Properties of Allicin–Zein Composite Nanoparticle Gelatin Film and Their Effects on the Quality of Cold, Fresh Beef during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanoparticles with Different Allicin Content
2.3. Preparation of Al-Ze Gelatin Films with Different Allicin Contents
2.4. Determination of Properties of Al-Ze Gelatin Films with Different Allicin Content
2.4.1. Measurement of Film Thickness and Water Vapor Permeability Coefficient (WVP)
2.4.2. Determination of Mechanical Properties of Films
2.4.3. Determination of Moisture Content (MC), Swelling Property (SD), and Water Solubility (WS) of Films
2.4.4. Determination of Optical Properties of Films
2.5. Characterization of Al-Ze Gelatin Films with Different Allicin Content
2.5.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.2. Microstructure Observation
2.5.3. Thermogravimetric Analysis (TG)
2.6. Effect of Al-Ze Gelatin Film on the Quality of Cold, Fresh Beef during Storage
2.6.1. Sample Processing
2.6.2. Analysis of Color during Storage
2.6.3. Analysis of pH Value during Storage
2.6.4. Analysis of Mass Loss Rate during Storage
2.6.5. Analysis of Total Volatile Base Nitrogen (TVB-N) during Storage
2.6.6. Analysis of Thiobarbituric Acid (TBA) Value during Storage
2.6.7. Analysis of Aerobic Plate Count (APC) during Storage
2.6.8. Sensory Evaluation during Storage
2.7. Statistical Analysis
3. Results and Discussion
3.1. Average Particle Size, PDI, and ζ-Potential Analysis of Al-Ze Nanoparticles
3.2. Analysis of Properties of Nanoparticle Films with Different Allicin Content
3.2.1. Analysis of Thickness, WVP, and Mechanical Properties
3.2.2. MC, SD, and WS Analysis
3.2.3. Optical Property Analysis
3.2.4. Analysis of Structure
- (1)
- FTIR
- (2)
- Microstructure
- (3)
- TG analysis
3.3. Effects of Al-Ze Gelatin Film on the Quality of Chilled Beef during Storage
3.3.1. Change in Color
3.3.2. Changes in pH Value
3.3.3. Change in the Rate of Mass Loss
3.3.4. The Change of total Volatile Base Nitrogen (TVB-N)
3.3.5. The Change of Thiobarbituric Acid (TBA)
3.3.6. Change in Aerobic Plate Count (APC)
3.3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borlinghaus, J.; Foerster, J.; Kappler, U.; Antelmann, H.; Noll, U.; Gruhlke, M.C.H.; Slusarenko, A.J. Allicin, the Odor of Freshly Crushed Garlic: A Review of Recent Progress in Understanding Allicin’s Effects on Cells. Molecules 2021, 26, 1505. [Google Scholar] [CrossRef]
- Gruhlke, M.C.H.; Nicco, C.; Batteux, F.; Slusarenko, A.J. The effects of allicin, a reactive sulfur species from garlic, on a selection of mammalian cell lines. Antioxidants 2017, 6, 1. [Google Scholar] [CrossRef]
- Kaur, K.; Kaushal, S.; Rani, R. Chemical composition, antioxidant and antifungal potential of Clove (Syzygium aromaticum) Essential oil, its major compound and its derivatives. J. Essent. Oil-Bear. Plants 2019, 22, 1195–1217. [Google Scholar] [CrossRef]
- Dai, W.Z.; Ruan, C.C.; Zhang, Y.M.; Wang, J.J.; Han, J.; Shao, Z.H.; Sun, Y.; Liang, J. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. J. Funct. Foods 2020, 65, 103732. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Boostani, S.; Babazadeh, A.; Rehman, A.; Rezaei, A.; Akbari-Alavijeh, S.; Shaddel, R.; Jafari, S.M. Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res. Int. 2021, 142, 110186. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Velikov, K.P. Zein as a source of functional colloidal nano- and microstructures. Curr. Opin. Colloid Interface Sci. 2014, 19, 450–458. [Google Scholar] [CrossRef]
- Boyaci, D.; Iorio, G.; Sozbilen, G.S.; Alkan, D.; Trabattoni, S.; Pucillo, F.; Farris, S.; Yemenicioglu, A. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packag. Shelf Life 2019, 20, 100316. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Liyanaarachchi, W.S.; Chandrapala, J.; Dissanayake, M.; Vasiljevic, T. Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends Food Sci. Technol. 2016, 57, 178–187. [Google Scholar] [CrossRef]
- Zhang, S.L.; Han, Y. Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles. PLoS ONE 2018, 13, e0194951. [Google Scholar] [CrossRef]
- Song, J.; Sun, C.X.; Gul, K.; Mata, A.; Fang, Y.P. Prolamin-based complexes: Structure design and food-related applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1120–1149. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.R.; Xu, B.X.; McClements, D.J.; Xu, X.F.; Cui, S.; Gao, L.; Zhou, L.Y.; Xiong, L.; Sun, Q.J.; Dai, L. Properties of curcumin-loaded zein-tea saponin nanoparticles prepared by antisolvent co-precipitation and precipitation. Food Chem. 2022, 391, 133224. [Google Scholar] [CrossRef] [PubMed]
- Said, N.S.; Sarbon, N.M. Physical and mechanical characteristics of gelatin-based films as a potential food packaging material: A review. Membranes 2022, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Lu, N.; Pu, S.C.; Yang, F.X. Preparation and properties of antibacterial sodium dehydroacetate/modified film. LWT-Food Sci. Technol. 2022, 42, e97521. [Google Scholar] [CrossRef]
- Jiang, L.W.; Jia, F.G.; Han, Y.L.; Meng, X.Y.; Xiao, Y.W.; Bai, S.G. Development and characterization of zein edible films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles. Carbohydr. Polym. 2021, 261, 117877. [Google Scholar] [CrossRef]
- Jiu, L.W.; Gao, J.S.; Ru, Y.H. Fish gelatin films incorporated with cinnamaldehyde and its sulfobutyl ether-β-cyclodextrin inclusion complex and their application in fish preservation. Food Chem. 2023, 418, 110103. [Google Scholar]
- Xiong, Y.; Chen, M.; Warner, R.D.; Fang, Z.X. Incorporating nisin and grape seed extract in chitosan-gelatine edible coating and its effect on cold storage of fresh pork. Food Control 2020, 110, 107018. [Google Scholar] [CrossRef]
- Andreuccetti, C.; Galicia-García, T.; González-Nuñez, R.; Martínez-Bustos, F.; Grosso, C.R.F. Native and modified gelatin films produced by casting, extrusion, and blowing extrusion processes Polymers from Renewable. Resources 2017, 8, 11–26. [Google Scholar]
- Iwata, K.I.; Ishizaki, S.H.; Handa, A.K. Preparation and characterization of edible films from fishwater-soluble proteins. Fish. Sci. 2000, 66, 372–378. [Google Scholar] [CrossRef]
- Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Antioxidative activity and properties of fish skin gelatin films incorporated with BHT and atocopherol. Food Hydrocoll. 2011, 22, 449–458. [Google Scholar] [CrossRef]
- GB/T 5009.237-2016; National Health and Family Planning Commission of China. National Food Safety Standard: Determination of pH Value of Food. Standards Press of China: Beijing, China, 2016.
- GB/T 5009.228-2016; National Health and Family Planning Commission of China. National Food Safety Standard: Determination of Volatile Base Nitrogen in Foods. Standards Press of China: Beijing, China, 2016.
- Wei, Z.X.; Zhang, J.J.; Zhang, H.C.; Ning, Z.; Zhang, R.Y.; Li, L.J. Effect of nanoemulsion loading a mixture of clove essential oil and carboxymethyl chitosan-coated epsilon-polylysine on the preservation of donkey meat during refrigerated storage. J. Food Process. Preserv. 2021, 45, e15733. [Google Scholar]
- GB/T 4789.2-2022; China National Health Commission, State Administration for Market Regulation. National Food Safety Standard: Microbiological Testing of Food, Determination of Aerobic Plate Count. Standards Press of China: Beijing, China, 2022.
- Davidov-Pardo, G.; Joye, I.J.; McClements, D.J. Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization. Food Hydrocoll. 2015, 45, 309–316. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Chu, Y.F.; Feng, X.; Gao, C.C.; Wu, D.; Cheng, W.W. Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films. Int. J. Biol. Macromol. 2020, 156, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, D.; Li, F.; Li, D.P.; Huang, Q.R. Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, antimicrobial effect and advantages in storage application. Int. J. Biol. Macromol. 2020, 148, 1280–1289. [Google Scholar] [CrossRef]
- Khedri, S.; Sadeghi, E.; Rouhi, M.; Delshadian, Z.; Mortazavian, A.M.; Guimaraes, J.T.; Fallah, M.; Mohammadi, R. Bioactive edible films: Development and characterization of gelatin edible films incorporated with casein phosphopeptides. LWT-Food Sci. Technol. 2021, 138, 110649. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Mohammadifar, M.A.; Sadeghi, E.; Rouhi, M.; Mohammadi, M.; Askari, F.; Mortazavian, A.M.; Kariminejad, M. Photosensitizer-induced cross-linking: A novel approach for improvement of physicochemical and structural properties of gelatin edible films. Food Res. Int. 2018, 112, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yan, X. Preparation of chitosan-SiO2 nanoparticles by ultrasonic treatment and its effect on the properties of starch film. Int. J. Biol. Macromol. 2021, 189, 271–278. [Google Scholar] [CrossRef]
- Nilsuwan, K.; Benjakul, S.; Prodpran, T. Properties, microstructure and heat seal ability of bilayer films based on Fish gelatin and emulsified gelatin films. Food Biophys. 2017, 12, 234–243. [Google Scholar] [CrossRef]
- Chen, H.L.; Hu, X.R.; Chen, E.M.; Wu, S.; McClements, D.J.; Liu, S.L.; Li, B.; Li, Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 2016, 61, 662–671. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Zheng, X.J. Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag. Shelf Life 2020, 24, 100485. [Google Scholar] [CrossRef]
- Jiang, L.W.; Ye, R.; Xie, C.C.; Wang, F.H.; Zhang, R.; Tang, H.J.; He, Z.C.; Han, J.C.; Liu, Y.Z. Development of zein edible films containing different catechin/cyclodextrin metal-organic frameworks: Physicochemical characterization, antioxidant stability and release behavior. LWT-Food Sci. Technol. 2023, 173, 114306. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, J.; Chen, X.; Luo, M.N.; Liu, H.S.; Shao, P. Fabrication and characterization of multilayered kafirin/gelatin film with one-way water barrier property. Food Hydrocoll. 2018, 81, 159–168. [Google Scholar] [CrossRef]
- Almasi, H.; Azizi, S.; Amjadi, S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 2019, 99, 105338. [Google Scholar] [CrossRef]
- Fan, M.; Dai, D.; Huang, B. Fourier transform infrared spectroscopy for natural fibres. Fourier Transform–Mater. Anal. 2012, 3, 45–68. [Google Scholar]
- Ji, N.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Binary and tertiary complex based on short-chain glucan and proanthocyanidins for oral insulin delivery. J. Agric. Food Chem. 2017, 65, 8866–8874. [Google Scholar] [CrossRef] [PubMed]
- Cazón, P.; Vázquez, M.; Velazquez, G. Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohydr. Polym. 2018, 195, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Kchaou, H.; Jridi, M.; Benbettaieb, N.; Debeaufort, F.; Nasri, M. Bioactive films based on cuttlefish (Sepia officinalis) skin gelatin incorporated with cuttlefish protein hydrolysates: Physicochemical characterization and antioxidant properties. Food Packag. Shelf Life 2020, 24, 100477. [Google Scholar] [CrossRef]
- Liu, Y.J.; Cai, Y.X.; Jiang, X.Y.; Wu, J.P.; Le, X.Y. Molecular interactions, characterization and antimicrobial activity of curcumin-chitosan blend films. Food Hydrocoll. 2016, 52, 564–572. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Mao, Y.W.; Coombs, C.E.O.; Van-de-Ven, R.J.; Hopkins, D.L. Relationship between colorimetric (instrumental) evaluation and consumer-defined beef colour acceptability. Meat Sci. 2016, 121, 104–106. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Marsico, E.T.; Conte, C.A. Application of active packaging in refrigerated rainbow trout (Oncorhynchus mykiss) fillets treated with UV-C radiation. Appl. Sci. Basel 2020, 10, 5787. [Google Scholar] [CrossRef]
- Giselle, P.C.; Monalisa, P.D.; Paulo, R.F.; Alcinéia, d.L.S.R.; Lúcio-Alberto-de, M.G.; Eduardo, M.R. Selection of a chitosan gelatin-based edible coating for color preservation of beef in retail display. Meat Sci. 2016, 114, 85–94. [Google Scholar]
- Mancini, R.A.; Ramanathan, R.; Suman, S.P.; Konda, M.K.R.; Joseph, P.; Dady, G.A.; Naveena, B.M.; Lopez-Lopez, L. Effects of lactate and modified atmospheric packaging on premature in cooked ground beef patties. Meat Sci. 2010, 85, 339–346. [Google Scholar] [CrossRef]
- Emiroglu, Z.K.; Yemis, G.P.; Coskun, B.K.; Candogan, K. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci. 2010, 86, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Zhou, C.Y.; Ge, X.Y.; Ye, K.P.; Wang, P.; Bai, Y.; Zhou, G.H. The effect of different degrees of superchilling on shelf life and quality of pork during storage. J. Food Process. Preserv. 2020, 44, e14394. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, D.Q.; Zheng, X.C.; Wen, X.Y.; Yan, T.J.; Zhang, Z.S.; Hou, C.L. Effects of different storage temperatures on the physicochemical properties and bacterial community structure of fresh lamb meat. Food Sci. Anim. Resour. 2021, 41, 509–526. [Google Scholar] [CrossRef]
- Tian, T.; Kang, Y.; Liu, L.J.; Wang, X.H. The effect of super-chilled preservation on shelf life and quality of beef during storage. LWT-Food Sci. Technol. 2022, 42, e73222. [Google Scholar] [CrossRef]
- Wang, X.H.; Deng, Y.H.; Sun, J.S.; Ding, Y.; Liu, Y.; Tian, T. Unraveling characterizations of bacterial community and spoilage profiles shift in chilled pork during refrigerated storage. Food Sci. Technol. 2022, 42, e80321. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Mohammadian, E.; Mc-Clements, D.J. Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with Ti-O2 and essential oil: Application for preservation of refrigerated meat. Food Chem. 2020, 322, 126782. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Ding, Y.; Tian, T.; Liu, Y. Comparative efficacy of sodium lactate and Natamycin against discoloration and spoilage of fresh beef during chilled storage. LWT-Food Sci. Technol. 2022, 42, e74421. [Google Scholar] [CrossRef]
- Müller, A.; Eller, J.; Albrecht, F.; Prochnow, P.; Kuhlmann, K.; Bandow, J.E.; Slusarenko, A.J.; Leichert, L.I.O. Allicin induces thiol stress in bacteria through S-allylmercapto modification of protein cysteines. Biol. Chem. 2016, 291, 11477–11490. [Google Scholar] [CrossRef]
- Cui, H.Y.; Bai, M.; Li, C.Z.; Liu, R.K.; Lin, L. Fabrication of chitosan nanofibers containing tea tree oil liposomes against Salmonella spp. in chicken. LWT-Food Sci. Technol. 2018, 96, 671–678. [Google Scholar] [CrossRef]
Color and Luster | Smell | Tissue Elasticity | Overall Acceptability | |
---|---|---|---|---|
Very good (9–10 points) | Bright red, shiny | Fresh beef smell, no odor | Good elasticity, immediate recovery of dents after finger pressure | Acceptable |
good (7–8 points) | Bright red, matte | No obvious odor | Good elasticity, the depression can be restored after finger pressure | Basically acceptable |
not good (4–6 points) | Dark red in color, matte | The odor is strong and obvious | Poor elasticity, not easy to recover after finger pressure | Difficult to accept |
very poor (0–3 points) | Dark brown, matte | Strong odor, unacceptable | Poor elasticity, unable to recover after finger pressure | unacceptable |
Film Sample | Thickness (mm) | WVP (10−11 g·cm/cm2·s·Pa) | TS (MPa) | EAB (%) |
---|---|---|---|---|
Al-Ze (20:0) gelatin film | 0.125 ± 0.003 a | 5.37 ± 0.14 d | 19.45 ± 0.26 a | 31.97 ± 2.03 a |
Al-Ze (20:1) gelatin film | 0.150 ± 0.006 bc | 5.24 ± 0.10 d | 23.93 ± 0.49 b | 39.92 ± 2.82 a |
Al-Ze (10:1) gelatin film | 0.141 ± 0.009 b | 5.21 ± 0.12 cd | 25.85 ± 0.35 b | 51.19 ± 2.86 b |
Al-Ze (8:1) gelatin film | 0.151 ± 0.007 c | 5.00 ± 0.04 c | 25.24 ± 0.64 c | 55.87 ± 6.35 b |
Al-Ze (5:1) gelatin film | 0.150 ± 0.003 bc | 4.74 ± 0.09 b | 25.28 ± 0.36 c | 58.97 ± 3.52 b |
Al-Ze (4:1) gelatin film | 0.156 ± 0.006 c | 4.52 ± 0.05 a | 25.76 ± 0.67 c | 71.22 ± 3.38 c |
Film Sample | MC (%) | SD (%) | WS (%) |
---|---|---|---|
Al-Ze (20:0) gelatin film | 30.62 ± 0.92 e | 31.75 ± 0.45 a | 30.01 ± 0.15 a |
Al-Ze (20:1) gelatin film | 28.09 ± 0.76 d | 29.85 ± 0.32 b | 27.69 ± 0.68 b |
Al-Ze (10:1) gelatin film | 26.80 ± 0.77 cd | 27.68 ± 0.75 c | 25.14 ± 1.03 c |
Al-Ze (8:1) gelatin film | 25.20 ± 0.50 ab | 24.46 ± 0.18 d | 23.75 ± 0.75 d |
Al-Ze (5:1) gelatin film | 26.41 ± 1.21 b | 24.01 ± 1.02 d | 21.54 ± 1.68 e |
Al-Ze (4:1) gelatin film | 24.17 ± 0.89 a | 23.89 ± 0.52 d | 21.43 ± 0.45 e |
Film Sample | L* | a* | b* |
---|---|---|---|
Al-Ze (20:0) gelatin film | 88.56 ± 0.47 a | −0.63 ± 0.58 ab | 6.02 ± 0.58 c |
Al-Ze (20:1) gelatin film | 88.26 ± 0.30 a | −0.60 ± 0.05 b | 5.99 ± 0.42 c |
Al-Ze (10:1) gelatin film | 86.62 ± 0.23 b | −0.35 ± 0.02 ab | 6.92 ± 0.37 ab |
Al-Ze (8:1) gelatin film | 87.47 ± 0.10 c | −0.45 ± 0.02 b | 5.94 ± 0.53 c |
Al-Ze (5:1) gelatin film | 85.51 ± 0.34 d | −0.37 ± 0.04 ab | 7.80 ± 0.42 ab |
Al-Ze (4:1) gelatin film | 82.77 ± 0.12 e | 0.18 ± 0.07 a | 8.74 ± 0.51 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Zhao, P.; Wei, Y.; Guo, X.; Deng, X.; Zhang, J. Properties of Allicin–Zein Composite Nanoparticle Gelatin Film and Their Effects on the Quality of Cold, Fresh Beef during Storage. Foods 2023, 12, 3713. https://doi.org/10.3390/foods12193713
Hu L, Zhao P, Wei Y, Guo X, Deng X, Zhang J. Properties of Allicin–Zein Composite Nanoparticle Gelatin Film and Their Effects on the Quality of Cold, Fresh Beef during Storage. Foods. 2023; 12(19):3713. https://doi.org/10.3390/foods12193713
Chicago/Turabian StyleHu, Ling, Pengcheng Zhao, Yabo Wei, Xin Guo, Xiaorong Deng, and Jian Zhang. 2023. "Properties of Allicin–Zein Composite Nanoparticle Gelatin Film and Their Effects on the Quality of Cold, Fresh Beef during Storage" Foods 12, no. 19: 3713. https://doi.org/10.3390/foods12193713
APA StyleHu, L., Zhao, P., Wei, Y., Guo, X., Deng, X., & Zhang, J. (2023). Properties of Allicin–Zein Composite Nanoparticle Gelatin Film and Their Effects on the Quality of Cold, Fresh Beef during Storage. Foods, 12(19), 3713. https://doi.org/10.3390/foods12193713