Dietary Effect of Brevibacillus laterosporus S62-9 on Chicken Meat Quality, Amino Acid Profile, and Volatile Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Agent Preparation
2.2. Animals and Diets
2.3. Slaughter and Sample Collection
2.4. Meat Quality Assessment
2.5. Chemical Composition and Amino Acid Composition Analysis
2.6. Volatile Profile Analysis
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results
3.1. Growth Performance and Carcass Traits
3.2. Meat Quality
3.3. Chemical Composition and Amino Acid Composition Analysis
3.4. Volatile Compounds of Meat
3.5. Sensory Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D.; Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2014, 5, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Braiek, O.; Smaoui, S. Enterococci: Between emerging pathogens and potential probiotics. BioMed Res. Int. 2019, 2019, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, B.; Wierup, M. Antimicrobial resistance in Scandinavia after a ban of antimicrobial growth promoters. Anim. Biotechnol. 2006, 17, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.G.; Cissell, R.; Liamthong, S. Antibiotic resistance in bacteria associated with food animals: A United States perspective of livestock production. Foodborne Pathog. Dis. 2007, 4, 115–133. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. Supporting antimicrobial stewardship in veterinary settings: Goals for fiscal years 2019–2023. Cent. Vet. Med. 2018. Available online: https://www.fda.gov/media/115776/download (accessed on 2 November 2022).
- Johnson, R. EU bans prophylactic use of antibiotic farming (online). Food Drug Adm. 2018. Available online: https://www.thepoultrysite.com/news/2018/10/eu-bans-prophylactic-use-of-antibiotics-in-farming (accessed on 2 November 2022).
- Lone, A.; Mottawea, W.; Mehdi, Y.; Hammami, R. Bacteriocinogenic probiotics as an integrated alternative to antibiotics in chicken production-why and how? Crit. Rev. Food Sci. Nutr. 2022, 62, 8744–8760. [Google Scholar] [CrossRef]
- Jacquier, V.; Nelson, A.; Jlali, M.; Rhayat, L.; Brinch, K.S.; Devillard, E. Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poult. Sci. 2019, 98, 2548–2554. [Google Scholar] [CrossRef]
- Dagaas, C.T.; Mangubat, K.M.M.; Angeles, A.A.; Abanto, O.D. Dietary effects of commercial probiotics on growth performance, digestibility, and intestinal morphometry of broiler chickens. Trop. Anim. Health Prod. 2019, 51, 1105–1115. [Google Scholar]
- Liu, X.; Yan, H.; Lv, L.; Xu, Q.; Yin, C.; Zhang, K.; Wang, P.; Hu, J. Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian-Australas. J. Anim. Sci. 2012, 25, 682. [Google Scholar] [CrossRef]
- Molnár, A.; Such, N.; Farkas, V.; Pál, L.; Menyhárt, L.; Wágner, L.; Husvéth, F.; Dublecz, K. Effects of wheat bran and clostridium butyricum supplementation on cecal microbiota, short-chain fatty acid concentration, pH and histomorphometry in broiler chickens. Animals 2020, 10, 2230. [Google Scholar] [CrossRef]
- Adhikari, B.; Hernandez-Patlan, D.; Solis-Cruz, B.; Kwon, Y.M.; Arreguin, M.A.; Latorre, J.D.; Hernandez-Velasco, X.; Hargis, B.M.; Tellez-Isaias, G. Evaluation of the antimicrobial and anti-inflammatory properties of Bacillus-DFM (Norum™) in broiler chickens infected with Salmonella enteritidis. Front. Vet. Sci. 2019, 6, 282. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Zaki, R.S.; Negm, E.A.; Mahmoud, M.A.; Cheng, H.W. Effects of dietary supplementation of a probiotic (Bacillus subtilis) on bone mass and meat quality of broiler chickens. Poult. Sci. 2021, 100, 100906. [Google Scholar] [CrossRef]
- Qiu, K.; Wang, X.C.; Zhang, H.J.; Wang, J.; Qi, G.H.; Wu, S.G. Dietary Supplementation of a New Probiotic Compound Improves the Growth Performance and Health of Broilers by Altering the Composition of Cecal Microflora. Biology 2022, 11, 633. [Google Scholar] [CrossRef]
- Sarao, L.K.; Arora, M. Probiotics, prebiotics, and microencapsulation: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 344–371. [Google Scholar] [CrossRef]
- Ramlucken, U.; Lalloo, R.; Roets, Y.; Moonsamy, G.; Thantsha, M.S. Advantages of Bacillus based probiotics in poultry production. Livest. Sci. 2020, 241, 104215. [Google Scholar] [CrossRef]
- Neveling, D.P.; Dicks, L.M.T. Probiotics: An antibiotic replacement strategy for healthy broilers and productive rearing. Probiotics Antimicrob. Proteins 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Liu, L.; Ni, X.; Zeng, D.; Wang, H.; Jing, B.; Yin, Z.; Pan, K. Effect of a dietary probiotic, Lactobacillus johnsonii BS15, on growth performance, quality traits, antioxidant ability, and nutritional and flavour substances of chicken meat. Anim. Prod. Sci. 2016, 57, 920–926. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhao, F.; Cairang, Z.M.; Li, X.Y.; Kong, J.; Zeng, S.Y.; Zhang, M.Y.; Zhao, Z.X.; Zhang, X.P. Correlation between the bacterial community and flavour of fermented fish. Qual. Assur. Saf. Crops Foods 2021, 13, 82–91. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Tomasevic, I.; Dominguez, R.; Barretto, A.C.D.; Santos, E.M.; Lorenzo, J.M. Functional fermented meat products with probiotics-A review. J. Appl. Microbiol. 2021, 133, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, K.; Konkol, D.; Korczyński, M. Overview of the use of probiotics in poultry production. Animals 2021, 11, 1620. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- Li, H.X.; Yang, X.J.; Zhu, X.Y.; Gao, L.; Rao, S.Q.; Yuan, L.; Yang, Z.Q. Isolation and characterization of broad host-range of bacteriophages infecting Cronobacter sakazakii and its biocontrol potential in dairy products. Qual. Assur. Saf. Crops Foods 2021, 13, 21–44. [Google Scholar] [CrossRef]
- Pelicano, E.R.L.; De Souza, P.A.; De Souza, H.B.A.; Oba, A.; Norkus, E.A.; Kodawara, L.M.; De Lima, T.M.A. Effect of different probiotics on broiler carcass and meat quality. Braz. J. Poult. Sci. 2003, 5, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chang, C.-C.H.; Marsh, G.M.; Wu, F. Population attributable risk of aflatoxin-related liver cancer: Systematic review and meta-analysis. Eur. J. Cancer 2012, 48, 2125–2136. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Li, J.; Shao, Y.; Yao, W.; Xia, J.; He, Q.; Huang, F. The effect of dietary garcinol supplementation on oxidative stability, muscle postmortem glycolysis and meat quality in pigs. Meat Sci. 2020, 161, 107998. [Google Scholar] [CrossRef]
- Ho, C.W.; Aida, W.; Maskat, M.Y.; Osman, H. Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar. Food Chem. 2007, 102, 1156–1162. [Google Scholar] [CrossRef]
- Del Bosque, C.I.E.; Altmann, B.A.; Ciulu, M.; Halle, I.; Jansen, S.; Nolte, T.; Weigend, S.; Mörlein, D. Meat quality parameters and sensory properties of one high-performing and two local chicken breeds fed with Vicia faba. Foods 2020, 9, 1052. [Google Scholar] [CrossRef]
- Salaheen, S.; Kim, S.-W.; Haley, B.J.; Van Kessel, J.A.S.; Biswas, D. Alternative growth promoters modulate broiler gut microbiome and enhance body weight gain. Front. Microbiol. 2017, 8, 2088. [Google Scholar] [CrossRef]
- Wu, S.; Wang, J.; Zhu, L.; Ren, H.; Yang, X. A novel apidaecin Api-PR19 synergizes with the gut microbial community to maintain intestinal health and promote growth performance of broilers. J. Anim. Sci. Biotechnol. 2020, 11, 1–18. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yu, Y.-H. Bacillus licheniformis–fermented products improve growth performance and the fecal microbiota community in broilers. Poult. Sci. 2020, 99, 1432–1443. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, J.; Zhang, M.; Fu, N.; Zhang, Y. Effect of a potential probiotics Lactococcus garvieae B301 on the growth performance, immune parameters and caecum microflora of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 413–421. [Google Scholar] [CrossRef]
- Jiang, S.; Yan, F.-F.; Hu, J.-Y.; Mohammed, A.; Cheng, H.-W. Bacillus subtilis-based probiotic improves skeletal health and immunity in broiler chickens exposed to heat stress. Animals 2021, 11, 1494. [Google Scholar] [CrossRef]
- Rajput, D.S.; Zeng, D.; Khalique, A.; Rajput, S.S.; Wang, H.; Zhao, Y.; Sun, N.; Ni, X. Pretreatment with probiotics ameliorate gut health and necrotic enteritis in broiler chickens, a substitute to antibiotics. AMB Express 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Ishfaq, M.; Miao, Y.; Liu, Z.; Hao, M.; Wang, C.; Wang, J.; Chen, X. Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens. Poult. Sci. 2022, 101, 101693. [Google Scholar] [CrossRef]
- Toomer, O.T.; Livingston, M.; Wall, B.; Sanders, E.; Vu, T.; Malheiros, R.D.; Livingston, K.A.; Carvalho, L.V.; Ferket, P.R.; Dean, L.L. Feeding high-oleic peanuts to meat-type broiler chickens enhances the fatty acid profile of the meat produced. Poult. Sci. 2020, 99, 2236–2245. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Liu, H. Effects of Dietary Probiotic (Bacillus subtilis) Supplementation on Carcass Traits, Meat Quality, Amino Acid, and Fatty Acid Profile of Broiler Chickens. Front. Vet. Sci. 2021, 8, 767802. [Google Scholar] [CrossRef]
- Rehman, A.; Arif, M.; Sajjad, N.; Al-Ghadi, M.Q.; Swelum, A.A. Dietary effect of probiotics and prebiotics on broiler performance, carcass, and immunity. Poult. Sci. 2020, 99, 6946–6953. [Google Scholar] [CrossRef]
- Bartov, I.; Plavnik, I. Moderate excess of dietary protein increases breast meat yield of broiler chicks. Poult. Sci. 1998, 77, 680–688. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Li, J.; Cong, J.; Gao, F.; Zhou, G. Effects of dietary marigold extract supplementation on growth performance, pigmentation, antioxidant capacity and meat quality in broiler chickens. Asian-Australas. J. Anim. Sci. 2017, 30, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Heymich, M.-L.; Srirangan, S.; Pischetsrieder, M. Stability and activity of the antimicrobial peptide Leg1 in solution and on meat and its optimized generation from chickpea storage protein. Foods 2021, 10, 1192. [Google Scholar] [CrossRef] [PubMed]
- Niewiarowicz, A.; Pikul, J. Ante-mortem pH-value of skin surface as an index to post-mortem PSE and DFD condition in the breast muscles of chicken broiler. Fleischwirtsch 1979, 59, 405–407. [Google Scholar]
- Singh, M.; Lim, A.J.; Muir, W.I.; Groves, P.J. Comparison of performance and carcass composition of a novel slow-growing crossbred broiler with fast-growing broiler for chicken meat in Australia. Poult. Sci. 2021, 100, 100966. [Google Scholar] [CrossRef]
- Bai, K.; Huang, Q.; Zhang, J.; He, J.; Zhang, L.; Wang, T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult. Sci. 2017, 96, 74–82. [Google Scholar] [CrossRef]
- Wang, B.; Li, H.; Huang, Z.; Kong, B.; Liu, Q.; Wang, H.; Xu, M.; Xia, X. Dynamic changes in the qualities and heterocyclic aromatic amines of roasted pork induced by frying temperature and time. Meat Sci. 2021, 176, 108457. [Google Scholar] [CrossRef]
- Zhang, L.; Du, H.; Zhang, P.; Kong, B.; Liu, Q. Heterocyclic aromatic amine concentrations and quality characteristics of traditional smoked and roasted poultry products on the northern Chinese market. Food Chem. Toxicol. 2020, 135, 110931. [Google Scholar] [CrossRef]
- Turgut, S.S.; Işıkçı, F.; Soyer, A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Sci. 2017, 129, 111–119. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, F.; Zhang, K.; Zhao, J.; Wang, Y. Investigating the growth performance, meat quality, immune function and proteomic profiles of plasmal exosomes in Lactobacillus plantarum-treated broilers with immunological stress. Food Funct. 2021, 12, 11790–11807. [Google Scholar] [CrossRef]
- Sun, G.; Li, F.; Ma, X.; Sun, J.; Jiang, R.; Tian, Y.; Han, R.; Li, G.; Wang, Y.; Li, Z. gga-miRNA-18b-3p inhibits intramuscular adipocytes differentiation in chicken by targeting the ACOT13 gene. Cells 2019, 8, 556. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, L.C.; Claasen, B.; Van der Merwe, D.A.; Cloete, S.W.P.; Cloete, J.J.E. The effects of production system and sex on the sensory quality characteristics of Dorper lamb. Foods 2020, 9, 725. [Google Scholar] [CrossRef]
- Trout, G.R. Techniques for measuring water-binding capacity in muscle foods—A review of methodology. Meat Sci. 1988, 23, 235–252. [Google Scholar] [CrossRef]
- Li, M.; Gao, Q.; Tian, Z.; Lu, X.; Sun, Y.; Chen, Z.; Zhang, H.; Mao, Y.; Yang, Z. MIR221HG is a novel long noncoding RNA that inhibits bovine adipocyte differentiation. Genes 2019, 11, 29. [Google Scholar] [CrossRef]
- Soumeh, E.A.; Cedeno, A.D.C.; Niknafs, S.; Bromfield, J.; Hoffman, L.C. The Efficiency of Probiotics Administrated via Different Routes and Doses in Enhancing Production Performance, Meat Quality, Gut Morphology, and Microbial Profile of Broiler Chickens. Animals 2021, 11, 3607. [Google Scholar] [CrossRef]
- Wood, J.D.; Brown, S.N.; Nute, G.R.; Whittington, F.M.; Perry, A.M.; Johnson, S.P.; Enser, M. Effects of breed, feed level and conditioning time on the tenderness of pork. Meat Sci. 1996, 44, 105–112. [Google Scholar] [CrossRef]
- Yang, F.; Cho, W.-Y.; Seo, H.G.; Jeon, B.-T.; Kim, J.-H.; Kim, Y.H.B.; Wang, Y.; Lee, C.-H. Effect of L-cysteine, Boswellia serrata, and Whey Protein on the Antioxidant and Physicochemical Properties of Pork Patties. Foods 2020, 9, 993. [Google Scholar] [CrossRef]
- Haščík, P.; Pavelková, A.; Tkáčová, J.; Čuboň, J.; Kačániová, M.; Habánová, M.; Mlyneková, E. The amino acid profile of broiler chicken meat after dietary administration of bee products and probiotics. Biologia 2020, 75, 1899–1908. [Google Scholar] [CrossRef]
- Qi, K.; Men, X.; Wu, J.; Xu, Z. Rearing pattern alters porcine myofiber type, fat deposition, associated microbial communities and functional capacity. BMC Microbiol. 2019, 19, 181. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef]
- García-González, D.L.; Aparicio, R.; Aparicio-Ruiz, R. Volatile and amino acid profiling of dry cured hams from different swine breeds and processing methods. Molecules 2013, 18, 3927–3947. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Yi, H.; Wang, J.; Pan, M.; Chi, X.; Hao, H.; Ai, N. Effect of preheating treatment before defatting on the flavor quality of skim milk. Molecules 2019, 24, 2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzolf-Panek, M.; Kaczmarek, A.; Tomaszewska-Gras, J.; Cegielska-Radziejewska, R.; Szablewski, T.; Majcher, M.; Stuper-Szablewska, K. A chemometric approach to oxidative stability and physicochemical quality of raw ground chicken meat affected by black seed and other spice extracts. Antioxidants 2020, 9, 903. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Ahn, D.U.; Nam, K.C.; Jo, C. Flavour chemistry of chicken meat: A review. Asian-Australas. J. Anim. Sci. 2013, 26, 732. [Google Scholar] [CrossRef] [PubMed]
- Elmore, J.S.; Cooper, S.L.; Enser, M.; Mottram, D.S.; Sinclair, L.A.; Wilkinson, R.G.; Wood, J.D. Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb. Meat Sci. 2005, 69, 233–242. [Google Scholar] [CrossRef]
- Vandamme, J.; Nikiforov, A.; De Roose, M.; Leys, C.; De Cooman, L.; Van Durme, J. Controlled accelerated oxidation of oleic acid using a DBD plasma: Determination of volatile oxidation compounds. Food Res. Int. 2016, 79, 54–63. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; De la Guardia, M. Determination of edible oil parameters by near infrared spectrometry. Anal. Chim. Acta 2007, 596, 330–337. [Google Scholar] [CrossRef]
- Hernandez-Orte, P.; Cersosimo, M.; Loscos, N.; Cacho, J.; Garcia-Moruno, E.; Ferreira, V. The development of varietal aroma from non-floral grapes by yeasts of different genera. Food Chem. 2008, 107, 1064–1077. [Google Scholar] [CrossRef]
- Morán, L.; Giráldez, F.J.; Panseri, S.; Aldai, N.; Jordán, M.J.; Chiesa, L.M.; Andrés, S. Effect of dietary carnosic acid on the fatty acid profile and flavour stability of meat from fattening lambs. Food Chem. 2013, 138, 2407–2414. [Google Scholar] [CrossRef]
- Soncin, S.; Chiesa, L.M.; Cantoni, C.; Biondi, P.A. Preliminary study of the volatile fraction in the raw meat of pork, duck and goose. J. Food Compos. Anal. 2007, 20, 436–439. [Google Scholar] [CrossRef]
- Zhuang, K.; Wu, N.; Wang, X.; Wu, X.; Wang, S.; Long, X.; Wei, X. Effects of 3 feeding modes on the volatile and nonvolatile compounds in the edible tissues of female Chinese mitten crab (Eriocheir sinensis). J. Food Sci. 2016, 81, S968–S981. [Google Scholar] [CrossRef]
- Van Ba, H.; Hwang, I.; Jeong, D.; Touseef, A. Principle of meat aroma flavors and future prospect. Latest Res. Into Qual. Control. 2012, 2, 145–176. [Google Scholar]
- Qi, J.; Wang, H.-h.; Zhou, G.-h.; Xu, X.-l.; Li, X.; Bai, Y.; Yu, X.-b. Evaluation of the taste-active and volatile compounds in stewed meat from the Chinese yellow-feather chicken breed. Int. J. Food Prop. 2017, 20, S2579–S2595. [Google Scholar] [CrossRef]
- Gkarane, V.; Brunton, N.P.; Harrison, S.M.; Gravador, R.S.; Allen, P.; Claffey, N.A.; Diskin, M.G.; Fahey, A.G.; Farmer, L.J.; Moloney, A.P. Volatile profile of grilled lamb as affected by castration and age at slaughter in two breeds. J. Food Sci. 2018, 83, 2466–2477. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta. 2003, 329, 23–38. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, X.; Hayat, K.; Duhoranimana, E.; Zhang, X.; Xia, S.; Yu, J.; Xing, F. Characterization of odor-active compounds of chicken broth and improved flavor by thermal modulation in electrical stewpots. Food Res. Int. 2018, 109, 72–81. [Google Scholar] [CrossRef]
- Ayseli, M.T.; Filik, G.; Selli, S. Evaluation of volatile compounds in chicken breast meat using simultaneous distillation and extraction with odour activity value. J. Food Nutr. Res. 2014, 53, 137–142. [Google Scholar]
- Jin, Y.; Cui, H.; Yuan, X.; Liu, L.; Liu, X.; Wang, Y.; Ding, J.; Xiang, H.; Zhang, X.; Liu, J. Identification of the main aroma compounds in Chinese local chicken high-quality meat. Food Chem. 2021, 359, 129930. [Google Scholar] [CrossRef]
- Horsted, K.; Allesen-Holm, B.H.; Hermansen, J.E.; Kongsted, A.G. Sensory profiles of breast meat from broilers reared in an organic niche production system and conventional standard broilers. J. Sci. Food Agric. 2012, 92, 258–265. [Google Scholar] [CrossRef]
Ingredient | Starter Diet (%) 1–21 Days | Finisher Diet (%) 22–42 Days |
---|---|---|
Corn | 51.78 | 52.25 |
Soybean meal | 36.63 | 33.54 |
Wheat grain | 3.02 | 5.02 |
Soybean oil | 4.02 | 5.52 |
Dicalcium phosphate | 1.91 | 1.61 |
Limestone | 1.21 | 1.01 |
L-lysine | 0.32 | 0.10 |
DL-methionine | 0.19 | 0.10 |
L-threonine | 0.12 | 0.05 |
NaCl | 0.30 | 0.30 |
Premix 1 | 0.50 | 0.50 |
Total | 100 | 100 |
Calculated nutrient level (%) | ||
ME (MJ/kg) | 12.43 | 12.96 |
Crude protein | 21.26 | 20.20 |
Calcium | 1.16 | 0.98 |
Available phosphorus | 0.52 | 0.46 |
Item | CN | BS | p-Value |
---|---|---|---|
1–21 days | |||
ADFI (g) | 57.45 ± 2.34 | 57.00 ± 1.79 | 0.515 |
ADG (g) | 48.87 ± 1.91 | 50.08 ± 1.46 | <0.05 |
FCR | 1.18 ± 0.02 | 1.14 ± 0.03 | <0.001 |
22–42 days | |||
ADFI (g) | 147.73 ± 5.41 | 148.11 ± 3.74 | 0.826 |
ADG (g) | 83.28 ± 3.84 | 92.02 ± 4.75 | <0.001 |
FCR | 1.72 ± 0.09 | 1.60 ± 0.06 | <0.001 |
1–42 days | |||
ADFI (g) | 101.97 ± 2.90 | 102.75 ± 2.08 | 0.378 |
ADG (g) | 66.20 ± 2.07 | 71.03 ± 2.16 | <0.001 |
FCR | 1.54 ± 0.03 | 1.46 ± 0.04 | <0.001 |
1-day BW (g) | 45.31 ± 1.02 | 45.05 ± 1.25 | 0.617 |
21-day BW (g) | 1071.684 ± 40.17 | 1096.78 ± 30.62 | <0.05 |
42-day BW (g) | 2825.77 ± 86.86 | 3029.23 ± 103.53 | <0.001 |
Item | CN | BS | p-Value |
---|---|---|---|
Dressing percentage (%) | 94.10 ± 1.57 | 94.49 ± 0.98 | 0.447 |
Semi-eviscerated percentage (%) | 83.76 ± 2.92 | 84.46 ± 2.50 | 0.484 |
Eviscerated percentage (%) | 74.48 ± 2.69 | 75.71 ± 2.60 | 0.206 |
Abdominal fat (%) | 1.21 ± 0.27 | 1.20 ± 0.19 | 0.890 |
Breast muscle (%) | 28.07 ± 1.58 | 30.82 ± 1.33 | <0.001 |
Thigh muscle (%) | 19.47 ± 1.16 | 18.85 ± 1.27 | 0.289 |
Item | Muscle | CN | BS | p-Value |
---|---|---|---|---|
45 min pH | Breast | 6.52 ± 0.15 | 6.43 ± 0.08 | 0.149 |
Thigh | 6.69 ± 0.08 | 6.60 ± 0.04 | <0.01 | |
24 h pH | Breast | 6.10 ± 0.11 | 6.17 ± 0.09 | 0.149 |
Thigh | 6.51 ± 0.13 | 6.29 ± 0.20 | <0.05 | |
24 h L* | Breast | 53.15 ± 2.62 | 50.54 ± 2.15 | <0.05 |
Thigh | 51.82 ± 2.08 | 53.08 ± 2.95 | 0.283 | |
24 h a* | Breast | 4.67 ± 1.74 | 7.21 ± 2.27 | <0.05 |
Thigh | 6.67 ± 2.92 | 6.04 ± 2.18 | 0.632 | |
24 h b* | Breast | 9.55 ± 1.43 | 9.64 ± 1.39 | 0.888 |
Thigh | 8.75 ± 1.72 | 9.65 ± 0.86 | 0.153 | |
Shear force (N) | Breast | 27.23 ± 6.09 | 22.99 ± 6.18 | <0.05 |
Thigh | 20.99 ± 3.04 | 17.71 ± 3.43 | <0.01 | |
Pressing loss (%) | Breast | 17.56 ± 7.72 | 17.19 ± 2.90 | 0.889 |
Thigh | 14.67 ± 2.69 | 10.53 ± 3.08 | <0.05 | |
Cooking loss (%) | Breast | 16.14 ± 2.61 | 14.11 ± 3.68 | 0.225 |
Thigh | 14.59 ± 0.35 | 11.60 ± 2.30 | <0.05 |
Item | Muscle | CN | BS | p-Value |
---|---|---|---|---|
Moisture (%) | Breast | 72.38 ± 0.60 | 72.57 ± 1.70 | 0.869 |
Thigh | 71.68 ± 1.56 | 70.30 ± 2.09 | 0.410 | |
Protein (%) | Breast | 19.81 ± 0.59 | 20.83 ± 0.67 | <0.05 |
Thigh | 19.35 ± 0.72 | 19.21 ± 0.21 | 0.650 | |
Fat (%) | Breast | 2.88 ± 0.21 | 3.12 ± 0.35 | 0.378 |
Thigh | 5.60 ± 1.16 | 8.15 ± 0.61 | <0.05 | |
ash (%) | Breast | 1.23 ± 0.12 | 1.13 ± 0.12 | 0.349 |
Thigh | 1.02 ± 0.76 | 1.01 ± 0.93 | 0.892 |
Amino Acids | Breast | Thigh | ||||
---|---|---|---|---|---|---|
CN | BS | p-Value | CN | BS | p-Value | |
Essential amino acid (EAA) | ||||||
Thr | 0.72 ± 0.03 | 0.81 ± 0.05 | <0.05 | 0.59 ± 0.06 | 0.63 ± 0.05 | 0.332 |
Val | 0.85 ± 0.04 | 0.93 ± 0.06 | 0.077 | 0.65 ± 0.07 | 0.69 ± 0.04 | 0.352 |
Met | 0.46 ± 0.02 | 0.52 ± 0.03 | <0.05 | 0.35 ± 0.07 | 0.38 ± 0.03 | 0.414 |
Ile | 0.84 ± 0.04 | 0.91 ± 0.05 | 0.172 | 0.64 ± 0.08 | 0.66 ± 0.04 | 0.516 |
Leu | 1.49 ± 0.07 | 1.59 ± 0.08 | 0.340 | 1.14 ± 0.16 | 1.18 ± 0.08 | 0.521 |
Phe | 0.66 ± 0.03 | 0.73 ± 0.04 | <0.05 | 0.53 ± 0.06 | 0.55 ± 0.03 | 0.413 |
Lys | 1.57 ± 0.07 | 1.7 ± 0.07 | 0.138 | 1.23 ± 0.15 | 1.28 ± 0.08 | 0.472 |
Non-essential amino acid (NEAA) | ||||||
Asp | 1.56 ± 0.07 | 1.72 ± 0.09 | 0.051 | 1.24 ± 0.14 | 1.30 ± 0.09 | 0.403 |
Ser | 0.62 ± 0.03 | 0.69 ± 0.04 | <0.05 | 0.53 ± 0.06 | 0.57 ± 0.04 | 0.265 |
Glu | 2.65 ± 0.12 | 2.83 ± 0.14 | 0.229 | 2.19 ± 0.29 | 2.33 ± 0.16 | 0.320 |
Gly | 0.72 ± 0.04 | 0.84 ± 0.06 | <0.05 | 0.65 ± 0.08 | 0.66 ± 0.03 | 0.686 |
Ala | 0.96 ± 0.04 | 1.09 ± 0.06 | <0.05 | 0.79 ± 0.08 | 0.82 ± 0.05 | 0.404 |
Cys | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.298 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.364 |
Tyr | 0.54 ± 0.02 | 0.53 ± 0.16 | 0.697 | 0.45 ± 0.05 | 0.47 ± 0.04 | 0.475 |
His | 0.65 ± 0.05 | 0.70 ± 0.05 | 0.306 | 0.40 ± 0.05 | 0.42 ± 0.04 | 0.397 |
Arg | 1.09 ± 0.05 | 1.24 ± 0.07 | <0.05 | 0.89 ± 0.09 | 0.94 ± 0.06 | 0.380 |
Pro | 0.55 ± 0.03 | 0.57 ± 0.06 | 0.980 | 0.49 ± 0.07 | 0.51 ± 0.03 | 0.656 |
Total EAA | 6.75 ± 0.47 | 7.18 ± 0.35 | 0.104 | 5.13 ± 0.64 | 5.37 ± 0.34 | 0.436 |
Total AA | 15.96 ± 0.73 | 17.45 ± 0.85 | 0.106 | 12.81 ± 1.50 | 13.42 ± 0.81 | 0.400 |
NO. | Compounds | Odor Description | Aroma Intensity | |||||
---|---|---|---|---|---|---|---|---|
Breast | Thigh | |||||||
CN | BS | p-Value | CN | BS | p-Value | |||
Aldehydes | ||||||||
1 | 2-methyl-butanal | Musty, chocolate, nutty | 8.51 ± 4.89 | 22.07 ± 9.20 | <0.001 | 12.54 ± 1.51 | 8.25 ± 6.47 | 0.145 |
2 | Hexanal | Green, grassy | 29.72 ± 20.15 | 593.71 ± 144.54 | <0.001 | 9.08 ± 4.18 | 170.22 ± 176.56 | <0.05 |
3 | Octanal | Fruity, sweet orange | 7.68 ± 4.59 | 63.75 ± 36.94 | <0.01 | 5.35 ± 1.56 | 10.64 ± 9.99 | 0.228 |
4 | Nonanal | Sweet melon | 54.23 ± 46.27 | 125.33 ± 75.4 | 0.077 | 24.36 ± 11.09 | 18.84 ± 8.85 | 0.364 |
5 | (E)-2-heptenal | Medicinal | 17.10 ± 6.26 | 37.47 ± 26.97 | 0.102 | - | 9.22 ± 10.58 | - |
6 | (E)-2-octenal | Grilled meat, peanut cake | 18.23 ± 6.26 | 39.29 ± 24.43 | 0.068 | - | - | - |
7 | (E)-2-decenal | Roasted, nut, crust | 9.85 ± 2.78 | 11.41 ± 5.73 | 0.560 | 2.25 ± 0.43 | - | - |
8 | (E)-2-undecenal | Fresh fragrance, cabbage | 6.86 ± 2.86 | 5.32 ± 3.84 | 0.452 | - | - | - |
9 | Heptanal | Fresh, aldehydic, fatty | - | 43.39 ± 16.74 | - | - | 17.08 ± 14.81 | - |
10 | Decanal | Green | - | 6.49 ± 2.2 | - | - | - | - |
11 | (E,E)-2,4-nonadienal | Toasted, fatty | - | 5.44 ± 3.29 | - | - | - | - |
12 | (E,E)-2,4-decadienal | Fatty, toasted, scallion | 13.80 ± 2.73 | 3.63 ± 2.80 | <0.001 | 8.82 ± 1.14 | - | - |
Alcohols | ||||||||
13 | 1-Pentanol | Pungent, fermented | 24.59 ± 3.14 | 75.35 ± 44.26 | <0.05 | 29.45 ± 4.65 | 42.57 ± 25.88 | 0.250 |
14 | (E)-2-octen-1-ol | Green, citrus, vegetable | 45.2 ± 37.55 | 42.62 ± 9.57 | 0.874 | 15.47 ± 3.25 | 14.30 ± 7.65 | 0.739 |
15 | 1-octanol | Waxy, green, orange | 45.81 ± 25.15 | 62.03 ± 24.59 | 0.285 | 26.72 ± 7.22 | 7.86 ± 4.59 | <0.001 |
16 | 4-ethylcyclohexanol | - | 44.45 ± 24.99 | 37.13 ± 26.19 | 0.631 | 12.91 ± 1.79 | - | - |
17 | 1-nonanol | Fresh, clean, fatty | 107.19 ± 36.90 | - | - | 37.80 ± 8.83 | - | - |
18 | 1-octen-3-ol | Mushroom | 127.75 ± 32.17 | 331.66 ± 136.34 | <0.01 | 87.31 ± 15.63 | 54.03 ± 59.28 | 0.213 |
19 | 2-ethyl-1-hexanol | Citrus, fresh, floral | 6.53 ± 1.27 | 5.72 ± 1.79 | 0.383 | - | 6.52 ± 1.84 | - |
20 | 3-(methylthio)-1-propanol | Sulfurous, onion, sweet | 14.60 ± 0.01 | - | - | 6.47 ± 1.67 | - | - |
21 | 1-hexanol | Ethereal, fusel, oily | 292.53 ± 146.01 | 285.61 ± 161.76 | 0.939 | 169.87 ± 49.31 | - | - |
22 | 1-heptanol | Musty, leafy, violet | - | 54.66 ± 15.5 | - | 20.8 ± 4.83 | 7.99 ± 9.50 | <0.05 |
23 | 1-nonen-4-ol | - | - | 15.93 ± 1.54 | - | 4.93 ± 0.63 | - | - |
Acid | ||||||||
24 | Propanoic acid | Pungent, acidic | 14.93 ± 200.20 | - | - | 5.47 ± 4.82 | - | - |
25 | Octanoic acid | Fatty, waxy, rancid | 14.13 ± 5.89 | 3.79 ± 1.16 | <0.01 | 6.55 ± 3.7 | 1.22 ± 0.43 | <0.01 |
26 | Nonanoic acid | Waxy, dirty, cheese | 2.40 ± 1.74 | 1.80 ± 0.01 | 0.414 | 1.64 ± 0.84 | 4.48 ± 2.97 | <0.05 |
Others | ||||||||
27 | 2-pentylfuran | Fruity, green, earthy | 36.03 ± 21.02 | 28.17 ± 21.94 | 0.540 | 9.48 ± 3.05 | 4.48 ± 1.37 | <0.01 |
28 | 2-nonanone | Fresh, sweet, green | 22.11 ± 15.02 | 14.54 ± 19.99 | 0.539 | 8.50 ± 3.87 | - | - |
29 | (E,E)-3,5-octadien-2-one | Fruity, green, grassy | 6.61 ± 0.61 | 4.80 ± 1.45 | <0.05 | - | - | - |
30 | 2,3-octanedione | Dill, asparagus | - | 47.27 ± 8.48 | - | - | 17.44 ± 19.27 | - |
31 | p-cresol | Phenolic, narcissus, animal | - | 0.40 ± 0.05 | - | 0.92 ± 0.31 | 0.69 ± 0.21 | 0.157 |
NO. | Compounds | Thresholds (μg/kg) | ROAVs | |||||
---|---|---|---|---|---|---|---|---|
Breast | Thigh | |||||||
CN | BS | p-Value | CN | BS | p-Value | |||
Aldehydes | ||||||||
1 | 2-methyl-butanal | 84.300 | <1 | <1 | - | <1 | <1 | 0.145 |
2 | Hexanal | 5.000 | 6 | 119 | <0.001 | 2 | 34 | <0.05 |
3 | Octanal | 0.587 | 13 | 109 | <0.01 | 9 | 18 | 0.228 |
4 | Nonanal | 1.100 | 49 | 114 | 0.077 | 22 | 17 | 0.364 |
5 | (E)-2-heptenal | 40.000 | <1 | <1 | - | - | - | - |
6 | (E)-2-octenal | 3.000 | 6 | 13 | 0.068 | - | - | - |
7 | (E)-2-decenal | 17.000 | <1 | <1 | - | <1 | - | - |
8 | (E)-2-undecenal | 0.780 | 9 | 7 | 0.452 | - | - | - |
9 | Heptanal | 2.800 | - | 15 | - | - | - | - |
10 | Decanal | 3.000 | - | 2 | - | - | - | - |
11 | (E,E)-2,4-nonadienal | 0.100 | - | 54 | - | - | - | - |
12 | (E,E)-2,4-decadienal | 2150.000 | <1 | <1 | - | <1 | - | - |
Alcohols | ||||||||
13 | 1-pentanol | 150.200 | <1 | <1 | - | <1 | <1 | - |
14 | (E)-2-octen-1-ol | 20.000 | 2 | 2 | 0.874 | <1 | <1 | - |
15 | 1-octanol | 125.800 | <1 | <1 | - | <1 | <1 | - |
16 | 4-ethylcyclohexanol | - | - | - | - | - | - | - |
17 | 1-nonanol | 45.500 | 2 | - | - | <1 | - | - |
18 | 1-octen-3-ol | 1.500 | 85 | 221 | <0.01 | 58 | 36 | 0.213 |
19 | 2-ethyl-1-hexanol | 25482.200 | <1 | <1 | - | - | <1 | - |
20 | 3-(methylthio)-1-propanol | 123.230 | <1 | - | - | - | - | - |
21 | 1-hexanol | 500.000 | <1 | <1 | - | - | - | - |
22 | 1-heptanol | 425.000 | - | <1 | - | <1 | <1 | - |
23 | 1-nonen-4-ol | - | - | - | - | - | - | - |
Acid | ||||||||
24 | Propanoic acid | 2190.000 | <1 | - | - | <1 | - | - |
25 | Octanoic acid | 3000.000 | <1 | <1 | - | <1 | <1 | - |
26 | Nonanoic acid | 4600.000 | <1 | <1 | - | <1 | <1 | - |
Others | ||||||||
27 | 2-pentylfuran | 5.800 | 6 | 5 | 0.540 | 2 | <1 | <0.01 |
28 | 2-nonanone | 41.000 | <1 | <1 | - | <1 | - | - |
29 | (E,E)-3,5-octadien-2-one | 100.000 | <1 | <1 | - | - | - | - |
30 | 2,3-octanedione | - | - | - | - | - | - | - |
31 | p-cresol | 3.900 | - | <1 | - | <1 | <1 | - |
Item | Breast | Thigh | ||||
---|---|---|---|---|---|---|
CN | BS | p-Value | CN | BS | p-Value | |
Meat color | 6.87 ± 1.20 | 7.11 ± 1.31 | 0.222 | 6.08 ± 1.41 | 6.23 ± 1.48 | 0.433 |
Aroma | 6.70 ± 1.16 | 7.03 ± 1.06 | 0.187 | 6.24 ± 1.30 | 6.73 ± 1.11 | <0.01 |
Springiness | 6.13 ± 1.14 | 6.39 ± 1.11 | 0.178 | 6.02 ± 1.28 | 6.33 ± 1.45 | 0.097 |
Tenderness | 6.07 ± 1.32 | 6.61 ± 1.29 | <0.05 | 6.29 ± 1.45 | 6.73 ± 1.23 | <0.05 |
Juiciness | 5.83 ± 1.27 | 6.37 ± 1.32 | <0.05 | 6.03 ± 1.36 | 6.16 ± 1.55 | 0.575 |
Taste | 6.27 ± 1.17 | 6.38 ± 1.13 | 0.705 | 6.27 ± 1.24 | 6.47 ± 1.33 | 0.300 |
Umami | 6.33 ± 1.18 | 6.29 ± 1.19 | 0.872 | 6.06 ± 1.58 | 6.20 ± 1.57 | 0.458 |
Aftertaste | 6.39 ± 1.27 | 6.36 ± 1.13 | 0.751 | 6.18 ± 1.48 | 6.26 ± 1.65 | 0.739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Ma, A.; Zhi, T.; Hong, D.; Chen, Z.; Li, S.; Jia, Y. Dietary Effect of Brevibacillus laterosporus S62-9 on Chicken Meat Quality, Amino Acid Profile, and Volatile Compounds. Foods 2023, 12, 288. https://doi.org/10.3390/foods12020288
Liu X, Ma A, Zhi T, Hong D, Chen Z, Li S, Jia Y. Dietary Effect of Brevibacillus laterosporus S62-9 on Chicken Meat Quality, Amino Acid Profile, and Volatile Compounds. Foods. 2023; 12(2):288. https://doi.org/10.3390/foods12020288
Chicago/Turabian StyleLiu, Xiangfei, Aijin Ma, Tongxin Zhi, Dan Hong, Zhou Chen, Siting Li, and Yingmin Jia. 2023. "Dietary Effect of Brevibacillus laterosporus S62-9 on Chicken Meat Quality, Amino Acid Profile, and Volatile Compounds" Foods 12, no. 2: 288. https://doi.org/10.3390/foods12020288
APA StyleLiu, X., Ma, A., Zhi, T., Hong, D., Chen, Z., Li, S., & Jia, Y. (2023). Dietary Effect of Brevibacillus laterosporus S62-9 on Chicken Meat Quality, Amino Acid Profile, and Volatile Compounds. Foods, 12(2), 288. https://doi.org/10.3390/foods12020288