Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Chemical Characterization of Essential Oils
2.2.1. Chromatographic Analyses
2.2.2. Fourier-Transform Infrared Spectroscopy
2.2.3. Thermogravimetric Analysis
2.3. Antifungal and Antibacterial Activity Evaluation
2.3.1. Strains
Fungal Strains
Bacterial Strain
2.3.2. Antifungal Activity of Essential Oils
2.3.3. Antibacterial Activity of Essential Oils
2.3.4. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Bacterium
2.4. Interaction between Essential Oils
FICA = MIC (A in the presence of B)/MIC (A alone)
FICB = MIC (B in the presence of A)/MIC (B alone)
2.5. Impact of Essential Oils on Shelf Life of Fruits
2.6. Physicochemical Characterization of Fruits
2.6.1. Moisture Values
2.6.2. Total Soluble Solids
2.6.3. Maturation Index
2.6.4. pH and Titratable Acidity
2.6.5. Preparation of the Phenolics Extract
2.6.6. Antioxidant Activity
2.6.7. Total Phenolic Content
2.6.8. Total and Monomeric Anthocyanin
2.7. Statistical Analysis of Data
3. Results
3.1. Characterizations of Essential Oils
3.2. Antifungal Screening of Essential Oils
3.3. Antibacterial Screening of Essential Oils
3.4. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.5. Binary Interaction of Essential Oils
3.6. Effect of Essential Oils on Strawberries and Raspberries in In Vivo Condition
3.7. Physicochemical Properties of Fruits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palonen, P.; Weber, C. Fruit color stability, anthocyanin content, and shelf life were not correlated with ethylene production rate in five primocane raspberry genotypes. Sci. Hortic. 2019, 247, 9–16. [Google Scholar] [CrossRef]
- Gol, N.B.; Patel, P.R.; Rao, T.V.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Muley, A.B.; Singhal, R.S. Extension of postharvest shelf life of strawberries (Fragaria ananassa) using a coating of chitosan-whey protein isolate conjugate. Food Chem. 2020, 329, 127213. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Nguyen, A.; Betts, N.M.; Lyons, T.J. Strawberry As a Functional Food: An Evidence—Based Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 790–806. [Google Scholar] [CrossRef]
- Van De Velde, F.; Tarola, A.M.; Güemes, D.; Pirovani, M.E. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.). Foods 2013, 2, 120–131. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red Fruits Composition and Their Health Benefits—A Review. Foods 2022, 11, 644. [Google Scholar] [CrossRef]
- Huang, Y.; Park, E.; Edirisinghe, I.; Burton-Freeman, B.M. Maximizing the health effects of strawberry anthocyanins: Understanding the influence of the consumption timing variable. Food Funct. 2016, 7, 4745–4752. [Google Scholar] [CrossRef]
- Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.D.; Moldão-Martins, M. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Sci. Technol. 2013, 52, 80–92. [Google Scholar] [CrossRef]
- Feliziani, E.; Romanazzi, G. Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. J. Berry Res. 2016, 6, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Contigiani, E.V.; Jaramillo-Sánchez, G.; Castro, M.A.; Gómez, P.L.; Alzamora, S.M. Postharvest Quality of Strawberry Fruit (Fragaria x Ananassa Duch cv. Albion) as Affected by Ozone Washing: Fungal Spoilage, Mechanical Properties, and Structure. Food Bioprocess Technol. 2018, 11, 1639–1650. [Google Scholar] [CrossRef]
- Berger, C.N.; Sodha, S.V.; Shaw, R.K.; Griffin, P.M.; Pink, D.; Hand, P.; Frankel, G. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol. 2010, 12, 2385–2397. [Google Scholar] [CrossRef] [PubMed]
- Tyrrel, S.F.; Knox, J.W.; Weatherhead, E.K. Microbiological Water Quality Requirements for Salad Irrigation in the United Kingdom. J. Food Prot. 2006, 69, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Mitra, R.; Cuesta-Alonso, E.; Wayadande, A.; Talley, J.; Gilliland, S.; Fletcher, J. Effect of Route of Introduction and Host Cultivar on the Colonization, Internalization, and Movement of the Human Pathogen Escherichia coli O157:H7 in Spinach. J. Food Prot. 2009, 72, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Panou, A.A.; Karabagias, I.K.; Riganakos, K.A. Effect of Gamma-Irradiation on Sensory Characteristics, Physicochemical Parameters, and Shelf Life of Strawberries Stored under Refrigeration. Int. J. Fruit Sci. 2020, 20, 191–206. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Joshi, K.; Tiwari, B.; Cullen, P.J.; Frias, J.M. Predicting quality attributes of strawberry packed under modified atmosphere throughout the cold chain. Food Packag. Shelf Life 2019, 21, 100354. [Google Scholar] [CrossRef]
- Castelló, M.L.; Fito, P.J.; Chiralt, A. Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. J. Food Eng. 2010, 97, 64–71. [Google Scholar] [CrossRef]
- Taghavi, T.; Kim, C.; Rahemi, A. Role of Natural Volatiles and Essential Oils in Extending Shelf Life and Controlling Postharvest Microorganisms of Small Fruits. Microorganisms 2018, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.K.; Tan, L.T.H.; Chan, K.G.; Lee, L.H.; Goh, B.H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Mangalagiri, N.P.; Panditi, S.K.; Jeevigunta, N.L.L. Antimicrobial activity of essential plant oils and their major components. Heliyon 2021, 7, e06835. [Google Scholar] [CrossRef] [PubMed]
- Letessier, M.P.; Svoboda, K.P.; Walters, D.R. Antifungal Activity of the Essential Oil of Hyssop (Hyssopus officinalis). J. Phytopathol. 2001, 149, 673–678. [Google Scholar] [CrossRef]
- Ansarifar, E.; Moradinezhad, F. Preservation of strawberry fruit quality via the use of active packaging with encapsulated thyme essential oil in zein nanofiber film. Int. J. Food Sci. Technol. 2021, 56, 4239–4247. [Google Scholar] [CrossRef]
- Guerreiro, A.; Gago, C.; Miguel, M.G.; Faleiro, M.L.; Antunes, M.D. Improving the shelf-life of strawberry fruit with edible coatings enriched with essential oils. Acta Hortic. 2021, 1327, 597–606. [Google Scholar] [CrossRef]
- Arroyo, F.T.; Moreno, J.; Daza, P.; Boianova, L.; Romero, F. Antifungal Activity of Strawberry Fruit Volatile Compounds against Colletotrichum acutatum. J. Agric. Food Chem. 2007, 55, 5701–5707. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, S.Y.; Yin, J.J.; Parry, J.; Yu, L.L. Enhancing Antioxidant, Antiproliferation, and Free Radical Scavenging Activities in Strawberries with Essential Oils. J. Agric. Food Chem. 2007, 55, 6527–6532. [Google Scholar] [CrossRef]
- Foodborne Pathogens. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/foodborne-pathogens (accessed on 5 March 2020).
- Zhang, J.; Ye, K.P.; Zhang, X.; Pan, D.D.; Sun, Y.Y.; Cao, J.X. Antibacterial Activity and Mechanism of Action of Black Pepper Essential Oil on Meat-Borne Escherichia coli. Front. Microbiol. 2017, 7, 2094. [Google Scholar] [CrossRef] [Green Version]
- Mouatcho, J.C.; Tzortzakis, N.; Soundy, P.; Sivakumar, D. Bio-sanitation treatment using essential oils against E. coli O157:H7 on fresh lettuce. N. Z. J. Crop Hortic. Sci. 2017, 45, 165–174. [Google Scholar] [CrossRef]
- Azzimonti, B.; Cochis, A.; Beyrouthy, M.E.; Iriti, M.; Uberti, F.; Sorrentino, R.; Landini, M.M.; Rimondini, L.; Varoni, E.M. Essential Oil from Berries of Lebanese Juniperus excelsa M. Bieb Displays Similar Antibacterial Activity to Chlorhexidine but Higher Cytocompatibility with Human Oral Primary Cells. Molecules 2015, 20, 9344–9357. [Google Scholar] [CrossRef]
- Pinto, L.; Cefola, M.; Bonifacio, M.A.; Cometa, S.; Bocchino, C.; Pace, B.; De Giglio, E.; Palumbo, M.; Sada, A.; Logrieco, A.F.; et al. Effect of red thyme oil (Thymus vulgaris L.) vapours on fungal decay, quality parameters and shelf-life of oranges during cold storage. Food Chem. 2021, 336, 127590. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.M.; Lee, M.H.; Lee, K.J.; Ku, H.O.; Son, S.W.; Joo, Y.S. Quantitative analysis of eugenol in clove extract by a validated HPLC method. J. AOAC Int. 2010, 93, 1806–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavarini, M.; Moscatelli, M.; Candiani, G.; Tarsini, P.; Cochis, A.; Rimondini, L.; Najmi, Z.; Rocchetti, V.; De Giglio, E.; Cometa, S.; et al. Influence of frequency and duty cycle on the properties of antibacterial borate-based PEO coatings on titanium for bone-contact applications. Appl. Surf. Sci. 2021, 567, 150811. [Google Scholar] [CrossRef]
- Huang, D.B.; Duncan, L.R.; Flamm, R.K.; Dryden, M.; Corey, G.R.; Wilcox, M.H.; Torres, A.; File, T.M. The effect of pulmonary surfactant on the in vitro activity of Iclaprim against common respiratory bacterial pathogens. Diagn. Microbiol. Infect. Dis. 2018, 90, 64–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meletiadis, J.; Pournaras, S.; Roilides, E.; Walsh, T.J. Defining Fractional Inhibitory Concentration Index Cutoffs for Additive Interactions Based on Self-Drug Additive Combinations, Monte Carlo Simulation Analysis, and In Vitro-In Vivo Correlation Data for Antifungal Drug Combinations against Aspergillus fumigatus. Antimicrob Agents Chemother 2010, 54, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Bordiga, M.; Travaglia, F.; Giuffrida, D.; Mangraviti, D.; Rigano, F.; Mondello, L.; Arlorio, M.; Coïsson, J.D. Characterization of peel and pulp proanthocyanidins and carotenoids during ripening in persimmon “Kaki Tipo” cv, cultivated in Italy. Food Res. Int. 2019, 120, 800–809. [Google Scholar] [CrossRef]
- Rongtong, B.; Suwonsichon, T.; Ritthiruangdej, P.; Kasemsumran, S. Determination of water activity, total soluble solids and moisture, sucrose, glucose and fructose contents in osmotically dehydrated papaya using near-infrared spectroscopy. Agric. Nat. Resour. 2018, 52, 557–564. [Google Scholar] [CrossRef]
- Martínez, K.; Ortiz, M.; Albis, A.; Gilma Gutiérrez Castañeda, C.; Valencia, M.E.; Grande Tovar, C.D. The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Islam, M.B.; Biswas, M.; Khurshid Alam, A.H.M. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 2015, 8, 621. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Bordiga, M.; Arlorio, M. Phenolic composition of Nebbiolo grape (Vitis vinifera L.) from Piedmont: Characterization during ripening of grapes selected in different geographic areas and comparison with Uva Rara and Vespolina cv. Eur. Food Res. Technol. 2016, 242, 1057–1068. [Google Scholar] [CrossRef]
- Colasanto, A.; Travaglia, F.; Bordiga, M.; Monteduro, S.; Arlorio, M.; Coïsson, J.D.; Locatelli, M. Cooking of Artemide Black Rice: Impact on Proximate Composition and Phenolic Compounds. Foods 2021, 10, 824. [Google Scholar] [CrossRef] [PubMed]
- Papillo, V.A.; Locatelli, M.; Travaglia, F.; Bordiga, M.; Garino, C.; Arlorio, M.; Coïsson, J.D. Spray-dried polyphenolic extract from Italian black rice (Oryza sativa L., var. Artemide) as new ingredient for bakery products. Food Chem. 2018, 269, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, M.; Onishi, Y.; Ikemoto, J.; Tu, N.T.M.; Phi, N.T.L. Characteristic odour components of bergamot (Citrus bergamia Risso) essential oil. Flavour Fragr. J. 2006, 21, 609–615. [Google Scholar] [CrossRef]
- Moufida, S.; Marzouk, B. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry 2003, 62, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Kamal, G.M.; Anwar, F.; Hussain, A.I.; Sarri, N.; Ashraf, M.Y. Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Int. Food Res. J. 2011, 18, 1275–1282. [Google Scholar]
- Wang, W.; Wu, N.; Zu, Y.G.; Fu, Y.J. Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chem. 2008, 108, 1019–1022. [Google Scholar] [CrossRef]
- Li, Y.Q.; Kong, D.X.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind. Crops Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Hazra, A.; Dollimore, D.; Alexander, K. Thermal analysis of the evaporation of compounds used in aromatherapy using thermogravimetry. Thermochim. Acta 2002, 392-393, 221–229. [Google Scholar] [CrossRef]
- Oliveira, C.E.L.; Cremasco, M.A. Determination of the vapor pressure of Lippia gracilis Schum essential oil by thermogravimetric analysis. Thermochim. Acta 2014, 577, 1–4. [Google Scholar] [CrossRef]
- Feng, K.; Wen, P.; Yang, H.; Li, N.; Lou, W.Y.; Zong, M.H.; Wu, H. Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme. RSC Adv. 2017, 7, 1572–1580. [Google Scholar] [CrossRef] [Green Version]
- Hazra, A.; Alexander, K.; Dollimore, D.; Riga, A. Characterization of some essential oils and their key components: Thermoanalytical techniques. J. Therm. Anal. Calorim. 2004, 75, 317–330. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010, 120, 193–198. [Google Scholar] [CrossRef]
- Xing, Y.; Li, X.; Xu, Q.; Yun, J.; Lu, Y. Original article: Antifungal activities of cinnamon oil against Rhizopus nigricans, Aspergillus flavus and Penicillium expansum in vitro and in vivo fruit test. Int. J. Food Sci. Technol. 2010, 45, 1837–1842. [Google Scholar] [CrossRef]
- Hu, F.; Tu, X.F.; Thakur, K.; Hu, F.; Li, X.L.; Zhang, Y.S.; Zhang, J.G.; Wei, Z.J. Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem. Toxicol. 2019, 134, 110821. [Google Scholar] [CrossRef]
- He, J.; Wu, D.; Zhang, Q.; Chen, H.; Li, H.; Han, Q.; Lai, X.; Wang, H.; Wu, Y.; Yuan, J. Efficacy and mechanism of cinnamon essential oil on inhibition of Colletotrichum acutatum isolated from ‘Hongyang’kiwifruit. Front. Microbiol. 2018, 9, 1288. [Google Scholar] [CrossRef] [Green Version]
- Rana, I.S.; Rana, A.S.; Rajak, R.C. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol. Braz. J. Microbiol. Publ. Braz. Soc. Microbiol. 2011, 42, 1269–1277. [Google Scholar] [CrossRef]
- Sakkas, H.; Economou, V.; Gousia, P.; Bozidis, P.; Sakkas, V.; Petsios, S.; Mpekoulis, G.; Ilia, A.; Papadopoulou, C. Antibacterial Efficacy of Commercially Available Essential Oils Tested Against Drug-Resistant Gram-Positive Pathogens. Appl. Sci. 2018, 8, 2201. [Google Scholar] [CrossRef] [Green Version]
- Montironi, I.D.; Cariddi, L.N.; Reinoso, E.B. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Rev. Argent. Microbiol. 2016, 48, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Gadisa, E.; Weldearegay, G.; Desta, K.; Tsegaye, G.; Hailu, S.; Jote, K.; Takele, A. Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complement. Altern. Med. 2019, 19, 24. [Google Scholar] [CrossRef]
- Soulaimani, B.; Hidar, N.E.; Ben El Fakir, S.; Mezrioui, N.; Hassani, L.; Abbad, A. Combined antibacterial activity of essential oils extracted from Lavandula maroccana (Murb.), Thymus pallidus Batt. and Rosmarinus officinalis L. against antibiotic-resistant Gram-negative bacteria. Eur. J. Integr. Med. 2021, 43, 101312. [Google Scholar] [CrossRef]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Sójka, M.; Skóra, B.; Balawejder, M. Quality and antioxidant activity of highbush blueberry fruit coated with starch-based and gelatine-based film enriched with cinnamon oil. Food Control 2022, 138, 109015. [Google Scholar] [CrossRef]
- Rashid, Z.; Khan, M.R.; Mubeen, R.; Hassan, A.; Saeed, F.; Afzaal, M. Exploring the effect of cinnamon essential oil to enhance the stability and safety of fresh apples. J. Food Process. Preserv. 2020, 44, e14926. [Google Scholar] [CrossRef]
- Ali, A.; Abrar, M.; Sultan, M.; Din, A.; Niaz, B. Post-harvest physicochemical changes in full ripe strawberries during cold storage. J. Anim. Plant Sci. 2011, 21, 38–41. [Google Scholar]
- Cordenunsi, B.R.; Genovese, M.I.; Oliveira do Nascimento, J.R.; Aymoto Hassimotto, N.M.; José dos Santos, R.; Lajolo, F.M. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Koyuncu, M.A. Quality changes of three strawberry cultivars during the cold storage. Eur. J. Hortic. Sci. 2004, 69, 193–200. [Google Scholar]
- Ayala-Zavala, J.F.; Wang, S.Y.; Wang, C.Y.; González-Aguilar, G.A. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT-Food Sci. Technol. 2004, 37, 687–695. [Google Scholar] [CrossRef]
- Jin, P.; Wang, S.Y.; Gao, H.; Chen, H.; Zheng, Y.; Wang, C.Y. Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chem. 2012, 132, 399–405. [Google Scholar] [CrossRef]
- Frías-Moreno, M.N.; Parra-Quezada, R.A.; González-Aguilar, G.; Ruíz-Canizales, J.; Molina-Corral, F.J.; Sepulveda, D.R.; Salas-Salazar, N.; Olivas, G.I. Quality, Bioactive Compounds, Antioxidant Capacity, and Enzymes of Raspberries at Different Maturity Stages, Effects of Organic vs. Conventional Fertilization. Foods 2021, 10, 953. [Google Scholar] [CrossRef]
- Kobori, R.; Yakami, S.; Kawasaki, T.; Saito, A. Changes in the Polyphenol Content of Red Raspberry Fruits during Ripening. Horticulturae 2021, 7, 569. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef]
- Weber, C.A.; Perkins-Veazie, P.; Moore, P.P.; Howard, L. Variability of antioxidant content in raspberry germplasm. Acta Hortic. 2008, 777, 493–498. [Google Scholar] [CrossRef]
Combined EOs | Concentration of Each EO (v/v) | Combination Ratio |
---|---|---|
Cinnamon + Clove | 10% + 10% | 50:50 |
Lemon + Cinnamon | 10% + 10% | 50:50 |
Bergamot + Cinnamon | 10% + 10% | 50:50 |
Cinnamon + Clove | 5% + 5% | 50:50 |
Lemon + Cinnamon | 5% + 5% | 50:50 |
Bergamot + Cinnamon | 5% + 5% | 50:50 |
Essential Oil | Compound | Relative Abundance (%) |
---|---|---|
Bergamot | Limonene | 39.5 |
Linalyl acetate | 23.9 | |
Linalool | 10.2 | |
Lemon | Limonene | 63.7 |
Pinene | 9.2 | |
Lavandulyl-acetate | 6.2 | |
Rosemary | Eucalyptol | 60.5 |
Camphor | 14.6 | |
Cinnamon | Cinnamaldehyde | 54.5 |
Eugenol | 10.2 | |
Caryophyllene | 6.0 |
Essential Oil | Tonset (°C) | Tpeak (°C) |
---|---|---|
Bergamot | 66.3 | 177.3 |
Lemon | 40.6 | 156.8 |
Rosemary | 44.3 | 131.6/158.6 |
Clove | 126.0 | 200.6/234.9 |
Cinnamon | 73.6 | 232.0 |
Essential Oils (v/v) | FIC Index | Interpretation |
---|---|---|
Cinnamon + Bergamot (10%) | 0.9 | Additive |
Cinnamon + Bergamot (5%) | 1.58 | Indifference |
Cinnamon + Lemon (10%) | 0.9 | Additive |
Cinnamon + Lemon (5%) | 0.9 | Additive |
Cinnamon + Clove (10%) | 1.6 | Indifference |
Cinnamon + Clove (5%) | 1.5 | Indifference |
Strawberries | T0 | T2C | T2T | T4C | T4T |
---|---|---|---|---|---|
Moisture (%) | 89.1 ± 0.3 b | 90.70 ± 0.16 a | 91.10 ± 0.18 * | 90.8 ± 0.6 a | 92.00 ± 0.18 * |
Total Solids (%) | 10.9 ± 0.3 a | 9.26 ± 0.16 b | 8.93 ± 0.18 * | 9.2 ± 0.6 b | 7.96 ± 0.18 * |
Total Soluble Solids (°Brix) | 9.10 ± 0.07 a | 7.70 ± 0.12 b | 7.1 ± 0.4 * | 7.5 ± 0.4 b | 6.95 ± 0.16 |
pH | 4.28 ± 0.01 a | 4.03 ± 0.08 b | 3.92 ± 0.13 | 4.01 ± 0.02 b | 3.96 ± 0.04 |
Titratable Acidity (% citric acid) | 0.636 ± 0.01 a | 0.68 ± 0.00 a | 0.69 ± 0.04 | 0.60 ± 0.07 a | 0.60 ± 0.12 |
Maturation Index (°BRIX/acidity) | 14.23 ± 0.43 a | 11.41 ± 0.18 b | 10.2 ± 1.0 * | 12.4 ± 1.1 a,b | 12 ± 3 |
Total Anthocyanins (mg C3GE/g s.s.) | 0.13 ± 0.02 b | 0.43 ± 0.04 a | 0.40 ± 0.05 | 0.32 ± 0.08 a,b | 0.40 ± 0.13 |
Monomeric Anthocyanins (mg C3GE/g s.s.) | 0.09 ± 0.02 b | 0.29 ± 0.04 a | 0.25 ± 0.05 | 0.29 ± 0.07 a | 0.35 ± 0.12 |
Total Phenolics (mg CE/g s.s.) | 16.3 ± 0.6 a | 16.2 ± 0.9 a | 18.3 ± 0.9 | 16.5 ± 1.5 a | 20.1 ± 1.3 * |
Total Antioxidant Activity (mg TE/g s.s.) | 13.80 ± 0.08 a | 13 ± 2 a | 11.6 ± 1.0 | 13.4 ± 0.7 a | 16.0 ± 0.5 * |
Raspberries | T0 | T2C | T2T | T4C | T4T |
---|---|---|---|---|---|
Moisture (%) | 84.3 ± 0.6 a | 85.1 ± 0.8 a | 85.30 ± 0.04 | 85.4 ± 0.4 a | 84.80 ± 0.10 * |
Total Solids (%) | 15.7 ± 0.6 a | 14.9 ± 0.8 a | 14.71 ± 0.04 | 14.6 ± 0.4 a | 15.25 ± 0.10 * |
Total Soluble Solids (°Brix) | 11.20 ± 0.00 c | 11.60 ± 0.00 a | 11.60 ± 0.00 | 11.40 ± 0.00 b | 11.40 ± 0.00 |
pH | 3.43 ± 0.01 a | 3.43 ± 0.01 a | 3.42 ± 0.02 | 3.35 ± 0.02 b | 3.39 ± 0.01 |
Titratable Acidity (% citric acid) | 2.08 ± 0.01 a | 1.78 ± 0.00 c | 1.88 ± 0.02 * | 1.84 ± 0.01 b | 1.76 ± 0.00 * |
Maturation Index (°BRIX/acidity) | 5.38 ± 0.02 c | 6.51 ±0.01 a | 6.17 ± 0.06 * | 6.19 ±0.05 b | 6.48 ± 0.00 * |
Total Anthocyanins (mg C3GE/g s.s.) | 1.25 ± 0.06 c | 2.45 ± 0.00 a | 1.89 ± 0.08 * | 1.92 ± 0.07 b | 1.48 ± 0.03 * |
Monomeric Anthocyanins (mg C3GE/g s.s.) | 1.12 ± 0.07 c | 2.01 ± 0.01 a | 1.55 ± 0.06 * | 1.6 ± 0.08 b | 1.23 ± 0.02 * |
Total Phenolics (mg CE/g s.s.) | 18.0 ± 0.8 a | 17.4 ± 0.5 a | 16.23 ± 0.03 | 17.31 ± 0.13 a | 17.65 ± 0.12 |
Total Antioxidant Activity (mg TE/g s.s.) | 17.9 ± 0.6 a | 18.0 ± 1.0 a | 19.2 ± 0.7 | 16.2 ± 0.4 a | 16.7 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najmi, Z.; Scalia, A.C.; De Giglio, E.; Cometa, S.; Cochis, A.; Colasanto, A.; Locatelli, M.; Coisson, J.D.; Iriti, M.; Vallone, L.; et al. Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life. Foods 2023, 12, 332. https://doi.org/10.3390/foods12020332
Najmi Z, Scalia AC, De Giglio E, Cometa S, Cochis A, Colasanto A, Locatelli M, Coisson JD, Iriti M, Vallone L, et al. Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life. Foods. 2023; 12(2):332. https://doi.org/10.3390/foods12020332
Chicago/Turabian StyleNajmi, Ziba, Alessandro Calogero Scalia, Elvira De Giglio, Stefania Cometa, Andrea Cochis, Antonio Colasanto, Monica Locatelli, Jean Daniel Coisson, Marcello Iriti, Lisa Vallone, and et al. 2023. "Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life" Foods 12, no. 2: 332. https://doi.org/10.3390/foods12020332
APA StyleNajmi, Z., Scalia, A. C., De Giglio, E., Cometa, S., Cochis, A., Colasanto, A., Locatelli, M., Coisson, J. D., Iriti, M., Vallone, L., & Rimondini, L. (2023). Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life. Foods, 12(2), 332. https://doi.org/10.3390/foods12020332