Optimization of HS-SPME-GC-MS for the Determination of Volatile Flavor Compounds in Ningxiang Pork
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Harvest and Sample Collection
2.2. Headspace Solid-Phase Microextraction
2.3. Gas Chromatography–Mass Spectrometry
2.4. Screening Capillary Column and Extraction Head
2.5. Single-Factor Test
2.5.1. Heat Treatment Time
2.5.2. Equilibration Time
2.5.3. Equilibrium Temperature
2.5.4. Extraction Time
2.5.5. Extraction Temperature
2.6. Orthogonal Test
2.7. Statistical Analysis
3. Results and Discussion
3.1. Influencing Factors on GC-MS Analysis
3.1.1. Effect of Columns on VFCs
3.1.2. Effect of Extraction Head on VFCs
3.1.3. Effect of Heat Treatment on VFCs
3.1.4. Effect of Equilibration Conditions on VFCs
3.1.5. Effect of Extraction Conditions on VFCs
3.2. Orthogonal Test Optimized Condition Screening
3.3. Validation of the Feasibility of Exploring Experimental Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akyar, I. Latest Research into Quality Control; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Spanier, A.; Miller, J. Role of Proteins and Peptides in Meat Flavor. In Food Flavor and Safety; American Chemical Society: Washington, DC, USA, 1993; Volume 203, pp. 78–97. [Google Scholar]
- Nan, L. Effect of Water-Soluble Precursors on the Formation of Aroma Compounds in Steamed Chinese Mitten Crab (Eriocheir sinensis) Abdominal Meat. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2017. [Google Scholar]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. Eur. Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Lawrie, R.A.; Ledward, D.A. Nutrition. In Lawrie’s Meat Science; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar]
- Elmore, J.; Campo, M.; Enser, M.; Mottram, D. Effect of Lipid Composition on Meat-like Model Systems Containing Cysteine, Ribose, and Polyunsaturated Fatty Acids. J. Agric. Food Chem. 2002, 50, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Bishop, S.C.; Karamichou, E. Genetic and genomic approaches to improving sheep meat quality. In Improving the Sensory and Nutritional Quality of Fresh Meat; Woodhead Publishing: Sawston, UK, 2009; pp. 249–263. [Google Scholar] [CrossRef]
- Mottram, D.S.; Edwards, R.A. The role of triglycerides and phospholipids in the aroma of cooked beef. J. Sci. Food Agric. 1983, 34, 517–522. [Google Scholar] [CrossRef]
- Huanlu, S. Biochemical and Biological Preparation of Edible Flavor; China Goods and Materials Press: Beijing, China, 2002. [Google Scholar]
- Guo, B. Research on Formation of Meat Flavor and Flavor of Mutton Essence. J. Food Sci. Technol. 2011, 29, 70–74. [Google Scholar] [CrossRef]
- Kawai, T.; Irie, M.; Sakaguchi, M. Degradation of 2,4,6-trialkyltetrahydro-1,3,5-thiadiazines during storage. J. Agric. Food Chem. 1985, 33, 393–397. [Google Scholar] [CrossRef]
- Whitfield, F.; Mottram, D.; Brock, S.; Puckey, D.; Farmer, L. Effect of phospholipid on the formation of volatile heterocyclic compounds in heated aqueous solutions of amino acids and ribose. J. Sci. Food Agric. 1988, 42, 261–272. [Google Scholar] [CrossRef]
- Yang Longjiang, C.H. Research progress on flavor formation of meat and meat products. Meat Ind. 2001, 000, 17–27. [Google Scholar] [CrossRef]
- Chen, G.; Su, Y.; He, L.; Wu, H.; Shui, S. Analysis of volatile compounds in pork from four different pig breeds using headspace solid-phase micro-extraction/gas chromatography—mass spectrometry. Food Sci. Nutr. 2019, 7, 1145–1552. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Yang, Y.; Zhu, J.; He, W.; Zhao, Q.; Tang, C.; Qin, Y.; Zhang, J. Comparative characterization of lipids and volatile compounds of Beijing Heiliu and Laiwu Chinese black pork as markers. Food Res. Int. 2021, 146, 110433. [Google Scholar] [CrossRef]
- Argemí-Armengol, I.; Villalba, D.; Tor, M.; Pérez-Santaescolástica, C.; Purriños, L.; Lorenzo, J.M.; Álvarez-Rodríguez, J. The extent to which genetics and lean grade affect fatty acid profiles and volatile compounds in organic pork. PeerJ 2019, 7, e7322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X. Ningxiang Huazhu, a famous pig in China. J. Farm Prod. Mark. Wkly. 2018, 15–16. [Google Scholar]
- Wang, R.; Tian, J.; Jiang, W.; Wang, Q.; Chen, J.; Ye, X.; Liu, D. Effects of the Composite of Ginger, Onion and Garlic on the Volatile Compounds of Stewed-pork Based on Electronic Nose and Gas Chromatography-mass Spectrometry. J. Chin. Inst. Food Sci. Technol. 2017, 17, 10. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, J.; Zang, M.; Zhang, K.; Li, D.; Li, X. Flavor Profile Analysis of Instant and Traditional Lanzhou Beef Bouillons Using HS-SPME-GC/MS, Electronic Nose and Electronic Tongue. Bioengineering 2022, 9, 582. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Gao, H.; Zhang, Y.; Liao, Y.; Zeng, Q.; He, X.; Xu, K.; He, J. Optimizing conditions of electronic nose for rapid detection of flavor substances in Ningxiang Pork. J. Food Process Eng. 2021, 44, e13758. [Google Scholar] [CrossRef]
- Xu, C.; Chen, G.-S.; Xiong, Z.-H.; Fan, N.; Wang, X.-C.; Liu, Y. Applications of solid-phase microextraction in food analysis. TrAC Trends Anal. Chem. 2016, 80, 12–29. [Google Scholar] [CrossRef]
- Sun, C.; Wang, R.; Wang, T.; Li, Q. Primary evaluation of nine volatile N-nitrosamines in raw red meat from Tianjin, China, by HS-SPME-GC-MS. Food Chem. 2019, 310, 125945. [Google Scholar] [CrossRef]
- Song, X.; Canellas, E.; Nerín, C. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction–gas chromatography–mass spectrometry and chemometrics. Food Chem. 2021, 342, 128341. [Google Scholar] [CrossRef]
- Feng, M.; Dai, Z.; Yin, Z.; Wang, X.; Chen, S.; Zhang, H. The volatile flavor compounds of Shanghai smoked fish as a special delicacy. J. Food Biochem. 2021, 45, e13553. [Google Scholar] [CrossRef]
- Alves, V.; Gonçalves, J.; Figueira, J.; Ornelas, P.; Branco, R.; Câmara, J.; Pereira, J. Beer volatile fingerprinting at different brewing steps. Food Chem. 2020, 326, 126856. [Google Scholar] [CrossRef]
- Huang, M.; Huo, J.; Wu, J.; Zhao, M.; Sun, J.; Zheng, F.; Sun, X.; Li, H. Structural characterization of a tetrapeptide from Sesame flavor-type Baijiu and its interactions with aroma compounds. Food Res. Int. 2019, 119, 733–740. [Google Scholar] [CrossRef]
- Arcanjo, N.; Bezerra, T.K.A.; Silva, F.; Madruga, M. Optimization of the HS-SPME-GC/MS technique for determining volatile compounds in red wines made from Isabel grapes (Vitis labrusca). Food Sci. Technol. 2015, 35. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Ding, S.; Pan, Z.; Li, X.; Fu, F. Characteristic Volatile Fingerprints and Odor Activity Values in Different Citrus-Tea by HS-GC-IMS and HS-SPME-GC-MS. Molecules 2020, 25, 6027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Tang, C.; Jiang, B.; Mo, X.; Wang, Z. Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato. Molecules 2021, 26, 5808. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, T.K.A.; AraÚJo, A.; Arcanjo, N.; Silva, F.; Queiroga, R.; Madruga, M. Optimization of the HS-SPME-GC/MS technique for the analysis of volatile compounds in caprine Coalho cheese using response surface methodology. Food Sci. Technol. 2016, 36. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Liu, X.; Huang, Y.; Lu, J.; Zhang, Y. Volatile aroma compounds in wines from Chinese wild/hybrid species. J. Food Biochem. 2019, 43, e12684. [Google Scholar] [CrossRef]
- Cincotta, F.; Antonella, V.; Tripodi, G.; Condurso, C. Volatile emerging contaminants in melon fruits, analyzed by HS-SPME-GC-MS. Food Addit. Contam.: Part A 2017, 35, 512–518. [Google Scholar] [CrossRef]
- Wang, L.; Liu, T.; Liu, L.; Liu, Y.; Wu, X. Impacts of chitosan nanoemulsions with thymol or thyme essential oil on volatile compounds and microbial diversity of refrigerated pork meat. Meat Sci. 2021, 185, 108706. [Google Scholar] [CrossRef]
- Yun, Z. Study on Quality Characteristics and Fresh-Keeping Technology of Ningxiang Pork. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2017. [Google Scholar]
- Zhao, J.; Wang, M.; Xie, J.; Zhao, M.; Hou, L.; Liang, J.; Wang, S.; Cheng, J. Volatile flavor constituents in the pork broth of black-pig. Food Chem. 2017, 226, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y. Study on Difference Analysis of Volatile Flavor Components of Traditional Thoroughbred Pork and Lean Pork. Master’s Thesis, Hefei Polytechnic University, Hefei, China, 2012. [Google Scholar]
- Yang, J. Study on the Identification of pork Kinds and Comparison of Meat Flavor and Quality between three Chinese Indigenous and Lean Pig. Doctoral Thesis, Hefei Polytechnic University, Hefei, China, 2015. [Google Scholar]
- Hsu, K.-Y.; Chen, B.-H. Analysis and Reduction of Heterocyclic Amines and Cholesterol Oxidation Products in Chicken by Controlling Flavorings and Roasting Condition. Food Res. Int. 2020, 131, 109004. [Google Scholar] [CrossRef]
- Luo, R.M.; Zhou, G.H. Changes in Volatile Compounds of Cooked Beef during Freeze Drying; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Chiu, C.-W.; Kao, T.H.; Chen, B.-H. An improved analytical method for determination of cholesterol oxidation products in meat and animal fat by QuEChERS coupled with gas chromatography-mass spectrometry. J. Agric. Food Chem. 2018, 66, 3561–3571. [Google Scholar] [CrossRef]
- Da, D.; Nian, Y.; Zou, B.; Zhao, D.; Zhang, Z.; Li, C. Influence of induction cooking on the flavor of fat cover of braised pork belly. J. Food Sci. 2021, 86, 1997–2010. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Li, C.; Xu, B. Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat. Food Chem. 2021, 376, 131881. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Song, H. Variation in Volatile Flavor Compounds of Cooked Mutton Meatballs during Storage. Foods 2021, 10, 2430. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Wang, Y.; Luo, R.; Ding, D.; Bai, H.; Shen, F. Characterization of flavor volatile compounds in industrial stir-frying mutton sao zi by GC-MS, E-nose, and physicochemical analysis. Food Sci. Nutr. 2020, 9, 499–513. [Google Scholar] [CrossRef]
- Romero, P.; Paadilla, G.; Alvis Bermúdez, A. The Effects of Thermal Treatment on the Emulsion Quality of Mutton Meat (Ovis aries) and Bovine Meat (Bos indicus). Adv. J. Food Sci. Technol. 2018, 15, 197–204. [Google Scholar] [CrossRef]
- Hidalgo, F.; Zamora, R. Strecker-type Degradation Produced by the Lipid Oxidation Products 4,5-Epoxy-2-Alkenals. J. Agric. Food Chem. 2004, 52, 7126–7131. [Google Scholar] [CrossRef]
- Reartes, G.; Di Paola, R.; Eynard, A.; Muñoz, S. Cooking Methods and the formation of PhIP (2-Amino, 1-methyl, 6-phenylimidazo[4,5-b] pyridine) in the crust of the habitually consumed meat in Argentina. Food Chem. Toxicol. 2016, 92, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, T.; Vossen, E.; Hemeryck, L.; Vanden Bussche, J.; Vanhaecke, L.; De Smet, S. Increased oxidative and nitrosative reactions during digestion could contribute to the association between well-done red meat consumption and colorectal cancer. Food Chem. 2015, 187, 29–36. [Google Scholar] [CrossRef]
- Cui, X.; Ma, L.; Liu, P. Preparation of Pork Flavor by Thermal Reaction and Analysis of Its Volatile Flavor Compounds. China Condiment. 2017, 42, 47–51. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, G.-H.; Yin, F.; Liu, Z.; Wang, J.; Zhou, D.; Shahidi, F.; Zhu, B. Effects of roasting temperature and time on aldehyde formation derived from lipid oxidation in scallop (Patinopecten yessoensis) and the deterrent effect by antioxidants of bamboo leaves. Food Chem. 2021, 369, 130936. [Google Scholar] [CrossRef] [PubMed]
Extractor Model | Film Thickness | Coating Material | Manufacturer | Product Number |
---|---|---|---|---|
Grey50/30 | 50 μm/30 mm | DVB/CAR-PDMS | Supelco, Bellefonte, PA, USA | SAAB-57324U |
Black75 | 75 μm | CAR/PDMS | Supelco, Bellefonte, PA, USA | SAAB-57318 |
Red100 | 100 μm | PDMS | Supelco, Bellefonte, PA, USA | SAAB-57300-U |
Blue65 | 65 μm | PDMS/DVB | Supelco, Bellefonte, PA, USA | SAAB-57318 |
Heat Treatment Time | Equilibrium Time | Equilibrium Temperature | Extraction Time | Extraction Temperature | |
---|---|---|---|---|---|
1 | 30 min | 20 min | 70 °C | 40 min | 70 °C |
2 | 40 min | 30 min | 80 °C | 50 min | 80 °C |
3 | 50 min | 40 min | 100 °C | 60 min | 100 °C |
Extractor Model | Number of Peaks | Total Peak Area |
---|---|---|
DB-5-30 m | 44 | 14,496,024 |
DB-5-60 m | 67 | 26,231,349 |
HP-88-100 m | 23 | 4,366,547 |
Test Level | Heat Treatment Time | Equilibrium Time | Equilibrium Temperature | Extraction Time | Extraction Temperature | |
---|---|---|---|---|---|---|
Total amount of substances | K1 | 76.83 | 75.25 | 77.18 | 72.92 | 73.58 |
K2 | 73.73 | 79.5 | 78.83 | 82.82 | 77.58 | |
K3 | 77.75 | 75.18 | 74.08 | 74.83 | 79.09 | |
R | 4.02 | 4.32 | 4.75 | 9.90 | 5.51 | |
Total peak area | K1 | 3.74 × 107 | 3.85 × 107 | 4.10 × 107 | 3.36 × 107 | 3.41 × 107 |
K2 | 3.74 × 107 | 3.79 × 107 | 3.65 × 107 | 4.21 × 107 | 3.57 × 107 | |
K3 | 4.01 × 107 | 3.99 × 107 | 3.89 × 107 | 4.07 × 107 | 4.70 × 107 | |
R | 2.72 × 107 | 1.93 × 107 | 4.4 × 107 | 8.54 × 106 | 1.29 × 107 | |
Alcohols’ number | K1 | 13.17 | 13.67 | 13.73 | 13.25 | 14.42 |
K2 | 13.45 | 13.75 | 13.58 | 15.73 | 13.33 | |
K3 | 14.50 | 14.00 | 14.08 | 12.58 | 13.64 | |
R | 1.33 | 0.33 | 0.50 | 3.14 | 1.08 | |
Ketones’ number | K1 | 3.00 | 3.67 | 2.91 | 3.42 | 4.08 |
K2 | 4.09 | 3.58 | 4.42 | 4.55 | 4 | |
K3 | 4.25 | 4.36 | 4.17 | 3.67 | 3.45 | |
R | 1.25 | 0.78 | 1.51 | 1.13 | 0.63 | |
Aldehydes’ number | K1 | 29.08 | 30.33 | 29.64 | 28.67 | 28.92 |
K2 | 28.18 | 28.5 | 29.58 | 30.55 | 29.58 | |
K3 | 29.17 | 28.73 | 28.42 | 28.50 | 29.09 | |
R | 0.98 | 1.83 | 1.22 | 2.05 | 0.67 | |
Aldehyde total peak area | K1 | 2.564 × 107 | 2.606 × 107 | 2.803 × 107 | 2.235 × 107 | 2.170 × 107 |
K2 | 2.544 × 107 | 2.582 × 107 | 2.407 × 107 | 2.821 × 107 | 2.408 × 107 | |
K3 | 2.645 × 107 | 2.679 × 107 | 2.668 × 107 | 2.823 × 107 | 3.344 × 107 | |
R | 1.007 × 106 | 9.721 × 105 | 3.964 × 106 | 5.887 × 106 | 1.173 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Yang, F.; Zhu, B.; Yin, S.; Fu, Y.; Li, Y.; Liao, Y.; Kang, M.; Zhang, Y.; He, J.; et al. Optimization of HS-SPME-GC-MS for the Determination of Volatile Flavor Compounds in Ningxiang Pork. Foods 2023, 12, 297. https://doi.org/10.3390/foods12020297
Gao H, Yang F, Zhu B, Yin S, Fu Y, Li Y, Liao Y, Kang M, Zhang Y, He J, et al. Optimization of HS-SPME-GC-MS for the Determination of Volatile Flavor Compounds in Ningxiang Pork. Foods. 2023; 12(2):297. https://doi.org/10.3390/foods12020297
Chicago/Turabian StyleGao, Hu, Fang Yang, Bangqiang Zhu, Shishu Yin, Yawei Fu, Yiyang Li, Yinchang Liao, Meng Kang, Yuebo Zhang, Jun He, and et al. 2023. "Optimization of HS-SPME-GC-MS for the Determination of Volatile Flavor Compounds in Ningxiang Pork" Foods 12, no. 2: 297. https://doi.org/10.3390/foods12020297
APA StyleGao, H., Yang, F., Zhu, B., Yin, S., Fu, Y., Li, Y., Liao, Y., Kang, M., Zhang, Y., He, J., Yin, Y., & Xu, K. (2023). Optimization of HS-SPME-GC-MS for the Determination of Volatile Flavor Compounds in Ningxiang Pork. Foods, 12(2), 297. https://doi.org/10.3390/foods12020297