85 248.25 | - | 44.9 - 0.088 | [29,30] |
Green pea flour | 20 60 90 | 21.6 | - | 7 28 85 | - | 1.4 20 180 | - | 3.61 0.52 0.146 | [31] |
Lentil flour | 20 60 90 | 21.5 | - | 5.5 30 100 | - | 1 25 200 | - | 4.31 0.42 0.12 | [31] |
Potato starch | - | - | 5.72 | 5.56 | 0.14 | 0.1 | 1.08 | 0.55 | [32] |
Soybean flour | 20 60 90 | 19.9 | - | 6 20 70 | - | 1.5 20 200 | - | 2.70 0.39 0.09 | [31] |
Tapioca flour | - | - | 4.07 | 3.91 | 0.13 | 0.09 | 1.31 | 0.67 | [32] |
Wheat flour | 25 55 85 | 12.56 | - | 5.61 6.58 23.50 | - | 5.42 6.25 20.47 | - | - | [33] |
Wheat flour with 10% bran content | 25 55 85 | 12.56 | - | 0.54 0.62 9.74 | - | 0.54 0.60 9.39 | - | - | [33] |
Wheat germ | 25 55 85 | 7.05 | 2.78 3.46 5.39 | 2.64 3.37 5.14 | 0.30 0.43 0.68 | 0.29 0.39 0.62 | - | - | [34] |
White bread | 25 55 85 | 34.6 | 2.76 3.37 4.22 | 2.35 2.80 3.45 | 4.56 10.70 26.55 | 2.32 5.09 11.98 | 2.105 1.206 0.710 | 0.1283 0.721 0.417 | [35] |
Nuts | |||||||||
Almonds (ground shells) | 20 50 90 | 6 | - | 2.07 2.18 4.42 | - | 0.10 0.12 1.35 | - | 24.82 - 2.78 | [36] |
Almonds (ground shells) | 20 50 90 | 36 | - | 8.96 13.41 26.91 | - | 12.43 38.48 92.30 | - | 0.496 - 0.150 | [36] |
Almonds (ground shells) | 25 60 100 | 12 | - | 9.3 11.1 13.8 | - | 5.7 11.0 26.0 | - | 98.9 × 10−2 58.6 × 10−2 31.5 × 10−2 | [36] |
Macadamia nuts | 25 60 100 | 24 | - | 20.6 22.9 29.2 | - | 47.5 81.0 173.5 | - | 22.3 × 10−2 15.9 × 10−2 10.3 × 10−2 | [37] |
Peanut kernels | 25 85 | 10 | - | 6.2 7 | - | 0.8 1.15 | - | 5.24 3.79 | [38] |
Peanut kernels | 25 85 | 30 | - | 25 35 | - | 50 125 | - | 0.22 0.12 | [38] |
Pecan kernels (no salt) | 25 65 | 15 | - | 8.97 20.01 | - | 3.35 15.19 | - | 6.07 1.29 | [39] |
Pecan kernels (light salt) | 25 65 | 15 | - | 11.46 23.71 | - | 8.58 27.02 | - | 69.95 29.54 | [39] |
Pecan kernels (medium salt) | 25 65 | 15 | - | 13.97 27.43 | - | 14.96 34.83 | - | 51.69 22.79 | [39] |
Pecan kernels (heavy salt) | 25 65 | 15 | - | 15.48 29.37 | - | 24.26 47.96 | - | 42.69 13.76 | [39] |
Pistachio (non-salted) | 24 | 3.5 | - | 10.37 | - | 5.33 | - | 0.53 | [40] |
Pistachio (100 mg sodium/serving) | 24 | 4.08 | - | 15.34 | - | 15.83 | - | 0.31 | [40] |
Pistachio (330 mg sodium/serving) | 24 | 3.75 | - | 23.78 | - | 42.83 | - | 0.19 | [40] |
Pistachio kernels: non-salted | 25 85 | 15 | - | 11.85 17.74 | - | 5.99 23.09 | - | 104.27 × 10−2 36.93 × 10−2 | [41] |
Pistachio kernels: light salted | 25 85 | 15 | - | 15.73 24.65 | - | 15.65 63.36 | - | 49.06 × 10−2 18.92 × 10−2 | [41] |
Pistachio kernels: medium salted | 25 85 | 15 | - | 21.41 32.55 | - | 24.92 82.66 | - | 36.85 × 10−2 16.60 × 10−2 | [41] |
Pistachio kernels: strong salted | 25 85 | 15 | - | 22.15 31.42 | - | 44.82 133.21 | - | 23.60 × 10−2 12.13 × 10−2 | [41] |
Species | |||||||||
Chili powder | - | - | 7.22 | 6.85 | 0.61 | 0.39 | 0.95 | 0.49 | [32] |
Cumin | - | 9.6 | 2.1 | 2.0 | - | - | - | - | [42] |
Curry | - | 8.3 | 2.1 | 2.0 | 0.01 | 0 | - | - | [42] |
Garlic | - | 3.1 | 1.8 | 1.7 | - | - | - | - | [42] |
Onion powder | - | - | 2.22 | 2.18 | - | - | - | - | [32] |
Paprika | - | 12.3 | 3.6 | 3.4 | 0.20 | 0.18 | - | - | [42] |
Black pepper | - | 10.4 | 3.0 | 2.8 | 0.10 | 0.05 | - | - | [42] |
Red pepper | - | 11.5 | 2.8 | 2.2 | 0.1 | 0.07 | - | - | [42] |
Red pepper powder | 25 35 55 85 | 17.6 | - | 6.63 7.55 9.83 23.28 | - | 2.00 2.80 5.76 50.69 | - | 3.00 | [43] |
White pepper | - | 10.2 | 3.6 | 3.4 | 0.18 | 0.12 | - | - | [42] |
Turmeric | 23 | 9.5 | 2.8 | 2.6 | 0.12 | 0.09 | - | - | [42] |
Others | |||||||||
Black-eyed pea | 20 40 60 | 16.8 | - | 3.64 4.18 6.67 | - | 0.40 0.60 1.67 | - | 8.42 6.03 2.76 | [44] |
Broccoli powder | 20 40 60 80 | 9.1 | 4.66 5.78 8.75 12.48 | 4.21 5.58 8.22 11.35 | 0.17 0.28 0.81 2.1 | 0.12 0.19 0.54 1.34 | 12.48 7.95 3.43 1.88 | 8.86 5.17 2.48 1.27 | [32] |
Edible fungi powder (Pleurotus eryngii) | 25 55 85 | 12.0 | 4 7 26 | - | 1 3 36 | - | 4.30 2.42 0.29 | - | [45] |
Edible fungi powder (Pleurotus eryngii) | 25 55 85 | 21.2 | 8 30 70 | - | 0.001 50 460 | - | 2.19 0.24 0.072 | - | [45] |
Edible fungi powder (Pleurotus eryngii) | 25 55 85 | 30.9 | 20 60 142 | - | 10 180 740 | - | 0.430 0.110 0.051 | - | [45] |
Honey (Jujube) | 25 | 17.5 | - | 30.70 | - | 8.06 | - | - | [46] |
Honey (Yellow-locust) | 25 | 18.1 | - | 32.45 | - | 8.74 | - | - | [46] |
Honey (Milk vetch) | 25 | 17.1 | - | 30.98 | - | 8.27 | - | - | [46] |
Lasagna sauce | 20 60 100 | 92.0 | - | 86.2 77.7 85.6 | - | 1045.3 1862.1 3043.7 | - | 40.3 × 10−3 29.6 × 10−3 23.0 × 10−3 | [19] |
Lasagna noodles | 20 60 100 | 60.7 | - | 92.5 85.2 85.1 | - | 516.8 943.3 1496.6 | - | 60.1 × 10−3 42.6 × 10−3 33.2 × 10−3 | [19] |
Mung bean | 20 40 60 | 14.4 | - | 4.21 4.50 6.07 | - | 0.43 0.54 1.11 | - | 8.44 6.93 3.93 | [44] |
Product | Organism | Processing conditions | Disinfestation Level | Reference |
---|---|---|---|---|
Rapeseeds | Red flour beetle (Tribolium castaneum) | 27.12 MHz, 1.5 kW, 80 °C | 100% | [96] |
Milled, rough, and brown rice | Rice weevil (Sitophilus oryzae) | 27.12 MHz, 12 kW, 50 °C, 5 min | 100% | [97] |
Rough, brown, and milled rice | Rhyzopertha dominica (Fabricius) | 27.12 MHz, 15 kW, 54 °C, 11 min | 100% | [98] |
Walnuts | Rice moth larvae (Corcyra cephalonica L.) | 6.78 MHz, 13.56 MHz, 27.12 MHz, 40.68 MHz, 2 kW, 70–76 °C, 20 min | 100% | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermudez-Aguirre, D.; Niemira, B.A. Radio Frequency Treatment of Food: A Review on Pasteurization and Disinfestation. Foods 2023, 12, 3057. https://doi.org/10.3390/foods12163057
Bermudez-Aguirre D, Niemira BA. Radio Frequency Treatment of Food: A Review on Pasteurization and Disinfestation. Foods. 2023; 12(16):3057. https://doi.org/10.3390/foods12163057
Chicago/Turabian StyleBermudez-Aguirre, Daniela, and Brendan A. Niemira. 2023. "Radio Frequency Treatment of Food: A Review on Pasteurization and Disinfestation" Foods 12, no. 16: 3057. https://doi.org/10.3390/foods12163057
APA StyleBermudez-Aguirre, D., & Niemira, B. A. (2023). Radio Frequency Treatment of Food: A Review on Pasteurization and Disinfestation. Foods, 12(16), 3057. https://doi.org/10.3390/foods12163057