Factors Limiting Shelf Life of a Tomato–Oil Homogenate (Salmorejo) Pasteurised via Conventional and Radiofrequency Continuous Heating and Packed in Polyethylene Bottles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Salmorejo Manufacturing Process
2.2. Microbiological Analyses
2.3. Enzyme Relative Activities (%RE)
2.4. Physicochemical Assessment
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alimarket Informe 2022 del Mercado de Gazpachos Y Cremas Refrigeradas en España. Available online: https://www.alimarket.es/alimentacion/informe/353959/informe-2022-del-mercado-de-gazpachos-y-cremas-refrigeradas-en-espana (accessed on 25 May 2023).
- Marsh, K.; Bugusu, B. Food Packaging—Roles, Materials, and Environmental Issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef]
- Raits, E.; Pinte, L.; Kirse-Ozolina, A.; Muizniece-Brasava, S. Effect of Hot-Fill Processing at Reduced Temperatures on Tomato Sauce Microbiological Stability in Plastic Packaging. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 26–28 May 2021; Volume 26, pp. 26–28. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Arranz, S.; Casals-Ribes, I.; Lamuela-Raventós, R.M. Stability of the Phenolic and Carotenoid Profile of Gazpachos during Storage. J. Agric. Food Chem. 2012, 60, 1981–1988. [Google Scholar] [CrossRef]
- Quintín, D. Empleo de Extractos Naturales Obtenidos de Subproductos Agroalimentarios en Productos de V Gama; Universidad de Murcia: Murcia, Spain, 2015. [Google Scholar]
- Toledo Del Árbol, J.; Pulido, R.P.; Grande, M.J.; Gálvez, A.; Lucas, R. Survival and High-Hydrostatic Pressure Inactivation of Foodborne Pathogens in Salmorejo, a Traditional Ready-to-Eat Food. J. Food Sci. 2015, 80, M2517–M2521. [Google Scholar] [CrossRef]
- Mosqueda-Melgar, J.; Raybaudi-Massilia, R.M.; Martín-Belloso, O. Microbiological Shelf Life and Sensory Evaluation of Fruit Juices Treated by High-Intensity Pulsed Electric Fields and Antimicrobials. Food Bioprod. Process. 2012, 90, 205–214. [Google Scholar] [CrossRef]
- Mannozzi, C.; Rompoonpol, K.; Fauster, T.; Tylewicz, U.; Romani, S.; Rosa, M.D.; Jaeger, H. Influence of Pulsed Electric Field and Ohmic Heating Pretreatments on Enzyme and Antioxidant Activity of Fruit and Vegetable Juices. Foods 2019, 8, 247. [Google Scholar] [CrossRef]
- Daoudi, L. Efecto de Las Altas Presiones Hidrostáticas Sobre el Gazpacho Y Zumo de Uva. Doctoral Tesis, Universidad Autónoma de Barcelona, Barcelona, Spain, 2004. Available online: https://hdl.handle.net/10803/5662 (accessed on 10 May 2021).
- Ballesta, M. Mejora en la Calidad del Puré de Tomate y Gazpacho Mediante Tratamientos Con Altas Presiones Hidrostáticas. Aprovechamiento Integral del Subproducto de Gazpacho. Ph.D. Thesis, San Antonio Catholic University, Murcia, Spain, 2020. Available online: http://hdl.handle.net/10952/5588 (accessed on 10 May 2021).
- Fernández-Ruiz, V.; Domínguez, L.; Sánchez-Mata, M.C.; Gervás, C.; Cámara, M. Factors Affecting Consumer Acceptance towards Spanish Tomato Products: A Preliminary Study on Gazpacho Soup. In Proceedings of the Acta Horticulturae, International Society for Horticultural Science, Santiago, Chile, 1 May 2017; Volume 1159, pp. 223–229. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Wang, Q.; Zhang, J.; Zhang, L. Identification and Confirmation of Key Compounds Causing Cooked Off-flavor in Heat-treated Tomato Juice. J. Food Sci. 2022, 87, 2515–2526. [Google Scholar] [CrossRef]
- Wang, X.; Chen, F.; Ma, L.; Liao, X.; Hu, X. Non-Volatile and Volatile Metabolic Profiling of Tomato Juice Processed by High-Hydrostatic-Pressure and High-Temperature Short-Time. Food Chem. 2022, 371, 131161. [Google Scholar] [CrossRef]
- Yan, B.; Martínez-Monteagudo, S.I.; Cooperstone, J.L.; Riedl, K.M.; Schwartz, S.J.; Balasubramaniam, V.M. Impact of Thermal and Pressure-Based Technologies on Carotenoid Retention and Quality Attributes in Tomato Juice. Food Bioprocess Technol. 2017, 10, 808–818. [Google Scholar] [CrossRef]
- Gao, R.; Wu, Z.; Ma, Q.; Lu, Z.; Ye, F.; Zhao, G. Effects of Breaking Methods on the Viscosity, Rheological Properties and Nutritional Value of Tomato Paste. Foods 2021, 10, 2395. [Google Scholar] [CrossRef]
- Calero-Pastor, M.; Clemente, G.; Fartdinov, D.; Bañon, S.; Muñoz, I.; Sanjuán, N. Upscaling via a Prospective LCA: A Case Study on Tomato Homogenate Using a Near-to-Market Pasteurisation Technology. Sustainability 2022, 14, 1716. [Google Scholar] [CrossRef]
- Abea, A.; Gou, P.; Guàrdia, M.D.; Picouet, P.; Kravets, M.; Bañón, S.; Muñoz, I. Dielectric Heating: A Review of Liquid Foods Processing Applications. Food Rev. Int. 2022, 39, 5684–5702. [Google Scholar] [CrossRef]
- Kravets, M.; Cedeño-Pinos, C.; Abea, A.; Guàrdia, M.D.; Muñoz, I.; Bañón, S. Validation of Pasteurisation Temperatures for a Tomato—Oil Conventional Continuous Heating. Foods 2023, 12, 2837. [Google Scholar] [CrossRef] [PubMed]
- Dufort, E.L.; Etzel, M.R.; Ingham, B.H. Thermal Processing Parameters to Ensure a 5-Log Reduction of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in Acidified Tomato-Based Foods. Food Prot. Trends 2017, 37, 409–418. Available online: https://www.foodprotection.org/publications/food-protection-trends/archive/2017-11-thermal-processing-parameters-to-ensure-a-5-logreduction-of-escherichia-coli-o157-h7-salmone (accessed on 25 September 2018).
- ISO:4833-1; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/53728.html (accessed on 25 September 2018).
- Robinson, R.K.; Batt, C.A.; Pradip, P.B. (Eds.) Encyclopedia of Food Microbiology; Academic Press: London, UK, 2000; ISBN 0-12-227070-3. [Google Scholar]
- Arjmandi, M.; Otón, M.; Artés, F.; Artés-Hernández, F.; Gómez, P.; Aguayo, E. Continuous Microwave Pasteurization of a Vegetable Smoothie Improves Its Physical Quality and Hinders Detrimental Enzyme Activity. Food Sci. Technol. Int. 2017, 23, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Fachin, D.; Van Loey, A.M.; Ly Nguyen, B.; Verlent, I.; Indrawati, A.; Hendrickx, M.E. Inactivation Kinetics of Polygalacturonase in Tomato Juice. Innov. Food Sci. Emerg. Technol. 2003, 4, 135–142. [Google Scholar] [CrossRef]
- Vervoort, L.; Van Der Plancken, I.; Grauwet, T.; Verlinde, P.; Matser, A.; Hendrickx, M.; Van Loey, A. Thermal versus High Pressure Processing of Carrots: A Comparative Pilot-Scale Study on Equivalent Basis. Innov. Food Sci. Emerg. Technol. 2012, 15, 1–13. [Google Scholar] [CrossRef]
- Marszałek, K.; Mitek, M.; Skąpska, S. Effect of Continuous Flow Microwave and Conventional Heating on the Bioactive Compounds, Colour, Enzymes Activity, Microbial and Sensory Quality of Strawberry Purée. Food Bioprocess Technol. 2015, 8, 1864–1876. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Cámara-Hurtado, M.; Díez-Marqués, C.; Torija-Isasa, M.E. Comparison of High-Performance Liquid Chromatography and Spectrofluorimetry for Vitamin C Analysis of Green Beans (Phaseolus vulgaris L.). Eur. Food Res. Technol. 2000, 210, 220–225. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- ISO 8586-1:1993; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors. International Organization for Standardization: Geneva, Switzerland, 1993. Available online: https://www.iso.org/standard/15875.html (accessed on 25 September 2018).
- ISO 8586-2:1994; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 2: Experts. International Organization for Standardization: Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/15876.html (accessed on 25 September 2018).
- European Commission (CE). Report on the Relationship between Analytical Results, Measurement Uncertainty, Recovery Factors and the Provisions of EU Food and Feed Legislation. DG Health and Consumers. Animal Nutrition. Sampling and Analysis Methods. 2004. Available online: https://food.ec.europa.eu/document/download/5ae53a90-f3a3-42c1-b248-5bbc97ebccbf_en (accessed on 10 September 2018).
- EURL LM. Technical Guidance Document on Challenge Tests and Durability Studies for Assessing Shelf-Life of Ready-to-Eat Foods Related to Listeria Monocytogenes Food Standards Australia; European Union Reference Laboratory for Listeria Monocytogenes. 2021. Available online: http://eurl-listeria.anses.fr (accessed on 10 December 2021).
- Vioque, M.; de la Cruz-Ares, S.; Gómez, R. Preliminary Investigation on the Physicochemical and Functional Properties of Commercial Salmorejo Found in Spanish Supermarkets. Foods 2021, 10, 1146. [Google Scholar] [CrossRef]
- Anthon, G.E.; Sekine, Y.; Watanabe, N.; Barrett, D.M. Thermal Inactivation of Pectin Methylesterase in Tomato Homogenate. J. Agric. Food Chemestry 2002, 50, 6153–6159. [Google Scholar] [CrossRef] [PubMed]
- Makroo, H.A.; Rastogi, N.K.; Srivastava, B. Enzyme Inactivation of Tomato Juice by Ohmic Heating and Its Effects on Physico-Chemical Characteristics of Concentrated Tomato Paste. J. Food Process Eng. 2017, 40, e12464. [Google Scholar] [CrossRef]
- Arjmandi, M.; Otón, M.; Artés, F.; Artés-Hernández, F.; Gómez, P.A.; Aguayo, E. Semi-industrial microwave treatments positively affect the quality of orange-colored smoothies. J Food Sci Technol 2016, 53, 3695. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Comparative Study on Color, Viscosity and Related Enzymes of Tomato Juice Treated by High-Intensity Pulsed Electric Fields or Heat. Eur. Food Res. Technol. 2008, 227, 599–606. [Google Scholar] [CrossRef]
- Singh, B.; Suri, K.; Shevkani, K.; Kaur, A.; Kaur, A.; Singh, N. Enzymatic Browning of Fruit and Vegetables: A Review. In Enzymes in Food Technology; Kuddus, M., Ed.; John Wiley & Sons: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Spagna, G.; Barbagallo, R.N.; Chisari, M.; Branca, F. Characterization of a Tomato Polyphenol Oxidase and Its Role in Browning and Lycopene Content. J. Agric. Food Chem. 2005, 53, 2032–2038. [Google Scholar] [CrossRef] [PubMed]
- Ercan, Ş.; Soysal, C. Properties of Tomato Peroxidase. J. Adv. Plants Sci. 2018, 1, 206. [Google Scholar]
- Jayathunge, K.G.L.R.; Stratakos, A.C.; Delgado-Pando, G.; Koidis, A. Thermal and Non-thermal Processing Technologies on Intrinsic and Extrinsic Quality Factors of Tomato Products: A Review. J. Food Process. Preserv. 2019, 43, e13901. [Google Scholar] [CrossRef]
- Whitaker, J.R. Pectic Substances, Pectic Enzymes and Haze Formation in Fruit Juices. Enzym. Microb. Technol. 1984, 6, 341–349. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of Non-Enzymatic Browning and Antioxidant Capacity in Processed Foods. Trends Food Sci. Technol. 2001, 11, 340–346. [Google Scholar] [CrossRef]
Months | 0 | 1 | 2 | 3 | 4 | 5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | M | M | M | M | M | RMSE | ||||||||
pH | CH | 3.97 | bc | 3.88 | bc | 3.82 | bc | 3.78 | c | 4.08 | b | 4.53 | a | 0.333 |
RF | 3.81 | bc | 3.84 | bc | 3.92 | bc | 3.78 | c | 4.02 | b | 4.53 | a | ||
Ascorbic acid | CH | 19.7 | a | 1.23 | b | 1.19 | b | 1.15 | b | 1.08 | b | 0.94 | b | 0.086 |
mg 100 mL−1 | RF | 21.5 | a | 1.12 | b | 1.18 | b | 1.03 | b | 1.10 | b | 0.90 | b | |
TBARS | CH | 0.46 | b | 0.58 | a | 0.55 | a | 0.55 | a | 0.48 | b | 0.45 | b | 0.013 |
mg MDA kg−1 | RF | 0.49 | b | 0.57 | a | 0.55 | a | 0.54 | a | 0.50 | b | 0.46 | b | |
Lightness | CH | 60.6 | a | 58.8 | b | 59.6 | b | 59.4 | b | 59.7 | b | 59.7 | b | 0.691 |
CIE L* | RF | 59.2 | b | 58.7 | b | 58.4 | b | 58.1 | b | 58.6 | b | 58.6 | b | |
Redness | CH | 22.2 | a | 22.0 | a | 20.3 | b | 20.5 | b | 19.5 | bc | 19.0 | bc | 0.17 |
CIE a* | RF | 21.9 | a | 21.8 | a | 20.0 | b | 20.6 | b | 19.7 | bc | 18.8 | c | |
Yellowness | CH | 41.9 | bc | 42.8 | bc | 46.5 | a | 45.3 | ab | 47.0 | a | 46.1 | a | 0.56 |
CIE b* | RF | 39.2 | c | 40.4 | c | 44.8 | ab | 42.4 | b | 44.6 | ab | 45.1 | ab | |
Hue angle | CH | 51.7 | b | 62.8 | ab | 66.4 | b | 65.7 | b | 67.5 | b | 67.6 | b | 2.57 |
CIE h* | RF | 52.5 | b | 61.6 | ab | 66.0 | b | 64.1 | b | 66.1 | b | 67.3 | b | |
Viscosity 1 | CH | 25.0 | a | 20.4 | b | 17.5 | b | 17.9 | b | 18.3 | b | 18.1 | b | 1.08 |
mPa s | RF | 21.7 | ab | 20.3 | b | 17.8 | b | 18.1 | b | 18.8 | b | 17.5 | b | |
Viscosity 2 | CH | 0.81 | a | 0.78 | a | 0.68 | ab | 0.63 | ab | 0.57 | b | 0.54 | c | 0.135 |
Pa s | RF | 0.82 | a | 0.80 | a | 0.60 | b | 0.58 | b | 0.59 | b | 0.56 | bc | |
Deformation | CH | 5.15 | a | 4.93 | ab | 5.35 | a | 5.15 | a | 4.90 | b | 4.90 | b | 0.10 |
Energy mJ | RF | 5.03 | ab | 4.90 | b | 4.70 | b | 5.00 | ab | 5.00 | ab | 5.00 | ab | |
Hardness | CH | 0.22 | ab | 0.21 | ab | 0.23 | a | 0.22 | ab | 0.21 | ab | 0.21 | ab | 0.005 |
N | RF | 0.21 | ab | 0.20 | b | 0.20 | b | 0.21 | ab | 0.20 | b | 0.21 | ab |
Months | 0 | 1 | 2 | 3 | 4 | 5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | M | M | M | M | M | RMSE | ||||||||
Orange colour | CH | 5.9 | a | 6.3 | a | 6.5 | a | 6.5 | a | 6.0 | a | 5.3 | b | 0.20 |
RF | 6.0 | a | 6.4 | a | 6.2 | a | 6.9 | a | 6.9 | a | 5.4 | b | ||
Smooth surface | CH | 6.9 | a | 6.8 | a | 6.9 | a | 7.0 | a | 6.3 | a | 5.8 | b | 0.10 |
RF | 6.5 | a | 6.0 | ab | 6.4 | a | 6.0 | ab | 5.9 | ab | 5.3 | b | ||
Odour intensity | CH | 5.5 | 5.5 | 5.2 | 4.8 | 4.8 | 4.7 | 0.06 | ||||||
RF | 5.7 | 5.7 | 5.9 | 5.3 | 5.1 | 5.2 | ||||||||
Flavour intensity | CH | 5.8 | 5.6 | 5.5 | 5.6 | 5.7 | 4.7 | 0.06 | ||||||
RF | 6.0 | 5.8 | 6.2 | 5.1 | 5.4 | 4.9 | ||||||||
Odour homogeneity | CH | 5.7 | 5.8 | 6.1 | 5.8 | 5.4 | 5.2 | 0.24 | ||||||
RF | 5.8 | 6.0 | 6.0 | 6.0 | 5.6 | 5.4 | ||||||||
Flavour homogeneity | CH | 5.8 | 5.6 | 5.5 | 5.6 | 5.7 | 4.7 | 0.25 | ||||||
RF | 6.0 | 5.8 | 5.5 | 5.1 | 5.4 | 4.9 | ||||||||
Fresh odour | CH | 4.1 | a | 3.7 | a | 4.1 | a | 3.9 | a | 3.6 | a | 2.1 | b | 0.17 |
RF | 4.6 | a | 4.5 | a | 4.5 | a | 4.5 | a | 4.4 | a | 3.4 | b | ||
Fresh flavour | CH | 4.3 | a | 4.2 | a | 4.2 | a | 4.4 | a | 3.8 | a | 1.8 | b | 0.17 |
RF | 4.6 | a | 4.3 | a | 4.3 | a | 4.4 | a | 3.1 | a | 2.0 | b | ||
Tomato odour | CH | 4.0 | a | 3.8 | a | 3.5 | a | 3.6 | a | 3.1 | ab | 2.7 | b | 0.33 |
RF | 4.8 | a | 4.5 | a | 4.0 | a | 4.1 | a | 3.9 | a | 2.8 | b | ||
Vinegar odour | CH | 4.2 | a | 4.0 | a | 3.9 | a | 3.7 | a | 3.4 | ab | 2.7 | b | 0.85 |
RF | 4.4 | a | 4.1 | a | 4.0 | a | 3.8 | a | 3.3 | ab | 3.2 | b | ||
Garlic odour | CH | 3.4 | a | 3.3 | a | 3.0 | a | 2.9 | a | 2.6 | ab | 2.1 | b | 0.78 |
RF | 3.4 | a | 3.2 | a | 3.1 | a | 2.8 | a | 2.6 | ab | 2.0 | b | ||
Acid taste | CH | 4.5 | a | 4.3 | a | 4.3 | a | 4.3 | a | 3.5 | ab | 3.2 | b | 0.04 |
RF | 4.8 | a | 4.6 | a | 4.9 | a | 4.5 | a | 3.8 | ab | 3.4 | b | ||
Mouth feeling | CH | 3.7 | a | 3.3 | ab | 3.3 | ab | 3.5 | ab | 3.7 | ab | 2.5 | b | 0.13 |
RF | 4.3 | a | 3.5 | ab | 3.4 | ab | 3.9 | ab | 3.8 | ab | 2.8 | b | ||
Spoon viscosity | CH | 5.8 | a | 5.8 | a | 5.2 | ab | 4.8 | ab | 4.9 | ab | 4.1 | b | 0.58 |
RF | 5.5 | a | 4.2 | ab | 4.5 | ab | 3.9 | b | 4.1 | b | 4.2 | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kravets, M.; Abea, A.; Guàrdia, M.D.; Muñoz, I.; Bañón, S. Factors Limiting Shelf Life of a Tomato–Oil Homogenate (Salmorejo) Pasteurised via Conventional and Radiofrequency Continuous Heating and Packed in Polyethylene Bottles. Foods 2023, 12, 3882. https://doi.org/10.3390/foods12203882
Kravets M, Abea A, Guàrdia MD, Muñoz I, Bañón S. Factors Limiting Shelf Life of a Tomato–Oil Homogenate (Salmorejo) Pasteurised via Conventional and Radiofrequency Continuous Heating and Packed in Polyethylene Bottles. Foods. 2023; 12(20):3882. https://doi.org/10.3390/foods12203882
Chicago/Turabian StyleKravets, Marina, Andrés Abea, Maria Dolors Guàrdia, Israel Muñoz, and Sancho Bañón. 2023. "Factors Limiting Shelf Life of a Tomato–Oil Homogenate (Salmorejo) Pasteurised via Conventional and Radiofrequency Continuous Heating and Packed in Polyethylene Bottles" Foods 12, no. 20: 3882. https://doi.org/10.3390/foods12203882
APA StyleKravets, M., Abea, A., Guàrdia, M. D., Muñoz, I., & Bañón, S. (2023). Factors Limiting Shelf Life of a Tomato–Oil Homogenate (Salmorejo) Pasteurised via Conventional and Radiofrequency Continuous Heating and Packed in Polyethylene Bottles. Foods, 12(20), 3882. https://doi.org/10.3390/foods12203882