The Influence of the Lactation Period and the Type of Milk on the Content of Amino Acids and Minerals in Human Milk and Infant Formulas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Milk Sample Collection
2.3. The Determination of Protein Content
2.4. Amino Acid Profile
2.5. Mineral Content
2.6. Statistical Analysis
3. Results and Discussion
3.1. Protein Content
3.2. Essential Amino Acid Profile
3.3. Non-Essential Amino Acid Profile
3.4. Mineral Content
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gregg, B.; Ellsworth, L.; Pavela, G.; Shah, K.; Berger, P.K.; Isganaitis, E.; VanOmen, S.; Demerath, E.W.; Fields, D.A. Bioactive Compounds in Mothers Milk Affecting Offspring Outcomes: A Narrative Review. Pediatr. Obes. 2022, 17, e12892. [Google Scholar] [CrossRef] [PubMed]
- Purkiewicz, A.; Czaplicki, S.; Pietrzak-Fiećko, R. The Occurrence of Squalene in Human Milk and Infant Formula. Int. J. Environ. Res. Public Health 2022, 19, 12928. [Google Scholar] [CrossRef] [PubMed]
- Patricia Ogechi, U.; Ifeoma Irene, I. Protein and Amino Acid Composition of Breast Milk of Mothers in Umuahia, Urban Nigeria. Eur. J. Exp. Biol. 2013, 3, 605–608. [Google Scholar]
- Burd, N.A.; McKenna, C.F.; Salvador, A.F.; Paulussen, K.J.M.; Moore, D.R. Dietary Protein Quantity, Quality, and Exercise Are Key to Healthy Living: A Muscle-Centric Perspective across the Lifespan. Front. Nutr. 2019, 6, 83. [Google Scholar] [CrossRef]
- Report of the Scientific Committee on Food on the Revision of Essential Requirements of Infant Formulae and Follow-on Formulae. Available online: https://ec.europa.eu/food/fs/sc/scf/out199_en.pdf (accessed on 27 September 2023).
- Kim, S.Y.; Yi, D.Y. Components of Human Breast Milk: From Macronutrient to Microbiome and MicroRNA. Clin. Exp. Pediatr. 2020, 63, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.C.; Baião, D.D.S.; de Rodrigues, P.A.; Saint’pierre, T.D.; Hauser-Davis, R.A.; Leandro, K.C.; Paschoalin, V.M.F.; da Costa, M.P.; Conte-Junior, C.A. Macrominerals and Trace Minerals in Commercial Infant Formulas Marketed in Brazil: Compliance With Established Minimum and Maximum Requirements, Label Statements, and Estimated Daily Intake. Front. Nutr. 2022, 9, 857698. [Google Scholar] [CrossRef]
- CXS 72–1981; Codex Alimentarius Commission. Standard on Infant Formula and Formulas for Special Medical Purposes Intended for Infants. Formerly CAC/RS 72-1972. Adopted as a Worldwide Standard in 1981. FAO, United Nations Food and Agriculture Organization: Rome, Italy; WHO, World Health Organization: Geneva, Switzerland, 2007.
- Lönnerdal, B.; Erdmann, P.; Thakkar, S.K.; Sauser, J.; Destaillats, F. Longitudinal Evolution of True Protein, Amino Acids and Bioactive Proteins in Breast Milk: A Developmental Perspective. J. Nutr. Biochem. 2017, 41, 1–11. [Google Scholar] [CrossRef]
- AOAC 991.20-1994; Nitrogen(Total) in Milk-Kjeldahl Methods. Official Methods of Analysis. 15th ed. AOAC: Washington, DC, USA, 1994.
- Instruction Manual, Biochrom 20 Plus, Amino Acid Analyzer 2000. Available online: https://citius.us.es/web/serv_documento_equipo.php?file=f7a336c4e (accessed on 27 September 2023).
- Landi, N.; Ragucci, S.; Di Maro, A. Amino Acid Composition of Milk from Cow, Sheep and Goat Raised in Ailano and Valle Agricola, Two Localities of ‘Alto Casertano’ (Campania Region). Foods 2021, 10, 2431. [Google Scholar] [CrossRef]
- European Commission Directive 98/64/EC. Establishing Community methods of analysis for the determination of aminoacids, crude oils and fats, and olaquindox in feedingstuffs and amending. Directive 71/393/EEC. Off. J. Eur. Communities 1998, 257, 14–28.
- PN EN ISO 13904:2005; FeedsDetermination of Tryptophan Content. Available online: https://www.iso.org/standard/37259.html (accessed on 27 September 2023).
- Whiteside, P.; Miner, B. Pye Unicam Atomic Absorption Data Book; Pye Unicam LTD.: Cambridge, UK, 1984. [Google Scholar]
- Gidrewicz, D.A.; Fenton, T.R. A Systematic Review and Meta-Analysis of the Nutrient Content of Preterm and Term Breast Milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, Z.; Li, X.; Kong, B.; Sun, F.; Cao, C.; Chen, Q.; Zhang, H.; Liu, Q. Ultrasound-Assisted Alkaline Extraction of Protein from Tenebrio Molitor Larvae: Extraction Kinetics, Physiochemical, and Functional Traits. Ultrason. Sonochem. 2023, 95, 106379. [Google Scholar] [CrossRef]
- Trabulsi, J.; Capeding, R.; Lebumfacil, J.; Ramanujam, K.; Feng, P.; McSweeney, S.; Harris, B.; DeRusso, P. Effect of an α-Lactalbumin-Enriched Infant Formula with Lower Protein on Growth. Eur. J. Clin. Nutr. 2011, 65, 167–174. [Google Scholar] [CrossRef] [PubMed]
- CXS 156-1987; Codex Alimentarius Commission. Standard for Follow-Up Formula. Adopted as a Worldwide Standard in 1987. FAO, United Nations Food and Agriculture Organization: Rome, Italy; WHO, World Health Organization: Geneva, Switzerland, 2017.
- Feng, P.; Gao, M.; Burgher, A.; Zhou, T.H.; Pramuk, K. A Nine-Country Study of the Protein Content and Amino Acid Composition of Mature Human Milk. Food Nutr. Res. 2016, 60, 31042. [Google Scholar] [CrossRef] [PubMed]
- Van Sadelhoff, J.H.J.; Siziba, L.P.; Buchenauer, L.; Mank, M.; Wiertsema, S.P.; Hogenkamp, A.; Stahl, B.; Garssen, J.; Rothenbacher, D.; Genuneit, J. Free and Total Amino Acids in Human Milk in Relation to Maternal and Infant Characteristics and Infant Health Outcomes: The Ulm Spatz Health Study. Nutrients 2021, 13, 2009. [Google Scholar] [CrossRef] [PubMed]
- Caba-Flores, M.D.; Ramos-Ligonio, A.; Camacho-Morales, A.; Martínez-Valenzuela, C.; Viveros-Contreras, R.; Caba, M. Breast Milk and the Importance of Chrononutrition. Front. Nutr. 2022, 9, 867507. [Google Scholar] [CrossRef]
- Friedman, M. Analysis, Nutrition, and Health Benefits of Tryptophan. Int. J. Tryptophan Res. 2018, 11, 1178646918802282. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C.L.; Cubero, J.; Sánchez, J.; Franco, L.; Rodríguez, A.B.; Rivero, M.; Barriga, C. Evolution of the circadian profile of human milk amino acids during breastfeeding. J. Appl. Biomed. 2013, 11, 59–70. [Google Scholar] [CrossRef]
- Saeed, F.; Ullah Khan, A.; Mushtaq, Z.; Afzaal, M.; Niaz, B.; Hussain, M.; Hameed, A.; Ahmad, A.; Anjum, F.M.; Suleria, H.A. Amino Acid Profile and Safety Assessment of Infant Formula Available in Local Market, Pakistan. Int. J. Food Prop. 2021, 24, 533–543. [Google Scholar] [CrossRef]
- Wu, T.-C.; Chuang, C.-C.; Lau, B.-H.; Hwang, B.; Sugawara1, M.; Idota1, T. Crude Protein Content and Amino Acid Composition in Taiwanese Human Milk. J. Nutr. Sci. Vitaminol. 2000, 46, 246–251. [Google Scholar] [CrossRef]
- Wei, M.; Deng, Z.; Liu, B.; Ye, W.; Fan, Y.; Liu, R.; Li, J. Investigation of Amino Acids and Minerals in Chinese Breast Milk. J. Sci. Food Agric. 2020, 100, 3920–3931. [Google Scholar] [CrossRef]
- Baldeón, M.E.; Mennella, J.A.; Flores, N.; Fornasini, M.; Gabriel, A.S. Free Amino Acid Content in Breast Milk of Adolescent and Adult Mothers in Ecuador. Springerplus 2014, 3, 104. [Google Scholar] [CrossRef] [PubMed]
- Van Sadelhoff, J.H.J.; Wiertsema, S.P.; Garssen, J.; Hogenkamp, A. Free Amino Acids in Human Milk: A Potential Role for Glutamine and Glutamate in the Protection Against Neonatal Allergies and Infections. Front. Immunol. 2020, 11, 1007. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.K.; Gabriel, A.S.; Hirota, M.; Mennella, J.A. Free Amino Acid Content in Infant Formulas. Nutr. Food Sci. 2012, 42, 271–278. [Google Scholar] [CrossRef]
- Sánchez, C.; Fente, C.; Barreiro, R.; López-Racamonde, O.; Cepeda, A.; Regal, P. Association between Breast Milk Mineral Content and Maternal Adherence to Healthy Dietary Patterns in Spain: A Transversal Study. Foods 2020, 9, 659. [Google Scholar] [CrossRef]
- Dror, D.K.; Allen, L.H. Overview of Nutrients in Humanmilk. Adv. Nutr. 2018, 9, 278S–294S. [Google Scholar] [CrossRef]
- Rios-Leyvraz, M.; Yao, Q. Calcium, Zinc, and Vitamin D in Breast Milk: A Systematic Review and Meta-Analysis. Int. Breastfeed. J. 2023, 18, 27. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Nutrient Requirements and Dietary Intakes of Infants and Young Children in the European Union. EFSA J. 2013, 11, 3408. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Essential Composition of Infant and Follow-on Formulae. EFSA J. 2014, 12, 3760. [Google Scholar] [CrossRef]
- Maruszewska, A.; Żwierełło, W.; Skórka-Majewicz, M.; Baranowska-Bosiacka, I.; Wszołek, A.; Janda, K.; Kulis, D.; Kapczuk, P.; Chlubek, D.; Gutowska, I. Modified Baby Milk—Bioelements Composition and Toxic Elements Contamination. Molecules 2021, 26, 4184. [Google Scholar] [CrossRef]
- Massmann, P.F.; França, E.L.; de Souza, E.G.; Souza, M.S.; Brune, M.F.S.S.; Honorio-França, A.C. Maternal Hypertension Induces Alterations in Immunological Factors of Colostrum and Human Milk. Front. Life Sci. 2013, 7, 155–163. [Google Scholar] [CrossRef]
- Sabatier, M.; Garcia-Rodenas, C.L.; De Castro, C.A.; Kastenmayer, P.; Vigo, M.; Dubascoux, S.; Andrey, D.; Nicolas, M.; Richoz Payot, J.; Bordier, V.; et al. Longitudinal Changes of Mineral Concentrations in Preterm and Term Human Milk from Lactating Swiss Women. Nutrients 2019, 11, 1855. [Google Scholar] [CrossRef] [PubMed]
- Aumeistere, L.; Ciprovica, I.; Zavadska, D.; Bavrins, K. A Preliminary Study on Essential Minerals in Human Milk: Association with Dietary Habits. Res. Rural. Dev. 2017, 1, 230–236. [Google Scholar] [CrossRef]
- Maharani, R.A.; Irawan, R.; Etika, R. Alteration of Iron, Zinc, Vitamin A Breast Milk Levels During Lactation Period Among Mothers of Low Birth Weight Infant Born at Preterm and Term. Indian J. Forensic Med. Toxicol. 2022, 16, 1005–1100. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A. Cadmium, Lead, Copper and Zinc in Breast Milk in Poland. Biol. Trace Elem. Res. 2014, 157, 36–44. [Google Scholar] [CrossRef]
- Mitchell, E.J.; Frisbie, S.H.; Roudeau, S.; Carmona, A.; Ortega, R. Estimating Daily Intakes of Manganese Due to Breast Milk, Infant Formulas, or Young Child Nutritional Beverages in the United States and France: Comparison to Sufficiency and Toxicity Thresholds. J. Trace Elem. Med. Biol. 2020, 62, 126607. [Google Scholar] [CrossRef] [PubMed]
Nutritional Value in 100 g of Powder | First Feeding | Follow-on Feeding |
---|---|---|
Energy (kcal) | 478–489 | 484–500 |
Fat (g), of which | 23.7–27.7 | 24.2–24.5 |
Saturated fatty acid (g) | 7.9–11.4 | 8.9–9.4 |
Monounsaturated fatty acids (g) | 9.4–10.8 | 8.0–10.3 |
Polyunsaturated fatty acids (g) | 4.3–5.0 | 4.3–5.3 |
Carbohydrates (g), of which | 53.6–57.8 | 54.5–62 |
Sugars (g) | 53.6–57.8 | 54.5–62 |
Protein (g) | 7.3–10.5 | 9.4–9.6 |
Vitamin A (µg) | 420–470 | 450–460 |
Vitamin D (µg) | 6.7–11.6 | 11.0–12.5 |
Vitamin C (mg) | 67–110 | 56–90 |
Riboflavin (mg) | 0.9–1.2 | 1.1–1.2 |
Vitamin B12 (µg) | 0.7–1.3 | 1.2–1.4 |
Calcium (mg) | 330–442 | 460–490 |
Iron (mg) | 3.8–5.2 | 4.6–6.0 |
Zinc (mg) | 3.5–5.4 | 3.6–3.7 |
Iodine (µg) | 94–130 | 105–107 |
Preparation of 100 mL of milk | 12.9–13.8 g of powder + 90 mL of water | 12.9–14.4 g of powder + 90 mL of water |
Amino Acid Content | HM | Infant Formula | |||||||
---|---|---|---|---|---|---|---|---|---|
IF-A | IF-B | IF-C | |||||||
I | II/III | 1 | 2 | 1 | 2 | 1 | 2 | ||
His | Essential amino acids | 2.50 ± 0.97 b | 2.50 ± 0.80 B | 3.35 ± 0.39 a | 3.43 ± 0.17 A | 2.74 ± 0.77 b | 3.12 ± 1.41 B | 2.64 ± 0.32 b | 2.89 ± 0.90 B |
Trp | 1.58 ± 0.18 a* | 1.28 ± 0.41 B | 1.69 ± 0.08 a* | 1.52 ± 0.20 A | 1.45 ± 0.07 b | 1.34 ± 0.37 A | 1.49 ± 0.04 b | 1.60 ± 0.35 B | |
Leu | 8.31 ± 1.66 d | 7.34 ± 2.37 A* | 8.54 ± 1.89 a | 8.47 ± 0.96 A | 8.24 ± 3.10 b | 8.36 ± 1.29 A | 7.96 ± 2.05 c | 8.25 ± 2.81 A | |
Ile | 6.15 ± 1.41 a | 5.17 ± 1.02 A* | 5.25 ± 0.99 a | 5.14 ± 0.80 B | 5.09 ± 2.14 a | 5.38 ± 1.22 A | 5.15 ± 0.65 a | 5.33 ± 1.15 B | |
Phe | 5.00 ± 0.65 a | 3.85 ± 1.16 A* | 4.65 ± 0.31 b | 5.00 ± 0.61 A* | 4.37 ± 0.76 b | 4.89 ± 0.85 A* | 4.33 ± 0.79 b | 4.93 ± 1.46 A* | |
Thr | 4.42 ± 1.42 b | 3.95 ± 1.09 B* | 5.29 ± 0.67 a | 5.19 ± 0.84 A | 5.16 ± 1.74 a | 5.01 ± 0.44 A | 5.06 ± 0.98 a | 5.13 ± 1.33 A | |
Lys | 5.36 ± 1.41 b | 5.33 ± 1.23 C | 7.88 ± 2.56 a | 7.96 ± 0.56 A | 6.99 ± 1.77 a | 7.23 ± 1.23 B | 6.92 ± 2.04 a | 7.17 ± 1.70 B | |
Val | 5.47 ± 1.08 b | 4.60 ± 1.20 A* | 5.31 ± 1.10 a | 5.52 ± 1.16 A | 5.18 ± 1.02 a | 5.59 ± 0.86 A | 5.21 ± 1.75 a | 5.42 ± 0.88 A | |
Met | 2.14 ± 0.72 b | 1.57 ± 0.69 B* | 2.54 ± 0.31 a | 2.85 ± 0.88 A | 2.63 ± 0.89 a | 2.57 ± 0.22 B | 2.43 ± 0.54 a | 2.50 ± 0.25 B | |
Ala | Non-essential amino acids | 3.50 ± 0.99 a | 4.30 ± 1.34 A* | 3.95 ± 0.10 a | 3.77 ± 0.77 B | 3.73 ± 1.08 a | 3.67 ± 0.91 B | 3.72 ± 0.80 a | 3.75 ± 0.61 B |
Arg | 3.07 ± 0.70 b | 2.89 ± 1.15 B | 4.57 ± 0.31 a | 3.77 ± 0.28 A | 2.99 ± 0.78 b | 3.46 ± 0.37 A | 2.96 ± 0.56 b | 3.23 ± 0.45 A | |
Asp | 6.56 ± 1.94 c | 6.62 ± 1.65 C | 8.43 ± 1.37 a | 8.24 ± 1.21 A | 7.60 ± 2.57 b | 7.63 ± 1.35 B | 7.60 ± 1.03 b | 7.73 ± 1.08 B | |
Cys | 3.45 ± 0.95 a | 2.95 ± 0.85 A | 2.42 ± 0.47 b | 2.39 ± 0.38 B | 2.31 ± 0.92 b | 2.20 ± 0.18 B | 2.24 ± 0.80 b | 1.96 ± 0.77 C | |
Glu | 11.12 ± 3.09 b | 12.14 ± 3.23 B* | 13.19 ± 2.18 a | 14.05 ± 2.14 A | 12.77 ± 2.47 a | 13.73 ± 1.94 A* | 12.74 ± 2.00 a | 13.37 ± 2.50 B | |
Gly | 2.37 ± 0.47 a | 2.68 ± 0.95 A | 2.14 ± 0.18 a | 2.20 ± 0.03 A | 2.02 ± 0.75 b | 2.18 ± 0.56 A | 2.04 ± 0.04 b | 2.12 ± 0.75 A | |
Pro | 7.48 ± 2.40 a | 8.10 ± 2.72 A | 7.34 ± 1.03 a | 8.66 ± 1.26 A* | 7.35 ± 1.51 a | 8.53 ± 1.31 A* | 7.19 ± 2.04 a | 7.85 ± 2.03 A | |
Ser | 3.97 ± 2.01 b | 4.25 ± 1.37 B* | 4.73 ± 0.91 a | 5.04 ± 0.61 A* | 4.75 ± 0.85 a | 4.98 ± 0.16 A* | 4.61 ± 1.37 a | 4.81 ± 1.06 B | |
Tyr | 6.60 ± 1.75 a | 3.71 ± 0.85 A* | 3.85 ± 0.82 a | 4.32 ± 0.48 B* | 3.89 ± 0.04 a | 4.39 ± 1.00 B* | 3.87 ± 0.84 a | 4.03 ± 0.95 B |
Amino Acid Content | HM | Infant Formula | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | |||||||
I | II/III | 1 | 2 | 1 | 2 | 1 | 2 | ||
TAA | g/100 g of protein | 86.47 c | 85.81 C | 95.12 a | 97.52 A | 89.19 b | 94.20 A* | 88.23 b | 92.13 A |
EAA | 40.93 b* | 35.59 B | 44.50 a | 45.08 A | 41.78 b | 43.43 A | 41.26 b | 43.28 A | |
NEAA | 45.54 b | 50.22 B* | 50.62 a | 52.44 A | 47.41 b | 50.77 B | 46.97 b | 48.85 B | |
EAA/TAA | % | 47 a | 41 B* | 47 a | 46 A | 47 a | 46 A | 47 a | 47 A |
Sample | Human Milk | Infant Formula | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | |||||||
Type of Milk | I | II/III | 1 | 2 | 1 | 2 | 1 | 2 | |
Macrominerals, mg/100 mL | Mg | 3.41 ± 0.65 b* | 3.02 ± 0.54 C | 6.25 ± 0.39 a | 7.64 ± 0.47 A* | 5.78 ± 0.75 a | 7.77 ± 1.04 A* | 6.02 ± 0.84 a | 6.70 ± 0.03 B |
Ca | 27.13 ± 5.07 b | 25.89 ± 4.13 C | 59.43 ± 1.14 a | 73.46 ± 7.83 B* | 60.77 ± 6.66 a | 88.22 ± 4.28 A* | 62.04 ± 6.00 a | 69.47 ± 2.15 B | |
Na | 23.66 ± 7.19 a* | 14.07 ± 7.55 A | 17.32 ± 0.86 a | 21.41 ± 2.57 A | 19.62 ± 3.56 a | 24.93 ± 5.74 A | 16.12 ± 3.08 a | 18.45 ± 0.48 A | |
K | 59.87 ± 11.60 b* | 49.84 ± 6.77 B | 71.51 ± 2.93 a | 88.12 ± 5.77 A | 77.93 ± 7.10 a | 92.01 ± 11.10 A | 69.30 ± 4.47 a | 85.43 ± 2.15 A | |
Microminerals, µg/100 mL | Cu | 0.04 ± 0.00 a* | 0.03 ± 0.00 A | 0.03 ± 0.00 a | 0.04 ± 0.01 A | 0.03 ± 0.01 a | 0.03 ± 0.00 A | 0.05 ± 0.01 a | 0.04 ± 0.02 A |
Mn | 0.31 ± 0.07 c | 0.20 ± 0.09 B* | 0.69 ± 0.07 b | 0.72 ± 0.05 A | 0.61 ± 0.04 b | 0.67 ± 0.07 A | 0.73 ± 0.09 a | 0.69 ± 0.03 A | |
Fe | 0.03 ± 0.00 b | 0.02 ± 0.00 B* | 0.08 ± 0.01 a | 0.11 ± 0.01 A* | 0.07 ± 0.02 a | 0.09 ± 0.02 A* | 0.07 ± 0.02 a | 0.09 ± 0.01 A* | |
Zn | 0.33 ± 0.11 b* | 0.15 ± 0.07 C | 0.62 ± 0.10 a | 0.74 ± 0.07 A* | 0.49 ± 0.06 b | 0.56 ± 0.05 B | 0.59 ± 0.10 a | 0.76 ± 0.01 A* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purkiewicz, A.; Stasiewicz, M.; Nowakowski, J.J.; Pietrzak-Fiećko, R. The Influence of the Lactation Period and the Type of Milk on the Content of Amino Acids and Minerals in Human Milk and Infant Formulas. Foods 2023, 12, 3674. https://doi.org/10.3390/foods12193674
Purkiewicz A, Stasiewicz M, Nowakowski JJ, Pietrzak-Fiećko R. The Influence of the Lactation Period and the Type of Milk on the Content of Amino Acids and Minerals in Human Milk and Infant Formulas. Foods. 2023; 12(19):3674. https://doi.org/10.3390/foods12193674
Chicago/Turabian StylePurkiewicz, Aleksandra, Małgorzata Stasiewicz, Jacek J. Nowakowski, and Renata Pietrzak-Fiećko. 2023. "The Influence of the Lactation Period and the Type of Milk on the Content of Amino Acids and Minerals in Human Milk and Infant Formulas" Foods 12, no. 19: 3674. https://doi.org/10.3390/foods12193674
APA StylePurkiewicz, A., Stasiewicz, M., Nowakowski, J. J., & Pietrzak-Fiećko, R. (2023). The Influence of the Lactation Period and the Type of Milk on the Content of Amino Acids and Minerals in Human Milk and Infant Formulas. Foods, 12(19), 3674. https://doi.org/10.3390/foods12193674