Effect of Single and Two-Cycles of High Hydrostatic Pressure Treatment on the Safety and Quality of Chicken Burgers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Chemicals and Burgers Manufacture
2.2. Hydrostatic High Pressure Treatment
2.3. Experimental Design
2.4. pH, Composition Analyses and Fatty Acid Determination
2.5. Microbiological Analysis
2.6. Instrumental Color Parameters
2.7. Oxidative Status
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition, pH, and Fatty Acid Profile
3.2. Microbiological Analysis
3.3. Color Parameters
3.4. Lipid and Protein Oxidation
3.5. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD/FAO. OECD-FAO Agricultural Outlook 2022–2031; OECD Publishing: Paris, France, 2022. [Google Scholar]
- National Chicken Council. Nutritional Values for Chicken. Available online: https://www.nationalchickencouncil.org (accessed on 20 July 2023).
- Gad, A.; Abo-Shama, U.; Harclerode, K.; Fakhr, M. Prevalence, serotyping, molecular typing, and antimicrobial resistance of Salmonella isolated from conventional and organic retail ground poultry. Front. Microbiol. 2018, 9, 2653. [Google Scholar] [CrossRef]
- Abay, S.; Irkin, R.; Aydin, F.; Müstak, H.K.; Diker, K.S. The prevalence of major foodborne pathogens in ready-to-eat chicken meat samples sold in retail markets in Turkey and the molecular characterization of the recovered isolates. LWT-Food Sci. Technol. 2017, 81, 202–209. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, Y. Etiological Agents Implicated in Foodborne Illness World Wide. Korean J. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Harrison, M.A.; Berrang, M.E. Postchill Antimicrobial Treatments to Control Salmonella, Listeria, and Campylobacter Contamination on Chicken Skin Used in Ground Chicken. J. Food Prot. 2017, 80, 857–862. [Google Scholar] [CrossRef]
- National Chicken Council. NCC Says FSIS’s New Salmonella Framework Lacks Data, Research. Available online: https://www.nationalchickencouncil.org/ncc-says-fsiss-new-salmonella-framework-lacks-data-research/ (accessed on 14 October 2022).
- Scharff, R.L. Food attribution and economic cost estimates for meat- and poultry-related illnesses. J. Food Prot. 2020, 83, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W.; Kim, Y.; Kim, M.; Noh, B.; Choi, W. Effect of high hydrostatic pressure (HHP) treatment on flavor, physicochemical properties and biological functionalities of garlic. LWT-Food Sci. Technol. 2014, 55, 347–354. [Google Scholar] [CrossRef]
- Marcos, B.; Aymerich, T.; Garriga, M.; Arnau, J. Active packaging containing nisin and high pressure processing as post-processing listericidal treatments for convenience fermented sausages. Food Control 2013, 30, 325–330. [Google Scholar] [CrossRef]
- O’Neill, C.M.; Cruz-Romero, M.C.; Duffy, G.; Kerry, J.P. Comparative effect of different cooking methods on the physicochemical and sensory characteristics of high pressure processed marinated pork chops. Innov. Food Sci. Emerg. Technol. 2019, 54, 19–27. [Google Scholar] [CrossRef]
- Salazar, F.A.; Yildiz, S.; Leyva, D.; Soto-Caballero, M.; Welti-Chanes, J.; Anubhav, P.A.; Lavilla, M.; Escobedo-Avellaneda, Z. HHP Influence on Food Quality and Bioactive Compounds: A Review of the Last Decade. Innov. Food Process. Technol. 2021, 87, 111. [Google Scholar] [CrossRef]
- Pérez Lamela, C. Green Technologies for Sustainable Food Production and Preservation: High-Pressure Processing. In Sustainable Food Science—A Comprehensive Approach; Elsevier: Amsterdam, The Netherlands, 2023; pp. 158–183. [Google Scholar]
- Rocha-Pimienta, J.; Martillanes, S.; Ramírez, R.; Garcia-Parra, J.; Delgado-Adamez, J. Bacillus cereus spores and Staphylococcus aureus sub. aureus vegetative cells inactivation in human milk by high-pressure processing. Food Control 2020, 113, 107212. [Google Scholar] [CrossRef]
- Woldemichael, H.; Admassu, S.; Getachew, P.; Topfl, S.; Aganovic, K. Microbial inactivation and quality impact assessment of red pepper paste treated by high pressure processing. Heliyon 2022, 8, 12441. [Google Scholar] [CrossRef]
- Furukawa, S.; Shimoda, M.; Hayakawa, I. Mechanism of the inactivation of bacterial spores by reciprocal pressurization treatment. J. Appl. Microbiol. 2003, 94, 836–841. [Google Scholar] [CrossRef]
- Mok, J.H.; Sun, Y.; Pyatkovskyy, T.; Hu, X.; Sastry, S.K. Mechanisms of Bacillus subtilis spore inactivation by single- and multi-pulse high hydrostatic pressure (MP-HHP). Innov. Food Sci. Emerg. Technol. 2022, 81, 103147. [Google Scholar] [CrossRef]
- Furukawa, S.; Shimoda, M.; Hayakawa, I. Effect of repeated pressure treatment on breakdown of clumps of bacterial spores. Food Sci. Technol. Res. 2004, 10, 10–12. [Google Scholar] [CrossRef]
- Hayes, J.E.; Raines, C.R.; De Pasquale, D.A.; Cutter, C.N. Consumer acceptability of high hydrostatic pressure (HHP)-treated ground beef patties. LWT-Food Sci. Technol. 2014, 56, 207–210. [Google Scholar] [CrossRef]
- Canto, A.C.V.C.S.; Costa-Lima, B.R.C.; Suman, S.P.; Monteiro, M.L.G.; Marsico, E.T.; Conte-Junior, C.A.; Franco, R.M.; Salim, A.P.A.A.; Torrezan, R.; Silva, T.J.P. Fatty acid profile and bacteriological quality of caiman meat subjected to high hydrostatic pressure. LWT-Food Sci. Technol. 2015, 63, 872–877. [Google Scholar] [CrossRef]
- Omer, M.K.; Prieto, B.; Rendueles, E.; Alvarez-Ordoñez, A.; Lunde, K.; Alvseike, O.; Prieto, M. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat. Meat Sci. 2015, 108, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Fraqueza, M.J.; Martins, C.; Gama, L.T.; Fernandes, M.H.; Fernandes, M.J.; Ribeiro, M.H.L.; Hernando, B.R.; Barreto, A.S.; Alfaia, A.J.I. High hydrostatic pressure and time effects on hygienic and physical characteristics of natural casings and condiments used in the processing of cured meat sausage. Innov. Food Sci. Emerg. Technol. 2019, 58, 102242. [Google Scholar] [CrossRef]
- Komora, N.; Maciela, C.; Amaral, R.A.; Fernandes, R.; Castro, S.M.; Saraiva, J.A.; Teixeira, P. Innovative hurdle system towards Listeria monocytogenes inactivation in a fermented meat sausage model-high pressure processing assisted by bacteriophage P100 and bacteriocinogenic Pediococcus acidilactici. Food Res. Int. 2021, 148, 110628. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, D.; Yang, H.; Liu, X.; Cheng, J.; Wang, X.; Zou, J.; Lin, Y. Effects of high hydrostatic pressure assisted enzymatic tenderization on goose meat texture and myofibril protein. Food Sci. Technol. 2023, 184, 114845. [Google Scholar] [CrossRef]
- Myers, K.; Montoya, D.; Cannon, J.; Dickson, J.; Sebranek, J. The effect of high hydrostatic pressure, sodium nitrite and salt concentration on the growth of Listeria monocytogenes on RTE ham and turkey. Meat Sci. 2013, 93, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Cava, R.; Higuero, N.; Ladero, L. High-pressure processing and storage temperature on Listeria monocytogenes, microbial counts and oxidative changes of two traditional dry-cured meat products. Meat Sci. 2021, 171, 108273. [Google Scholar] [CrossRef]
- Cap, M.; Fleitas Paredes, P.; Fernández, D.; Mozgovoj, M.; Vaudagna, S.R.; Rodriguez, A. Effect of high hydrostatic pressure on Salmonella spp inactivation and meat quality of frozen chicken breast. LWT-Food Sci. Technol. 2020, 118, 108873. [Google Scholar] [CrossRef]
- Evrendilek, G.A. High hydrostatic processing of marinated ground chicken breast: Exploring the effectiveness on physicochemical, textural and sensory properties and microbial inactivation. Food Control 2022, 142, 109258. [Google Scholar] [CrossRef]
- Ros-Polski, V.; Koutchma, T.; Xue, J.; Defelice, C.; Balamurugan, S. Effects of high hydrostatic pressure processing parameters and NaCl concentration on the physical properties, texture and quality of white chicken meat. Innov. Food Sci. Emerg. Technol. 2015, 30, 31–42. [Google Scholar] [CrossRef]
- Kruk, Z.A.; Kim, H.J.; Kim, Y.J.; Rutley, D.L.; Jung, S.; Lee, S.K.; Jo, C. Combined effects of high pressure processing and addition of soy sauce and olive oil on safety and quality characteristics of chicken breast meat. Asian-Australas. J. Anim. Sci. 2014, 27, 256. [Google Scholar] [CrossRef]
- Kruk, Z.A.; Yun, H.; Rutley, D.L.; Lee, E.J.; Kim, Y.J.; Jo, C. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control 2011, 22, 6–12. [Google Scholar] [CrossRef]
- Chen, Y.; Hsu, H.; Chai, H.; Uknalis, J.; Sheen, S. Combination effect of papaya extract and high pressure processing on Salmonella inactivation on raw chicken breast meat and meat quality assessment. Food Control 2022, 133, 108637. [Google Scholar] [CrossRef]
- Chai, H.; Sheen, S. Effect of high pressure processing, allyl isothiocyanate, and acetic acid stresses on Salmonella survivals, storage, and appearance color in raw ground chicken meat. Food Control 2021, 123, 107784. [Google Scholar] [CrossRef]
- ISO. Meat and Meat Product-Determination of Moisture Content Method 1442; International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- ISO 937:1978; Determination of Nitrogen Content. International Standards Meat and Meat Products. International Organization for Standardization: Geneva, Switzerland, 1978.
- Ortiz, A.; González, E.; García-Torres, S.; Andrés, A.I.; Petrón, M.J.; Tejerina, D. Quality traits of fresh Iberian loin according to slaughter age and short-term freezing. Livest. Sci. 2021, 246, 104460. [Google Scholar] [CrossRef]
- ISO 6579:1993; Microbiology—General Guidance on Methods for the Detection of Salmonella. Food Microbiology. International Organization for Standardization: Geneva, Switzerland, 1993.
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp.—Part 1: Detection Method. Food Microbiology. International Organization for Standardization: Geneva, Switzerland, 2017.
- Sørensen, G.; Jørgensen, S.S. A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. Z. Für Lebensm.-Unters. Und-Forsch. A 1996, 202, 205–210. [Google Scholar] [CrossRef]
- Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [CrossRef]
- Hailemariam, A.; Esatu, W.; Abegaz, S.; Urge, M.; Assefa, G.; Dessie, T. Nutritional composition and sensory characteristics of breast meat from different chickens. Appl. Food Res. 2022, 2, 100233. [Google Scholar] [CrossRef]
- Sosnówka-Czajka, E.; Skomorucha, I.; Obremski, K.; Wojtacha, P. Performance and meat quality of broiler chickens fed with the addition of dried fruit pomace. Poult. Sci. 2023, 102, 102631. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, C.; Ran, J.; Yu, C.; Yin, L.; Li, Z.; Liu, Y. The age-dependent variations for fatty acid composition and sensory quality of chicken meat and associations between gene expression patterns and meat quality. Livest. Sci. 2021, 254, 104736. [Google Scholar] [CrossRef]
- Lian, F.; Cheng, J.; Sun, D. Effects of combined roasting with steam cooking on fat content, physicochemical properties and in vitro protein digestion of chicken wings as compared with other conventional cooking methods. LWT-Food Sci.Technol. 2023, 183, 114941. [Google Scholar] [CrossRef]
- Nikparvar, B.; Subires, A.; Capellas, M.; Hernandez-Herrero, M.; Crauwels, P.; Riedel, C.U.; Bar, N. A diffusion model to quantify membrane repair process in Listeria monocytogenes exposed to high pressure processing based on fluorescence microscopy data. Front. Microbiol. 2021, 12, 598739. [Google Scholar] [CrossRef]
- Martillanes, S.; Rocha-Pimienta, J.; Llera-Oyola, J.; Gil, M.V.; Ayuso-Yuste, M.C.; García-Parra, J.; Delgado-Adámez, J. Control of Listeria monocytogenes in sliced dry-cured Iberian ham by high pressure processing in combination with an eco-friendly packaging based on chitosan, nisin and phytochemicals from rice bran. Food Control 2021, 124, 107933. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: http://data.europa.eu/eli/reg/2005/2073/oj (accessed on 6 March 2023).
- Shigehisa, T.; Ohmori, T.; Saito, A.; Taji, S.; Hayashi, R. Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. Int. J. Food Microbiol. 1991, 12, 207–215. [Google Scholar] [CrossRef]
- Grossi, A.; Søltoft-Jensen, J.; Knudsen, J.C.; Christensen, M.; Orlien, V. Synergistic cooperation of high pressure and carrot dietary fibre on texture and colour of pork sausages. Meat Sci. 2011, 89, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Sandusky, C.L.; Heath, J.L. Sensory and Instrument-Measured Ground Chicken Meat Color. Poult. Sci. 1998, 77, 481–486. [Google Scholar] [CrossRef]
- Janardhanan, R.; Virseda, P.; Huerta-Leidenz, N.; Beriain, M.J. Effect of high–hydrostatic pressure processing and sous-vide cooking on physicochemical traits of Biceps femoris veal patties. Meat Sci. 2022, 188, 108772. [Google Scholar] [CrossRef]
- Tananuwong, K.; Chitsakun, T.; Tattiyakul, J. Effects of high-pressure processing on inactivation of Salmonella Typhimurium, eating quality, and microstructure of raw chicken breast fillets. J. Food Sci. 2012, 77, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Insausti, K.; Beriain, M.J.; Purroy, A.; Alberti, P.; Gorraiz, C.; Alzueta, M.J. Shelf life of beef from local Spanish cattle breeds stored under modified atmosphere. Meat Sci. 2001, 57, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Grossi, A.; Bolumar, T.; Søltoft-Jensen, J.; Orlien, V. High pressure treatment of brine enhanced pork semitendinosus: Effect on microbial stability, drip loss, lipid and protein oxidation, and sensory properties. Innov. Food Sci. Emerg. Technol. 2014, 22, 11–21. [Google Scholar] [CrossRef]
- Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Pietrzak, D.; Cegiełka, A.; Fonberg-Broczek, M.; Ziarno, M. Effects of high pressure treatment on the quality of chicken patties. High Pressure Res. 2011, 31, 350–357. [Google Scholar] [CrossRef]
- Zhou, Y.; Watkins, P.; Oiseth, S.; Cochet-Broch, M.; Sikes, A.L.; Chen, C.; Buckow, R. High pressure processing improves the sensory quality of sodium-reduced chicken sausage formulated with three anion types of potassium salt. Food Control 2021, 126, 108008. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Fernandez, P.; Carballo, J.; Fernández-Martín, F. High-pressure-cooked low-fat pork and chicken batters as affected by salt levels and cooking temperature. J. Food Sci. 1998, 63, 656–659. [Google Scholar] [CrossRef]
Burgers | |
---|---|
pH | 5.96 ± 0.01 |
Moisture | 73.97 ± 0.21 |
Protein | 20.87 ± 0.51 |
Total fat | 1.82 ± 0.27 |
Fatty acids profile | Percentage |
C14:0 | 0.5 ± 0.0 |
C16:0 | 24.2 ± 0.5 |
C16:1 | 4.6 ± 0.1 |
C17:1 | 0.2 ± 0.0 |
C18:0 | 8.0 ± 0.4 |
C18:1 | 36.5 ± 0.4 |
C18:2, cis,cis | 23.7± 0.3 |
C18:3 | 1.9 ± 0.0 |
C20:1 | 0.4 ± 0.0 |
HHP Treatment | |||||||
---|---|---|---|---|---|---|---|
Storage Days | Control | HHP1 | HHP2 | HHP3 | HHP4 | p-Value | |
Mesophilic | T0 | 4.6 ± 0.3 a | 2.6 ± 0.4 c | 3.9 ± 0.2 b | 3.7 ± 0.5 b | <1 | 0.000 |
T1 | 9.7 ± 0.2 a | 8.7 ± 0.1 b | 8.7 ± 0.1 b | 5.5 ± 0.3 c | 3.8 ± 0.2 d | 0.000 | |
p-value | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 | ||
Psychrotrophic | T0 | 3.7 ± 0.2 a | 1.7 ± 0.2 b | 3.1 ± 0.4 a | 3.5 ± 0.1 a | <1 | 0.000 |
T1 | 8.7 ± 0.2 a | 8.8 ± 0.0 a | 8.8 ± 0.1 a | 3.5 ± 3.1 b | <1 | 0.000 | |
p-value | 0.000 | 0.000 | 0.000 | 0.956 | -- | ||
Molds and yeasts | T0 | 2.7 ± 0.3 a | <1 | <1 | <1 | <1 | 0.000 |
T1 | 6.5 ± 0.1 a | 4.9 ± 0.1 b | <1 | <1 | <1 | 0.000 | |
p-value | 0.000 | 0.000 | -- | -- | -- | ||
Total coliforms | T0 | 2.3 ± 0.3 a | 1.1 ± 0.6 b | <1 | <1 | <1 | 0.000 |
T1 | 6.7 ± 0.2 a | 5.3 ± 0.2 b | 1.7 ± 1.5 c | <1 | <1 | 0.000 | |
p-value | 0.000 | 0.000 | 0.088 | -- | -- | ||
E. coli | T0 | <1 | <1 | <1 | <1 | <1 | -- |
T1 | <1 | <1 | <1 | <1 | <1 | -- | |
p-value | -- | -- | -- | -- | -- | ||
S. aureus | T0 | <2 | <2 | <2 | <2 | <2 | -- |
T1 | 2.9 ± 0.2 a | <2 | <2 | <2 | <2 | 0.000 | |
p-value | 0.021 | -- | -- | -- | -- | ||
Cl. perfringens | T0 | <1 | <1 | <1 | <1 | <1 | -- |
T1 | <1 | <1 | <1 | <1 | <1 | -- | |
p-value | -- | -- | -- | -- | -- |
HHP Treatment | |||||||
---|---|---|---|---|---|---|---|
Storage Days | Control | HHP1 | HHP2 | HHP3 | HHP4 | p-Value | |
CIE L* | T0 | 55.3 ± 1.2 e | 62.9 ± 0.5 d | 65.2 ± 0.7 c | 71.3 ± 1.5 b | 73.3 ± 1.0 a | 0.000 |
T1 | 57.4 ± 1.3 c | 64.2 ± 0.5 b | 65.3 ± 1.1 b | 70.9 ± 1.2 a | 71.9 ± 0.9 a | 0.000 | |
P-value | 0.101 | 0.039 | 0.896 | 0.332 | 0.095 | ||
CIE a* | T0 | 1.0 ± 0.3 a | −0.3 ± 0.1 b | −0.5 ± 0.3 b | −1.4 ± 0.6 c | −0.7 ± 0.6 bc | 0.000 |
T1 | 2.7 ± 0.6 a | 0.3 ± 0.3 b | 0.1 ± 0.3 bc | −0.5 ± 0.3 cd | −0.7 ± 0.3 d | 0.000 | |
p-value | 0.006 | 0.033 | 0.006 | 0.014 | 0.858 | ||
CIE b* | T0 | 12.2 ± 0.7 a | 10.9 ± 0.4 b | 10.5 ± 0.4 b | 7.8 ± 0.9 c | 9.6 ± 1.0 b | 0.000 |
T1 | 12.5 ± 0.5 a | 11.6 ± 0.5 b | 11.4 ± 0.2 b | 9.5 ± 0.7 c | 9.4 ± 0.5 c | 0.000 | |
p-value | 0.637 | 0.032 | 0.029 | 0.020 | 0.613 | ||
CIE C* | T0 | −11.2 ± 1.2 e | −3.5 ± 0.5 d | −1.3 ± 0.7 c | 4.8 ± 1.5 b | 6.8 ± 1.0 a | 0.000 |
T1 | −9.0 ± 1.3 c | −2.3 ± 0.5 b | −1.2 ± 1.1 b | 4.4 ± 1.2 a | 5.4 ± 0.9 a | 0.000 | |
p-value | 0.101 | 0.039 | 0.894 | 0.334 | 0.095 | ||
CIE h* | T0 | 15.8 ± 0.3 a | 14.6 ± 0.1 b | 14.4 ± 0.3 b | 13.5 ± 0.6 c | 14.1 ± 0.6 bc | 0.000 |
T1 | 17.5 ± 0.6 a | 15.1 ± 0.3 b | 14.9 ± 0.3 bc | 14.4 ± 0.3 cd | 14.2 ± 0.3 d | 0.000 | |
p-value | 0.006 | 0.03 | 0.006 | 0.014 | 0.895 |
HHP Treatment | |||||
---|---|---|---|---|---|
Control | HHP1 | HHP2 | HHP3 | HHP4 | |
ΔE processing (control vs. HHP) | -- | 7.8 ± 0.6 d | 10.2 ± 0.6 c | 16.8 ± 1.1 b | 18.3 ± 0.8 a |
ΔE storage (Day1-day15) | 2.9 ± 1.1 a | 1.6 ± 0.5 ab | 1.4± 0.5 b | 2.3 ± 0.5 ab | 1.5 ± 0.9 ab |
Storage Days | Control | HHP1 | HHP2 | HHP3 | HHP4 | p-Value | |
---|---|---|---|---|---|---|---|
TBA-RS | T0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.144 |
T1 | 0.2 ± 0.0 c | 0.3 ± 0.1 bc | 0.4 ± 0.0 ab | 0.4 ± 0.1 ab | 0.5 ± 0.1 a | 0.000 | |
p-value | 0.002 | 0.001 | 0.001 | 0.002 | 0.003 | ||
Protein oxidation | T0 | 2.0 ± 0.4 | 1.9 ± 0.4 | 1.7 ± 0.2 | 1.8 ± 0.4 | 2.1 ± 0.3 | 0.441 |
T1 | 2.2 ± 0.4 | 1.8 ± 0.6 | 1.8 ± 0.6 | 1.4 ± 0.9 | 2.5 ± 0.5 | 0.088 | |
p-value | 0.361 | 0.939 | 0.858 | 0.335 | 0.261 |
Control | HHP1 | HHP2 | HHP3 | HHP4 | p-Value | |
---|---|---|---|---|---|---|
Appearance (dislike–like very much) | 6.1 ± 1.9 | 6.3 ± 1.7 | 6.0 ± 2.3 | 6.6 ± 2.0 | 6.3 ± 2.2 | 0.921 |
Odour (dislike–like very much) | 6.3 ± 2.3 | 6.8 ± 1.5 | 6.4 ± 2.0 | 6.3 ± 1.6 | 6.2 ± 2.1 | 0.890 |
Taste (dislike–like very much) | 6.5 ± 2.1 | 6.8 ± 1.9 | 5.5 ± 2.2 | 6.8 ± 1.6 | 6.6 ± 2.2 | 0.331 |
Texture (dislike–like very much) | 4.6 ± 2.4 b | 6.3 ± 1.9 ab | 5.3 ± 2.5 ab | 6.7 ± 1.5 a | 6.0 ± 2.1 ab | 0.052 |
Unpleasant tastes (absence–presence) | 1.1 ± 1.7 | 0.7 ± 1.4 | 1.4 ± 2.3 | 1.1 ± 1.6 | 1.3 ± 2.3 | 0.891 |
Global perception (dislike–like very much) | 5.9 ± 2.0 | 6.7 ± 1.8 | 5.4 ± 2.3 | 6.7 ± 1.5 | 6.5 ± 2.2 | 0.296 |
Dependent Variable | HHP | Storage | HHP × Storage | |||
---|---|---|---|---|---|---|
p-Value | Partial Eta Squared | p-Value | Partial Eta Squared | p-Value | Partial Eta Squared | |
Mesophilic | 0.000 | 0.972 | 0.000 | 0.982 | 0.000 | 0.880 |
Psychrotrophic | 0.000 | 0.850 | 0.000 | 0.800 | 0.000 | 0.750 |
Yeast and molds | 0.000 | 0.911 | 0.000 | 0.744 | 0.000 | 0.745 |
Total coliform | 0.000 | 0.943 | 0.000 | 0.858 | 0.000 | 0.832 |
S. aureus | 0.000 | 0.587 | 0.032 | 0.110 | 0.000 | 0.441 |
CIE L* | 0.000 | 0.978 | 0.279 | 0.029 | 0.005 | 0.308 |
CIE a* | 0.000 | 0.873 | 0.000 | 0.507 | 0.001 | 0.349 |
CIE b* | 0.000 | 0.843 | 0.001 | 0.256 | 0.017 | 0.255 |
CIE C | 0.000 | 0.975 | 0.279 | 0.029 | 0.004 | 0.309 |
CIE h | 0.000 | 0.873 | 0.000 | 0.508 | 0.001 | 0.350 |
ΔEprocessing | 0.000 | 0.989 | 0.000 | 0.613 | 0.000 | 0.450 |
ΔEstorage | 0.019 | 0.250 | 0.000 | 0.804 | 0.019 | 0.250 |
TBA-RS | 0.000 | 0.486 | 0.000 | 0.839 | 0.000 | 0.413 |
Protein oxidation | 0.024 | 0.240 | 0.674 | 0.004 | 0.498 | 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timón, M.L.; Palacios, I.; López-Parra, M.; Delgado-Adámez, J.; Ramírez, R. Effect of Single and Two-Cycles of High Hydrostatic Pressure Treatment on the Safety and Quality of Chicken Burgers. Foods 2023, 12, 3820. https://doi.org/10.3390/foods12203820
Timón ML, Palacios I, López-Parra M, Delgado-Adámez J, Ramírez R. Effect of Single and Two-Cycles of High Hydrostatic Pressure Treatment on the Safety and Quality of Chicken Burgers. Foods. 2023; 12(20):3820. https://doi.org/10.3390/foods12203820
Chicago/Turabian StyleTimón, María Luisa, Irene Palacios, Montaña López-Parra, Jonathan Delgado-Adámez, and Rosario Ramírez. 2023. "Effect of Single and Two-Cycles of High Hydrostatic Pressure Treatment on the Safety and Quality of Chicken Burgers" Foods 12, no. 20: 3820. https://doi.org/10.3390/foods12203820
APA StyleTimón, M. L., Palacios, I., López-Parra, M., Delgado-Adámez, J., & Ramírez, R. (2023). Effect of Single and Two-Cycles of High Hydrostatic Pressure Treatment on the Safety and Quality of Chicken Burgers. Foods, 12(20), 3820. https://doi.org/10.3390/foods12203820