Influence of Soluble Fiber as a Carrier on Antioxidant and Physical Properties of Powders Produced Based on the Spray Drying of Malvae arboreae flos Aqueous Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Materials
2.2. Feed Solution Preparation and Spray Drying Process
2.3. Properties of the Drying Process and Powders
2.3.1. Process Yield
2.3.2. Moisture Content and Water Activity
2.3.3. Hygroscopicity
2.3.4. Solubility
2.3.5. Color Measurement
2.3.6. The Particle Size Distribution (PSD)
2.3.7. Morphology Properties
2.4. Biochemical Properties of Powders
2.4.1. Water Extraction
2.4.2. In Vitro Digestion
2.4.3. Total Flavonoid Content (TFC)
2.4.4. Total Anthocyanin Content (TAC)
2.4.5. ABTS Radical Scavenging (AA)
2.4.6. Ferric-Reducing Antioxidant Power (FRAP)
2.4.7. Inhibition of the XO
2.4.8. Inhibition of the LOX
2.4.9. Inhibition of the Activity of COX-2
2.4.10. Bioaccessibility
2.5. Statistical Analysis of the Obtained Results
3. Results and Discussion
3.1. Yield of Spray Drying and Basic Physical Properties of Powders
3.2. Color Profile of Powders Based on an Extract of MAF
3.3. The Particle Morphology of Powders Based on an Extract of MAF
3.4. Particle Size Composition of Powders Based on an Extract of MAF
3.5. Total Flavonoid and Anthocyanin Content of Powders Based on an Extract of MAF
3.6. Antioxidant Properties of Powders Based on an Extract of MAF
3.7. Anti-Inflammatory Properties of Powders Based on an Extract of MAF
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dudek, M.; Matławska, I.; Szkudlarek, M. Phenolic acids in the flowers of Althaea rosea var. nigra. Acta Pol. Pharm. Drug Res. 2006, 63, 207–211. [Google Scholar]
- Oraee, A.; Shoor, M.; Oraee, T.; Tehranifar, A.; Nemati, H. Organic amendments role in reducing drought stress in Alcea rosea L. Adv. Hortic. Sci. 2022, 36, 201–214. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The pharmaceutical importance of Althaea officinalis and Althaea rosea: A review. Int. J. PharmTech. Res. 2013, 5, 1385–1387. [Google Scholar]
- Papiez, M.; Gancarczyk, M.; Bilińska, B. The compounds from the hollyhock extract (Althaea rosea Cav. var. nigra) affect the aromatization in rat testicular cells in vivo and in vitro. Folia Histochem. Cytobiol. 2002, 40, 353–359. [Google Scholar] [PubMed]
- Ammar, N.M.; El-Kashoury, E.S.A.; El-Kassem, L.T.; El-Hakeem, R.E. Evaluation of the phenolic content and antioxidant potential of Althaea rosea cultivated in Egypt. J. Arab. Soc. Med. Res. 2013, 8, 48–52. [Google Scholar] [CrossRef]
- Rocha, C.; Moura, A.P.; Cunha, L.M. Consumers’ associations with herbal infusions and home preparation practices. Food Qual. Prefer. 2020, 86, 104006. [Google Scholar] [CrossRef]
- Gupta, N.; Jangid, A.K.; Pooja, D.; Kulhari, H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int. J. Biol. Macromol. 2019, 132, 852–863. [Google Scholar] [CrossRef] [PubMed]
- Sansone, F.; Mencherini, T.; Picerno, P.; d’Amore, M.; Aquino, R.P.; Lauro, M.R. Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J. Food Eng. 2011, 105, 468–476. [Google Scholar] [CrossRef]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym. 2016, 20, 444–454. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef]
- Pieczykolan, E.; Kurek, M.A. Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. Int. J. Biol. Macromol. 2019, 129, 665–671. [Google Scholar] [CrossRef]
- Goëlo, V.; Chaumun, M.; Gonçalves, A.; Estevinho, B.N.; Rocha, F. Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. Powder Technol. 2020, 370, 137–146. [Google Scholar] [CrossRef]
- Sakulnarmrat, K.; Sittiwong, W.; Konczak, I. Encapsulation of mangosteen pericarp anthocyanin-rich extract by spray drying. Int. J. Food Sci. Technol. 2021, 57, 1237–1247. [Google Scholar] [CrossRef]
- Giri, S.; Dutta, P.; Giri, T.K. Inulin-based carriers for colon drug targeting. J. Drug Deliv. Sci. Technol. 2021, 64, 102595. [Google Scholar] [CrossRef]
- Bobrowski Rodrigues, D.; Marques, M.C.; Hacke, A.; Filho, P.S.L.; Cazarin, C.B.B.; Mariutti, L.R.B. Trust your gut: Bioavailability and bioaccessibility of dietary compounds. Curr. Res. Nutr. Food Sci. 2022, 5, 228–233. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Barragán-Huerta, B.E.; Yáñez-Fernández, J. Use of gelatin-maltodextrin composite as an encapsulation support for clarified juice from purple cactus pear (Opuntia stricta). LWT Food Sci. Technol. 2015, 62, 242–248. [Google Scholar] [CrossRef]
- Nunes, G.L.; Boaventura, B.C.B.; Pinto, S.S.; Verruck, S.; Murakami, F.S.; Prudêncio, E.S.; de Mello Castanho Amboni, R.D. Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. J. Food Eng. 2015, 151, 60–68. [Google Scholar] [CrossRef]
- Tang, Y.; He, W.; Yang, S.; Liu, L. Stabilisation and detoxification of henna (Lawsonia inermis L.) extract for hair dye cosmetics by spray-drying encapsulation. Color. Technol. 2019, 135, 439–450. [Google Scholar] [CrossRef]
- Haas, K.; Obernberger, J.; Zehetner, E.; Kiesslich, A.; Volkert, M.; Jaeger, H. Impact of powder particle structure on the oxidation stability and color of encapsulated crystalline and emulsified carotenoids in carrot concentrate powders. J. Food Eng. 2019, 263, 398–408. [Google Scholar] [CrossRef]
- Dziki, D.; Tarasiuk, W.; Gawlik-Dziki, U. Micronized Oat Husk: Particle Size Distribution, Phenolic Acid Profile and Antioxidant Properties. Materials 2021, 14, 5443. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.Q.; Nguyen, M.T.; Nguyen, V.T.; Le, V.M.; Trieu, L.H.; Le, X.T.; Hung, T.T. The effects of different extraction conditions on the polyphenol, flavonoids components and antioxidant activity of Polyscias fruticosa roots. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022067. [Google Scholar] [CrossRef]
- Kopjar, M.; Bilić, B.; Piližota, V. Influence of different extracts addition on total phenols, anthocyanin content and antioxidant activity of blackberry juice during storage. Croat. J. Food Sci. Technol. 2011, 3, 9–15. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Sharmaine, C.; Loh, K.R. Xanthine Oxidase Inhibitory Activity of Methanolic Extract of Alternanthera sessilis. Sains Malays. 2020, 49, 405–410. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Bryda, J.; Dziki, D.; Świeca, M.; Habza-Kowalska, E.; Złotek, U. Impact of Interactions between Ferulic and Chlorogenic Acids on Enzymatic and Non-Enzymatic Lipids Oxidation: An Example of Bread Enriched with Green Coffee Flour. Appl. Sci. 2019, 9, 568. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Gawlik-Dziki, U.; Świeca, M. Influence of phenolic-food matrix interactions on in vitro bioaccessibility of selected phenolic compounds and nutrients digestibility in fortified white bean paste. Antioxidants 2021, 10, 1825. [Google Scholar] [CrossRef] [PubMed]
- Tontul, I.; Topuz, A. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci. Technol. 2017, 63, 91–102. [Google Scholar] [CrossRef]
- Samborska, K.; Gajek, P.; Kamińska-Dwórznicka, A. Spray Drying of Honey: The Effect of Drying Agents on Powder Properties. Pol. J. Food Nutr. Sci. 2015, 65, 109–118. [Google Scholar] [CrossRef]
- Zimeri, J.E.; Kokini, J.L. The effect of moisture content on the crystallinity and glass transition temperature of inulin. Carbohydr. Polym. 2002, 48, 299–304. [Google Scholar] [CrossRef]
- Iijima, M.; Nakamuraa, K.; Hatakeyamaa, T.; Hatakeyama, H. Phase transition of pectin with sorbed water. Carbohydr. Polym. 2000, 41, 101–106. [Google Scholar] [CrossRef]
- Cynthia, S.J.; Bosco, J.D.; Bhol, S. Physical and structural properties of spray dried tamarind (Tamarindus indica L.) pulp extract powder with encapsulating hydrocolloids. Int. J. Food Prop. 2015, 18, 1793–1800. [Google Scholar] [CrossRef]
- Ávila, L.E.; Rodríguez, M.C.; Velásquez, C.H.J. Influence of Maltodextrin and Spray Drying Process Conditions on Sugarcane Juice Powder Quality. Rev. Fac. Nac. Agron. 2014, 68, 7509–7520. [Google Scholar] [CrossRef]
- Felfoul, I.; Burgain, J.; Perrou, C.; Gaiani, C.; Scher, J.; Attia, H.; Petit, J. Impact of spray-drying conditions on physicochemical properties and rehydration ability of skim dromedary and cow’s milk powders. Dry. Technol. 2020, 40, 665–677. [Google Scholar] [CrossRef]
- Nurhadi, B.; Andoyo, R.; Indiarto, R. Study the properties of honey powder produced from spray drying and vacuum drying method. Int. Food Res. J. 2012, 19, 907–912. [Google Scholar]
- Syamaladevi, R.M.; Insan, S.K.; Dhawan, S.; Andrews, P.; Sablani, S.S. Physicochemical properties of encapsulated red raspberry (Rubus idaeus) powder: Influence of high-pressure homogenization. Dry. Technol. 2012, 30, 484–493. [Google Scholar] [CrossRef]
- Martinić, A.; Kalušević, A.; Lević, S.; Nedović, V.; Cebin, A.V.; Karlović, S.; Špoljarić, I.; Mršić, G.; Žižek, K.; Komes, D. Microencapsulation of Dandelion (Taraxacum officinale L.) Leaf Extract by Spray Drying. Food Technol. Biotechnol. 2022, 60, 237–252. [Google Scholar] [CrossRef]
- Barańska, A.; Świeca, M.; Samborska, K. Sour cherry juice concentrate powdered by high and low temperature spray drying with pea protein as a carrier—Physical properties, antioxidant activity and in vitro bioaccessibility. Dry. Technol. 2022, 41, 444–459. [Google Scholar] [CrossRef]
- Sun, X.; Cameron, R.G.; Jinhe, B. Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol. Food Hydrocoll. 2019, 100, 10542. [Google Scholar] [CrossRef]
- Azhar, M.D.; Hashib, S.A.; Ibrahim, U.K.; Rahman, N.A. Development of carrier material for food applications in spray drying technology: An overview. Mater. Today Proc. 2021, 47, 1371–1375. [Google Scholar] [CrossRef]
- Corrêa-Filho, L.C.; Lourenço, M.M.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of β-Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. Int. J. Food Sci. 2019, 2019, 8914852. [Google Scholar] [CrossRef]
- Tarone, A.G.; Silva, E.K.; Betim Cazarin, C.B.; Marostica, M.R., Jr. Inulin/fructooligosaccharides/pectin-based structured systems: Promising encapsulating matrices of polyphenols recovered from Jabuticaba peel. Food Hydrocoll. 2021, 111, 106387. [Google Scholar] [CrossRef]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber—Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Pan, L.H.; Chen, L.P.; Wu, C.L.; Wang, J.F.; Luo, S.Z.; Luo, J.P.; Zheng, Z. Microencapsulation of blueberry anthocyanins by spray drying with soy protein isolates/high methyl pectin combination: Physicochemical properties, release behavior in vitro and storage stability. Food Chem. 2022, 395, 133626. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.B.; Smagghe, G.; Grootaert, C.; Zotti, M.; Raes, K.; Camp, J.V. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab. Rev. 2015, 47, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Takahama, U.; Hirota, S. Interactions of Flavonoids with α-amylase and starch slowing down its digestion. Food Funct. 2018, 9, 677–687. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, R.; Liang, H.; Qu, L. Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 151, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Gatto, M.T.; Falcocchio, S.; Grippa, E.; Mazzanti, G.; Battinelli, L.; Nicolosi, G.; Lambusta, D.; Saso, L. Antimicrobial and anti-lipase activity of quercetin and its C2-C16 3-O-acyl-esters. Bioorg. Med. Chem. 2002, 10, 269–272. [Google Scholar] [CrossRef] [PubMed]
- David, L.; Danciu, V.; Moldovan, B.; Filip, A. Effects of In Vitro Gastrointestinal Digestion on the Antioxidant Capacity and Anthocyanin Content of Cornelian Cherry Fruit Extract. Antioxidants 2019, 8, 114. [Google Scholar] [CrossRef]
- Vergara, C.; Pino, M.T.; Zamora, O.; Parada, J.; Pérez, R.; Uribe, M.; Kalazich, J. Microencapsulation of Anthocyanin Extracted from Purple Flesh Cultivated Potatoes by Spray Drying and Its Effects on In Vitro Gastrointestinal Digestion. Molecules 2020, 25, 722. [Google Scholar] [CrossRef]
- Ayvaz, H.; Cabaroglu, T.; Akyildiz, A.; Pala, C.U.; Temizkan, R.; Ağçam, E.; Ayvaz, Z.; Durazzo, A.; Lucarini, M.; Direito, R.; et al. Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants 2023, 12, 48. [Google Scholar] [CrossRef]
- Widyaningsih, T.D.; Akbar, S.M.; Wijayanti, N. Optimization of maltodextrin concentration, drying temperature and drying time on total flavonoid content and antioxidant activity of black garlic (Allium sativum L.) aqueous extract powder using response surface methodology. In Proceedings of the International Conference on Green Agro-Industry and Bioeconomye, Malang, Indonesia, 6–7 July 2021. [Google Scholar]
- Li, W.; Zhang, Y.; Deng, H.; Yuan, H.; Fan, X.; Yang, H.; Tan, S. In vitro and in vivo bioaccessibility, antioxidant activity, and color of red radish anthocyanins as influenced by different drying methods. Food Chem. 2023, 18, 100633. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, C.; Zhang, J.; Zhou, Q.; Zhang, Z. Stability and antioxidant activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) subjected to simulated in vitro gastrointestinal digestion. Int. J. Food Sci. Technol. 2019, 54, 14172. [Google Scholar] [CrossRef]
- Husnuunnisa, H.; Hartati, R.; Mauludin, R.; Insanu, M. A review of the Phyllanthus genus plants: Their phytochemistry, traditional uses, and potential inhibition of xanthine oxidase. Pharmacia 2022, 69, 681–687. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Durak, A.; Pecio, Ł.; Kowalska, I. Nutraceutical Potential of Tinctures from Fruits, Green Husks, and Leaves of Juglans regia L. Sci. World J. 2014, 2014, 501392. [Google Scholar] [CrossRef] [PubMed]
- Polito, L.; Bortolotti, M.; Battelli, M.G.; Bolognesi, A. Xanthine oxidoreductase: A leading actor in cardiovascular disease drama. Redox Biol. 2019, 48, 102195. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Meng, X.; Gao, X.; Pang, X.; Wang, Y.; Wu, X.; Deng, X.; Zhang, Q.; Sun, C.; Li, Y. Elevated Serum Xanthine Oxidase Activity Is Associated With the Development of Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care 2018, 41, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Złotek, U.; Szychowski, K.A.; Świeca, M. Potential in vitro antioxidant, anti-inflammatory, antidiabetic, and anticancer effect of arachidonic acid-elicited basil leaves. J. Funct. Foods. 2017, 36, 290–299. [Google Scholar] [CrossRef]
- Lachowicz, S.; Świeca, M.; Pejcz, E. Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chem. 2021, 338, 128026. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Parameter | Value |
---|---|
TFC (mg quercitin/g solids) | 122.97 ± 5.74 |
TAC (mg cyanidin 3-O-glucoside/g solids) | 7.63 ± 0.45 |
AA (mg Trolox/g solids) | 175.22 ± 5.98 |
FRAP (mg Trolox/g solids) | 79.89 ± 0.38 |
XO (IU/g solids) | 1.69 ± 0.01 |
LOX (kIU/g solids) | 0.39 ± 0.04 |
COX-2 (kIU/g solids) | 3100.78 ± 116.55 |
Sample | PY (%) | MC (%) | WA (−) | H (g/100 g) | S (%) |
---|---|---|---|---|---|
M1 | 61.57 ± 1.15 d | 2.45 ± 0.01 a | 0.229 ± 0.00 d | 11.83 ± 0.79 a | 91.29 ± 0.58 b |
M2 | 59.25 ± 1.23 cd | 3.25 ± 0.01 b | 0.209 ± 0.00 b | 12.22 ± 0.20 a | 87.94 ± 0.35 ab |
M3 | 55.03 ± 0.49 b | 3.32 ± 0.01 b | 0.216 ± 0.00 c | 12.12 ± 0.13 a | 84.85 ± 1.00 a |
M4 | 57.59 ± 0.53 bc | 3.81 ± 0.01 c | 0.201 ± 0.00 a | 12.45 ± 0.08 a | 85.96 ± 0.96 a |
M5 | 50.51 ± 0.59 a | 4.55 ± 0.02 d | 0.235 ± 0.00 e | 12.46 ± 0.25 a | 86.83 ± 1.08 ab |
Sample | L* (−) | a* (−) | b* (−) | ∆E (−) |
---|---|---|---|---|
M1 | 83.70 ± 0.07 a | 2.70 ± 0.02 a | −6.87 ± 0.01 d | - |
M2 | 84.43 ± 0.49 b | 3.30 ± 0.07 b | −6.30 ± 0.08 a | 1.11 |
M3 | 84.40 ± 0.19 b | 4.09 ± 0.04 c | −6.65 ± 0.03 b | 1.57 |
M4 | 84.69 ± 0.23 b | 4.50 ± 0.01 d | −6.80 ± 0.05 d | 2.05 |
M5 | 84.64 ± 0.09 b | 5.37 ± 0.04 e | −7.37 ± 0.03 c | 2.88 |
Sample | d10 (µm) | d50 (µm) | d90 µm (−) | Span (−) |
---|---|---|---|---|
M1 | 0.52 ± 0.00 a | 3.34 ± 0.04 ab | 8.68 ± 0.13 a | 2.44 ± 0.01 a |
M2 | 0.53 ± 0.02 ab | 3.13 ± 0.11 a | 7.73 ± 0.27 a | 2.30 ± 0.04 a |
M3 | 0.64 ± 0.03 c | 3.71 ± 0.08 b | 56.63 ± 8.52 b | 14.51 ± 1.96 b |
M4 | 0.60 ± 0.03 bc | 3.65 ± 0.29 ab | 36.79 ± 19.38 ab | 9.58 ± 4.85 ab |
M5 | 0.55 ± 0.02 ab | 3.43 ± 0.15 ab | 18.45 ± 10.34 ab | 5.11 ± 2.73 a |
Sample | M1 | M2 | M3 | M4 | M5 | |
---|---|---|---|---|---|---|
BD | TFC | 280.43 ± 12.43 a | 284.09 ± 16.31 a | 325.55 ± 13.96 b | 407.24 ± 14.22 b | 419.43 ± 13.13 b |
TAC | 13.15 ± 1.71 a | 19.17 ± 1.23 ab | 20.32 ± 2.61 b | 19.52 ± 2.44 b | 23.48 ± 3.78 b | |
AA | 11.89 ± 01.22 a | 10.15 ± 1.37 a | 11.32 ± 1.73 a | 12.63 ± 1.28 a | 11.14 ± 1.13 a | |
FRAP | 2.70 ± 0.28 a | 2.99 ± 0.24 a | 3.18 ± 0.41 a | 3.07 ± 0.40 a | 2.85 ± 0.19 a | |
XO | 0.17 ± 0.00 a | 0.20 ± 0.01 b | 0.24 ± 0.01 c | 0.26 ± 0.00 b | 0.26 ± 0.00 b | |
LOX | 0.10 ± 0.01 a | 0.35 ± 0.00 b | 0.40 ± 0.00 c | 0.40 ± 0.00 c | 0.41 ± 0.00 d | |
COX-2 | 2.66 ± 0.14 a | 4.25 ± 0.58 a | 10.16 ± 1.34 b | 17.37 ± 0.87 c | 16.66 ± 2.61 c | |
AD | TFC | 150.38 ± 7.04 a | 178.83 ± 15.21 b | 205.24 ± 10.56 b | 199.15 ± 7.04 b | 205.24 ± 13.33 b |
TAC | 2.20 ± 0.30 a | 3.64 ± 0.43 b | 3.73 ± 0.33 b | 6.89 ± 0.72 c | 13.68 ± 0.32 d | |
AA | 4.17 ± 0.20 a | 8.17 ± 0.49 b | 7.97 ± 0.63 b | 10.78 ± 1.18 c | 11.00 ± 1.30 c | |
FRAP | 5.01 ± 0.07 b | 4.52 ± 0.18 a | 4.32 ± 0.29 a | 4.73 ± 0.20 ab | 4.35 ± 0.11 a | |
XO | 0.30 ± 0.01 a | 0.31 ± 0.01 a | 0.31 ± 0.00 a | 0.31 ± 0.00 a | 0.31 ± 0.00 a | |
LOX | 0.39 ± 0.01 d | 0.32 ± 0.01 c | 0.32 ± 0.03 bc | 0.31 ± 0.00 b | 0.23 ± 0.00 a | |
COX-2 | 7.02 ± 0.06 a | 10.20 ± 1.47 a | 11.77 ± 1.92 a | 17.65 ± 0.96 b | 23.15 ± 2.42 c | |
BA (%) | TFC | 53.78 ± 4.72 ab | 63.36 ± 8.40 bc | 69.85 ± 1.60 c | 48.92 ± 1.12 a | 48.96 ± 3.07 a |
TAC | 17.26 ± 4.69 a | 19.12 ± 3.08 a | 18.64 ± 2.55 a | 35.90 ± 5.76 b | 59.71 ± 9.04 c | |
AA | 35.56 ± 5.15 a | 81.87 ± 11.62 bc | 71.32 ± 6.54 b | 86.15 ± 12.39 bc | 98.58 ± 3.23 c | |
FRAP | 186.89 ± 17.68 b | 152.02 ± 9.27 a | 136.78 ± 8.79 a | 156.59 ± 18.33 ab | 153.17 ± 8.64 a | |
XO | 173.1 ± 5.81 c | 155.5 ± 7.45 b | 128.6 ± 2.62 a | 120.9 ± 1.72 a | 120.4 ± 3.20 a | |
LOX | 382.81 ± 26.46 c | 104.39 ± 1.66 b | 79.54 ± 7.93 ab | 77.73 ± 0.26 ab | 55.89 ± 0.91 a | |
COX-2 | 264.91 ± 14.76 c | 239.54 ± 7.18 c | 115.67 ± 10.49 ab | 102.03 ± 9.51 a | 140.09 ± 7.43 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisiecka, K.; Dziki, D.; Gawlik-Dziki, U.; Świeca, M.; Różyło, R. Influence of Soluble Fiber as a Carrier on Antioxidant and Physical Properties of Powders Produced Based on the Spray Drying of Malvae arboreae flos Aqueous Extracts. Foods 2023, 12, 3363. https://doi.org/10.3390/foods12183363
Lisiecka K, Dziki D, Gawlik-Dziki U, Świeca M, Różyło R. Influence of Soluble Fiber as a Carrier on Antioxidant and Physical Properties of Powders Produced Based on the Spray Drying of Malvae arboreae flos Aqueous Extracts. Foods. 2023; 12(18):3363. https://doi.org/10.3390/foods12183363
Chicago/Turabian StyleLisiecka, Katarzyna, Dariusz Dziki, Urszula Gawlik-Dziki, Michał Świeca, and Renata Różyło. 2023. "Influence of Soluble Fiber as a Carrier on Antioxidant and Physical Properties of Powders Produced Based on the Spray Drying of Malvae arboreae flos Aqueous Extracts" Foods 12, no. 18: 3363. https://doi.org/10.3390/foods12183363
APA StyleLisiecka, K., Dziki, D., Gawlik-Dziki, U., Świeca, M., & Różyło, R. (2023). Influence of Soluble Fiber as a Carrier on Antioxidant and Physical Properties of Powders Produced Based on the Spray Drying of Malvae arboreae flos Aqueous Extracts. Foods, 12(18), 3363. https://doi.org/10.3390/foods12183363