The Effect of Lactiplantibacillus plantarum x3-2b Bacterial Powder on the Physicochemical Quality and Biogenic Amines of Fermented Lamb Jerky
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Determination of the Viable Counts and Lyophilization Survival Rates of the Strains
2.3. Preparation of the x3-2b Bacteria Powder
2.4. Scanning Electron Microscopy (SEM)
2.5. Development of Fermented Lamb Jerky
2.6. Determination of the Physical and Chemical Indicators of Fermented Lamb Jerky
2.7. Determination of Biogenic Amines (BAs)
2.8. Determination of Volatile Flavor Substances
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimization of the Added Amount of Freeze-Dried Protective Agent
3.2. Scanning Electron Microscopy (SEM)
3.3. Effects of x3-2b Bacterial Powder on pH, Water Activity (aw), and Differences in Color of Fermented Lamb Jerky
3.4. Effect of x3-2b Bacteria Powder on the Nitrite Residues in Fermented Lamb Jerky
3.5. Effect of x3-2b Bacterial Powder on Thiobarbituric Acid (TBARS) in Fermented Lamb Jerky
3.6. Effect of x3-2b Bacterial Powder on the Texture of Fermented Lamb Jerky
3.7. Effect of x3-2b Bacterial Powder on the Biogenic Amines (BAs) in Fermented Lamb Jerky
3.8. Effect of x3-2b Bacteria Powder on the Volatile Flavor Compounds in Fermented Lamb Jerky
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Konieczny, P.; Stangierski, J.; Kijowski, J. Physical and chemical characteristics and acceptability of home style beef jerky. Meat Sci. 2007, 76, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Ren, H.; Zhan, Y. Comparison of bacterial diversity profiles and microbial safety assessment of salami, Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing. LWT 2018, 90, 108–115. [Google Scholar] [CrossRef]
- Sun, X.; Sun, E.; Sun, L.; Su, L.; Jin, Y.; Ren, L.; Zhao, L. Effect of Biogenic Amine-Degrading Lactobacillus on the Biogenic Amines and Quality in Fermented Lamb Jerky. Foods 2022, 11, 2057. [Google Scholar] [CrossRef] [PubMed]
- Pedro, D.; Saldaña, E.; Lorenzo, J.M.; Pateiro, M.; Dominguez, R.; Dos Santos, B.A.; Cichoski, A.J.; Campagnol, P.C.B. Low-sodium dry-cured rabbit leg: A novel meat product with healthier properties. Meat Sci. 2021, 173, 108372. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Wang, D.; Gao, F.; Zhang, K.; Tian, J.; Jin, Y. Research update on the impact of lactic acid bacteria on the substance metabolism, flavor, and quality characteristics of fermented meat products. Foods 2022, 11, 2090. [Google Scholar] [CrossRef]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef]
- Li, C.; Lv, J. Development trend of Lactobacillus and its fermented dairy products. China Brew. 2005, 24, 5–7. [Google Scholar]
- Sun, Q.; Sun, F.; Zheng, D.; Kong, B.; Liu, Q. Complex starter culture combined with vacuum packaging reduces biogenic amine formation and delays the quality deterioration of dry sausage during storage. Food Control 2019, 100, 58–66. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Zhao, L.; Wang, Q.; Li, B.; Lu, S. The effects of amine oxidase-producing starter culture on biogenic amine accumulation in traditional Chinese smoked horsemeat sausages. J. Food Saf. 2019, 39, e12638. [Google Scholar]
- Librán, C.M.; Castro, S.; Lagaron, J.M. Encapsulation by electrospray coating atomization of probiotic strains. Innov. Food Sci. Emerg. Technol. 2017, 39, 216–222. [Google Scholar] [CrossRef]
- Abadias, M.; Benabarre, A.; Teixidó, N.; Usall, J.; Vinas, I. Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. Int. J. Food Microbiol. 2001, 65, 173–182. [Google Scholar] [CrossRef]
- Ming, L.C.; Rahim, R.A.; Wan, H.Y.; Ariff, A.B. Formulation of protective agents for improvement of Lactobacillus salivarius I 24 survival rate subjected to freeze drying for production of live cells in powderized form. Food Bioprocess Technol. 2009, 2, 431–436. [Google Scholar] [CrossRef]
- De Valdez, G.F.; de Giori, G.S.; de Ruiz Holgado, A.P.; Oliver, G. Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying. Cryobiology 1983, 20, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, A.; Basak, S.; Ananthanarayan, L. Formulation of a probiotic buttermilk powder using cell protectants by spray drying and estimation of its shelf-stability. Int. Dairy J. 2023, 141, 105616. [Google Scholar] [CrossRef]
- Haindl, R.; Neumayr, A.; Frey, A.; Kulozik, U. Impact of cultivation strategy, freeze-drying process, and storage conditions on survival, membrane integrity, and inactivation kinetics of Bifidobacterium longum. Folia Microbiol. 2020, 65, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Kabeir, B.M.; Mustafa, S.; Mohamad, R.; Hussin, A.S.M.; Manap, M.Y. Viability of Bifidobacterium pseudocatenulatum G4 after spray-drying and freeze-drying. Microbiol. Insights 2010, 3, 37–43. [Google Scholar] [CrossRef]
- Moayyedi, M.; Eskandari, M.H.; Rad, A.H.E.; Ziaee, E.; Khodaparast, M.H.H.; Golmakani, M.T. Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. J. Funct. Foods 2018, 40, 391–399. [Google Scholar] [CrossRef]
- Khosroshahi, E.D.; Razavi, S.H.; Kiani, H.; Aghakhani, A. Mixed fermentation and electrospray drying for the development of a novel stabilized wheat germ powder containing highly viable probiotic cultures. Food Sci. Nutr. 2023, 11, 2176–2185. [Google Scholar] [CrossRef]
- Wen, R.; Sun, F.; Wang, Y.; Chen, Q.; Kong, B. Evaluation the potential of lactic acid bacteria isolates from traditional beef jerky as starter cultures and their effects on flavor formation during fermentation. LWT 2021, 142, 110982. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, L.; Xu, J.; Su, L.; Jin, Z.; Su, R.; Jin, Y. Effect of fermentation and post cooking procedure on quality parameters and volatile compounds of beef jerky. Food Sci. Nutr. 2020, 8, 2316–2326. [Google Scholar] [CrossRef]
- State Food and Drug Administration of the State Health and Family Planning Commission of the People’s Republic of China. Determination of Nitrite and Nitrate in Food (GB 5009.33). Available online: http://down.foodmate.net/standard/sort/3/50419.html (accessed on 23 December 2016).
- Lu, S.; Ji, H.; Wang, Q.; Li, B.; Li, K.; Xu, C.; Jiang, C. The effects of starter cultures and plant extracts on the biogenic amine accumulation in traditional Chinese smoked horsemeat sausages. Food Control 2015, 50, 869–875. [Google Scholar] [CrossRef]
- Wen, R.; Hu, Y.; Zhang, L.; Wang, Y.; Chen, Q.; Kong, B. Effect of NaCl substitutes on lipid and protein oxidation and flavor development of Harbin dry sausage. Meat Sci. 2019, 156, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Tian, F.; Liu, X.; Zhao, J.; Zhang, H.; Chen, W. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Appl. Microbiol. Biotechnol. 2011, 92, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.N.; Liu, X.M.; Chen, H.Q.; Xia, Y.; Zhang, H.P.; Zhang, H.; Chen, W. Enhancement of the hydrolysis activity of β-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis. J. Dairy Sci. 2011, 94, 1176–1184. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Li, P.; Feng, X.; Mao, Z.; Wei, J.; Lin, X.; Li, X.; Wang, L. Exploring the protective effects of freeze-dried Lactobacillus rhamnosus under optimized cryoprotectants formulation. LWT 2023, 173, 114295. [Google Scholar] [CrossRef]
- Gong, P.; Sun, J.; Lin, K.; Di, W.; Zhang, L.; Han, X. Changes process in the cellular structures and constituents of Lactobacillus bulgaricus sp1. 1 during spray drying. LWT 2019, 102, 30–36. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, X.; Lu, Z.; Hang, J.; He, S.; Tan, H.; Wang, G.; Li, Y.; Liu, D. Production of fermented pork jerky using Lactobacillus bulgaricus. LWT 2016, 72, 377–382. [Google Scholar] [CrossRef]
- Väkeväinen, K.; Valderrama, A.; Espinosa, J.; Centurión, D.; Rizo, J.; Reyes-Duarte, D.; Díaz-Ruiz, G.; Wright, A.; Elizaquível, P.; Esquivel, K.; et al. Characterization of lactic acid bacteria recovered from atole agrio, a traditional Mexican fermented beverage. LWT 2018, 88, 109–118. [Google Scholar] [CrossRef]
- Mejri, L.; Ziadi, A.; Adab, S.E.; Boulares, M.; Essid, I.; Hassouna, M. Effect of commercial starter cultures on physicochemical, microbiological and textural characteristics of a traditional dry fermented sausage reformulated with camel meat and hump fat. J. Food Meas. Charact. 2017, 11, 758–767. [Google Scholar] [CrossRef]
- Gounadaki, A.S.; Skandamis, P.N.; Drosinos, E.H.; Nychas, G.J.E. Effect of packaging and storage temperature on the survival of Listeria monocytogenes inoculated postprocessing on sliced salami. J. Food Prot. 2007, 70, 2313–2320. [Google Scholar] [CrossRef]
- Baka, A.M.; Papavergou, E.J.; Pragalaki, T.; Bloukas, J.G.; Kotzekidou, P. Effect of selected autochthonous starter cultures on processing and quality characteristics of Greek fermented sausages. LWT 2011, 44, 54–61. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Pang, G.; Wang, S. Effect of inoculation of starter on physicochemical properties and texture characteristics of fermented beef jerky. J. Food Process. Preserv. 2021, 45, e15744. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Chen, C.; Xie, T.; Li, P. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages. Food Res. Int. 2020, 135, 109247. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Kong, B.; Han, Q.; Xia, X.; Xu, L. The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development. LWT 2017, 77, 389–396. [Google Scholar] [CrossRef]
- Hertel, C.; Schmidt, G.; Fischer, M.; Oellers, K.; Hammes, W.P. Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677. Appl. Environ. Microbiol. 1998, 64, 1359–1365. [Google Scholar] [CrossRef]
- Castex, M.; Lemaire, P.; Wabete, N.; Chim, L. Effect of dietary probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress status of shrimp Litopenaeus stylirostris. Aquaculture 2009, 294, 306–313. [Google Scholar] [CrossRef]
- Dias, I.; Laranjo, M.; Potes, M.E.; Agulheiro-Santos, A.C.; Ricardo-Rodrigues, S.; Fialho, A.R.; Véstia, J.; Fraqueza, M.J.; Oliveira, M.; Elias, M. Autochthonous starter cultures are able to reduce biogenic amines in a traditional Portuguese smoked fermented sausage. Microorganisms 2020, 8, 686. [Google Scholar] [CrossRef]
- Nie, X.; Lin, S.; Zhang, Q. Proteolytic characterisation in grass carp sausage inoculated with Lactobacillus plantarum and Pediococcus pentosaceus. Food Chem. 2014, 145, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Bover-Cid, S.; Izquierdo-Pulido, M.; Vidal-Carou, M.C. Mixed starter cultures to control biogenic amine production in dry fermented sausages. J. Food Prot. 2000, 63, 1556–1562. [Google Scholar] [CrossRef]
- Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Kowalska, T.; Paelinck, H.; Vander Heyden, Y. Influence of putrescine, cadaverine, spermidine or spermine on the formation of N-nitrosamine in heated cured pork meat. Food Chem. 2011, 126, 1539–1545. [Google Scholar] [CrossRef]
- Kawai, T.; Sakaguchi, M. Fish flavor. Crit. Rev. Food Sci. Nutr. 1996, 36, 257–298. [Google Scholar] [CrossRef]
- Zeng, X.; Xia, W.; Jiang, Q.; Xu, Y.; Fan, J. Contribution of mixed starter cultures to flavor profile of Suanyu–a traditional Chinese low-salt fermented whole fish. J. Food Process. Preserv. 2017, 41, e13131. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Carballo, J.; Franco, D. Effect of the inclusion of chestnut in the finishing diet on volatile compounds of dry-cured ham from Celta pig breed. J. Integr. Agric. 2013, 12, 2002–2012. [Google Scholar] [CrossRef]
- Ruiz, J.; Ventanas, J.; Cava, R. New device for direct extraction of volatiles in solid samples using SPME. J. Agric. Food Chem. 2001, 49, 5115–5121. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.; Wang, Y.; Pan, D.; Sun, Y.; Cao, J. Study on the volatile compounds generated from lipid oxidation of Chinese bacon (unsmoked) during processing. Eur. J. Lipid Sci. Technol. 2017, 119, 1600512. [Google Scholar] [CrossRef]
- Corral, S.; Salvador, A.; Flores, M. Salt reduction in slow fermented sausages affects the generation of aroma active compounds. Meat Sci. 2013, 93, 776–785. [Google Scholar] [CrossRef]
- Shahidi, F.; Rubin, L.J.; D’Souza, L.A.; Teranishi, R.; Buttery, R.G. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. Crit. Rev. Food Sci. Nutr. 1986, 24, 141–243. [Google Scholar] [CrossRef]
- Sabio, E.; Vidal-Aragón, M.C.; Bernalte, M.J.; Gata, J.L. Volatile compounds present in six types of dry-cured ham from south European countries. Food Chem. 1998, 61, 493–503. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Domínguez, R. Cooking losses, lipid oxidation and formation of volatile compounds in foal meat as affected by cooking procedure. Flavour Fragr. J. 2014, 29, 240–248. [Google Scholar] [CrossRef]
- Frank, D.; Watkins, P.; Ball, A.; Krishnamurthy, R.; Piyasiri, U.; Sewell, J.; Ortuño, J.; Stark, J.; Warner, R. Impact of brassica and lucerne finishing feeds and intramuscular fat on lamb eating quality and flavor. A cross-cultural study using Chinese and non-Chinese Australian consumers. J. Agric. Food Chem. 2016, 64, 6856–6868. [Google Scholar] [CrossRef]
- Stahnke, L. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels—Part III. Sens. Eval. Meat Sci. 1995, 41, 211–223. [Google Scholar] [CrossRef] [PubMed]
CO | SP | CP | ||
---|---|---|---|---|
pH | Marination | 5.64 ± 0.02 Aa | 5.58 ± 0.02 Ab | 5.55 ± 0.01 Ac |
Fermentation | 5.34 ± 0.02 Ca | 4.77 ± 0.02 Cb | 4.74 ± 0.01 Bb | |
Roasting | 5.51 ± 0.01 Ba | 4.83 ± 0.01 Bb | 4.78 ± 0.02 Bc | |
aw | Marination | 0.887 ± 0.015 Aa | 0.861 ± 0.060 Ab | 0.859 ± 0.010 Ab |
Fermentation | 0.835 ± 0.045 Ba | 0.776 ± 0.120 Bb | 0.780 ± 0.100 Bb | |
Roasting | 0.615 ± 0.015 Ca | 0.594 ± 0.002 Cb | 0.587 ± 0.001 Cb | |
Luminance value L* | Marination | 39.60 ± 0.08 Bb | 41.04 ± 0.67 Cb | 44.37 ± 0.22 Ba |
Fermentation | 36.55 ± 0.37 Cb | 45.23 ± 0.06 Ba | 45.32 ± 0.18 Ba | |
Roasting | 45.41 ± 1.35 Ab | 48.29 ± 1.59 Aa | 48.72 ± 2.23 Aa | |
Red degree value a* | Marination | 14.77 ± 0.17 Ac | 15.20 ± 0.27 Ab | 16.98 ± 0.19 Aa |
Fermentation | 9.02 ± 0.16 Cb | 10.46 ± 0.13 Ca | 10.79 ± 0.15 Ca | |
Roasting | 10.91 ± 0.17 Bc | 11.50 ± 0.11 Bb | 12.09 ± 0.16 Ba | |
Yellowness value b* | Marination | 10.72 ± 0.16 Ba | 10.39 ± 0.17 Ba | 10.21 ± 0.22 Ba |
Fermentation | 10.67 ± 0.11 Ba | 9.59 ± 0.15 Cb | 8.86 ± 0.17 Cc | |
Roasting | 14.42 ± 0.19 Aa | 13.88 ± 0.35 Ab | 13.67 ± 0.61 Ab | |
E* values | Marination | 1.85 ± 0.03 Aa | 1.87 ± 0.03 Aa | 1.90 ± 0.02 Aa |
Fermentation | 1.87 ± 0.05 Ab | 1.90 ± 0.02 Aab | 1.95 ± 0.03 Aa | |
Roasting | 1.01 ± 0.02 Bb | 1.07 ± 0.02 Bab | 1.12 ± 0.03 Ba | |
Nitrite contents (mg/kg) | Marination | 0.555 ± 0.30 Ca | 0.255 ± 0.06 Cab | 0.108 ± 0.03 Bb |
Fermentation | 0.737 ± 0.19 Aa | 0.601 ± 0.06 Ab | 0.489 ± 0.14 Ac | |
Roasting | 0.654 ± 0.12 Ba | 0.490 ± 0.26 Bab | 0.431 ± 0.03 Ab | |
TBARS content (mg/100 g) | Marination | 0.08 ± 0.03 Ba | 0.05 ± 0.03 Bb | 0.10 ± 0.02 Aa |
Fermentation | 0.16 ± 0.01 Aa | 0.11 ± 0.01 Ab | 0.13 ± 0.01 Ab | |
Roasting | 0.20 ± 0.02 Aa | 0.12 ± 0.01 Ab | 0.06 ± 0.02 Bc |
CO | SP | CP | |
---|---|---|---|
Hardness (N) | 4426.14 ± 660.75 a | 2765.35 ± 338.33 b | 2515.31 ± 99.35 b |
Elasticity | 0.55 ± 0.01 b | 0.60 ± 0.04 ab | 0.68 ± 0.10 a |
Cohesion | 0.52 ± 0.05 b | 0.55 ± 0.02 b | 0.66 ± 0.04 a |
Stickiness | 2474.58 ± 643.59 a | 1102.36 ± 110.45 b | 896.41 ± 75.02 c |
Chewiness (N) | 1357.84 ± 328.83 a | 750.63 ± 112.20 b | 541.79 ± 57.37 b |
Resilience | 0.12 ± 0.02 c | 0.18 ± 0.02 b | 0.22 ± 0.01 a |
Volatile Compound | Chemical Formula | Groups | Stage | ||
---|---|---|---|---|---|
Marination | Fermentation | Roasting | |||
Alcohols (18) | |||||
2,3-Butanediol | C4H10O2 | CO | — | 6.438 ± 0.294 | 8.668 ± 4.330 |
SP | — | 4.015 ± 0.398 | 1.747 ± 0.786 | ||
CP | — | 4.451 ± 0.535 | 14.766 ± 6.935 | ||
1,3-Butanediol | C4H10O2 | CO | — | — | — |
SP | — | — | 1.374 ± 0.000 | ||
CP | — | — | 2.221 ± 0.000 | ||
Erythritol | C4H10O4 | CO | — | — | 11.459 ± 0.000 |
SP | — | 2.374 ± 0.000 | — | ||
CP | — | — | 3.663 ± 0.000 | ||
2-Heptanol | C7H16O | CO | 2.001 ± 0.000 | — | — |
SP | 0.157 ± 0.005 | — | — | ||
CP | 0.230 ± 0.020 | — | — | ||
Trans-2-octen-1-ol | C8H16O | CO | — | — | 0.358 ± 0.006 |
SP | 0.367 ± 0.000 | 0.377 ± 0.109 | 0.360 ± 0.000 | ||
CP | 0.377 ± 0.000 | 0.386 ± 0.000 | 2.304 ± 0.348 | ||
1-Octen-3-ol | C8H16O | CO | — | — | — |
SP | 0.291 ± 0.022 | — | 1.037 ± 0.042 | ||
CP | 0.305 ± 0.000 | — | 1.529 ± 0.011 | ||
2-Propyl-1-pentanol | C8H18O | CO | — | 24.730 ± 0.000 | 18.835 ± 3.382 |
SP | — | 2.063 ± 0.027 | 11.757 ± 5.062 | ||
CP | — | 12.056 ± 0.000 | 12.870 ± 8.692 | ||
N-octanol | C8H18O | CO | — | 0.694 ± 0.000 | 2.072 ± 0.471 |
SP | 0.734 ± 0.000 | 0.706 ± 0.137 | 2.848 ± 0.000 | ||
CP | — | 0.977 ± 0.110 | — | ||
Verbenol | C10H16O | CO | — | 0.398 ± 0.000 | — |
SP | 0.057 ± 0.000 | 1.162 ± 0.000 | — | ||
CP | 0.095 ± 0.000 | — | — | ||
Linalool | C10H18O | CO | 6.717 ± 2.406 a | 2.185 ± 1.46 | 8.193 ± 1.513 |
SP | 6.204 ± 1.937 ab | 2.932 ± 0.186 | 7.946 ± 1.693 | ||
CP | 6.281 ± 0.058 b | 6.164 ± 1.994 | 64.220 ± 6.461 | ||
Isopulegol | C10H18O | CO | 0.871 ± 0.000 | — | — |
SP | 0.118 ± 0.039 | — | — | ||
CP | 0.140 ± 0.052 | — | 0.806 ± 0.000 | ||
α-terpineol | C10H18O | CO | 8.599 ± 2.804 | 4.058 ± 1.051 | 5.187 ± 2.285 |
SP | 5.205 ± 3.436 | 5.692 ± 0.000 | 6.947 ± 1.789 | ||
CP | 7.707 ± 0.000 | 6.867 ± 2.545 | 44.063 ± 4.509 | ||
Geraniol | C10H18O | CO | 1.841 ± 0.012 | 1.646 ± 0.000 | 2.212 ± 0.585 |
SP | 2.078 ± 0.274 | 1.287 ± 0.859 | 3.873 ± 0.000 | ||
CP | — | 1.133 ± 0.000 | 14.191 ± 0.000 | ||
DL-isoborneol | C10H18O | CO | — | 0.174 ± 0.000 | 0.486 ± 0.045 |
SP | — | 0.161 ± 0.004 | 0.460 ± 0.000 | ||
CP | — | 0.249 ± 0.031 | — | ||
Nerol | C10H18O | CO | — | — | — |
SP | 4.188 ± 0.000 | 0.607 ± 0.212 | — | ||
CP | 1.681 ± 1.156 | 2.324 ± 0.000 | 13.498 ± 0.000 | ||
Citronellol | C10H20O | CO | 6.871 ± 0.638 | 1.175 ± 0.018 | 1.249 ± 0.945 |
SP | 1.909 ± 0.667 | 1.108 ± 0.256 | 3.182 ± 0.000 | ||
CP | 2.038 ± 0.141 | 1.105 ± 0.008 | 12.484 ± 0.000 | ||
Trans-Nerolidol | C15H26O | CO | 3.946 ± 0.254 | 0.749 ± 0.000 | 1.011 ± 0.372 |
SP | 2.059 ± 0.346 | — | 1.765 ± 0.785 | ||
CP | 1.417 ± 0.289 | 0.786 ± 0.000 | 5.621 ± 0.000 | ||
2-hexadecanol | C16H34O | CO | 0.325 ± 0.000 | 0.327 ± 0.240 | 0.131 ± 0.077 |
SP | 0.408 ± 0.000 | 2.603 ± 0.383 | — | ||
CP | 0.079 ± 0.000 | 0.056 ± 0.000 | — | ||
Aldehydes (13) | |||||
Succinaldehyde | C4H6O2 | CO | 0.123 ± 0.040 | — | — |
SP | — | — | 2.004 ± 0.451 | ||
CP | 0.419 ± 0.000 | — | 1.065 ± 0.296 | ||
3-Butanolal | C4H8O2 | CO | 0.181 ± 0.000 | — | — |
SP | 0.110 ± 0.002 | — | — | ||
CP | 0.502 ± 0.000 | 0.222 ± 0.000 | 0.916 ± 0.000 | ||
Isovaleraldehyde | C5H10O | CO | — | — | 1.565 ± 0.741 |
SP | — | — | 0.684 ± 2.677 | ||
CP | — | — | 19.431 ± 1.028 | ||
Valeraldehyde | C5H10O | CO | — | — | — |
SP | 0.103 ± 0.000 | — | 0.053 ± 0.000 | ||
CP | — | 0.047 ± 0.000 | 0.118 ± 0.042 | ||
Hexanal | C6H12O | CO | 1.657 ± 0.431 Ba | 0.424 ± 0.198 Cc | 2.813 ± 0.450 Ab |
SP | 0.719 ± 0.020 Cb | 1.726 ± 0.053 Ba | 4.031 ± 0.010 Ab | ||
CP | 0.284 ± 0.150 Bc | 0.973 ± 0.193 Bb | 19.631 ± 3.991 Aa | ||
Heptaldehyde | C7H14O | CO | 0.841 ± 0.700 Ba | 0.408 ± 0.158 Cb | 3.226 ± 0.947 Ab |
SP | 0.197 ± 0.083 Cb | 4.015 ± 0.038 Aa | 3.467 ± 0.701 Bb | ||
CP | 0.146 ± 0.031 Bb | 0.351 ± 0.108 Bb | 7.981 ± 0.942 Aa | ||
(E)-2-Octenal | C8H14O | CO | 1.887 ± 0.000 | — | 0.581 ± 0.132 |
SP | — | 1.051 ± 0.309 | 0.942 ± 0.606 | ||
CP | — | 1.699 ± 0.886 | 6.075 ± 0.217 | ||
Octanal | C8H16O | CO | 4.092 ± 3.439 Ba | 2.562 ± 1.558 Ca | 13.763 ± 3.318 Ab |
SP | 0.541 ± 0.113 Cb | 1.834 ± 0.329 Bb | 9.471 ± 0.000 Ac | ||
CP | 0.660 ± 0.082 Cb | 2.136 ± 0.318 Ba | 54.457 ± 0.007 Aa | ||
Trans-2-nonenal | C9H16O | CO | 0.882 ± 0.757 | 1.538 ± 0.000 | 1.222 ± 0.227 |
SP | 0.161 ± 0.035 | 0.528 ± 0.227 | — | ||
CP | 0.151 ± 0.029 | 0.733 ± 0.049 | 7.060 ± 0.000 | ||
2-Nonenal | C9H16O | CO | — | 0.400 ± 0.000 | — |
SP | — | — | 1.239 ± 0.000 | ||
CP | — | 3.702 ± 4.250 | 10.009 ± 0.000 | ||
Nonanal | C9H18O | CO | 26.055 ± 2.090 Ba | 19.357 ± 2.643 Ca | 37.476 ± 1.749 Ac |
SP | 4.283 ± 1.370 Bb | 5.463 ± 1.225 Bb | 42.677 ± 2.291 Ab | ||
CP | 3.485 ± 0.341 Bb | 4.569 ± 2.429 Bb | 125.925 ± 6.280 Aa | ||
Decanal | C10H20O | CO | 0.349 ± 0.357 Bb | 0.321 ± 0.796 Bc | 3.981 ± 0.682 Ab |
SP | 0.708 ± 0.021 Ba | 0.676 ± 0.339 Bb | 4.898 ± 1.937 Ab | ||
CP | 0.854 ± 0.127 Ca | 1.431 ± 0.029 Ba | 24.875 ± 6.073 Aa | ||
Myristic aldehyde | C14H28O | CO | 1.840 ± 4.747 | 1.683 ± 0.435 | 15.905 ± 4.565 |
SP | 1.766 ± 0.291 | 1.778 ± 0.192 | 37.378 ± 6.599 | ||
CP | 1.866 ± 0.568 | 3.535 ± 0.842 | 148.533 ± 4.09 | ||
Esters (17) | |||||
Diethyl ethylene | C6H10O4 | CO | — | — | 3.365 ± 0.372 |
SP | — | — | 2.689 ± 0.397 | ||
CP | — | — | 2.608 ± 2.712 | ||
Methyl valerate | C6H12O2 | CO | 5.356 ± 4.488 Aa | 0.719 ± 0.000 Bc | 5.074 ± 0.112 Ab |
SP | 0.594 ± 0.187 Cb | 2.555 ± 0.651 Bb | 4.199 ± 0.000 Ab | ||
CP | 0.580 ± 0.085 Cb | 3.426 ± 0.121 Ba | 31.170 ± 4.141 Aa | ||
Ethyl valerate | C7H14O2 | CO | 0.829 ± 0.691 | — | — |
SP | — | 1.078 ± 0.128 | — | ||
CP | 0.186 ± 0.010 | 2.110 ± 0.136 | — | ||
Methyl hexanoate | C7H14O2 | CO | 5.289 ± 0.809 | 1.150 ± 0.100 | — |
SP | 0.639 ± 0.225 | 0.240 ± 0.000 | — | ||
CP | 0.470 ± 0.176 | 0.696 ± 0.000 | — | ||
Ethyl Hexanoate | C8H16O2 | CO | 3.082 ± 0.597 | — | — |
SP | 0.650 ± 0.209 | — | — | ||
CP | 0.578 ± 0.100 | 1.112 ± 0.000 | — | ||
Caprylic acid methyl ester | C9H18O2 | CO | 14.036 ± 1.870 | 2.686 ± 0.000 | — |
SP | 1.345 ± 0.171 | 0.680 ± 0.134 | — | ||
CP | 1.337 ± 0.217 | 0.482 ± 0.045 | — | ||
Ethyl caprylate | C10H20O2 | CO | 5.227 ± 0.433 | — | — |
SP | 1.010 ± 0.269 | 0.678 ± 0.000 | — | ||
CP | 0.990 ± 0.205 | 0.893 ± 0.381 | — | ||
Methyl nonanoate | C10H20O2 | CO | 2.273 ± 0.907 | 0.412 ± 0.234 | — |
SP | 0.420 ± 0.062 | 0.181 ± 0.009 | — | ||
CP | 0.406 ± 0.073 | — | — | ||
Geranyl formate | C11H18O2 | CO | — | — | — |
SP | 0.319 ± 0.067 | 0.208 ± 0.000 | — | ||
CP | — | 0.689 ± 0.000 | — | ||
Methyl decanoate | C11H22O2 | CO | 6.717 ± 0.569 | 1.787 ± 0.079 | — |
SP | 1.011 ± 0.131 | 0.448 ± 0.134 | — | ||
CP | 1.217 ± 0.240 | 0.391 ± 0.029 | — | ||
Linalyl acetate | C12H20O2 | CO | 0.143 ± 0.000 | 0.177 ± 0.000 | 0.636 ± 0.157 |
SP | 0.227 ± 0.059 | 0.224 ± 0.000 | 0.766 ± 0.337 | ||
CP | 0.215 ± 0.050 | 2.342 ± 0.000 | 3.701 ± 0.646 | ||
Bornyl acetate | C12H20O2 | CO | 1.711 ± 0.467 Aa | 0.370 ± 0.055Cc | 1.431 ± 0.350 Bb |
SP | 0.669 ± 0.269 Ab | 0.447 ± 0.148 Bb | — | ||
CP | — | 0.778 ± 0.096 Ba | 11.719 ± 1.612 Aa | ||
Ethyl caprate | C12H24O2 | CO | 1.008 ± 0.827 | 0.753 ± 0.374 | — |
SP | — | 0.176 ± 0.029 | — | ||
CP | 0.369 ± 0.100 | 0.272 ± 0.077 | — | ||
Methyl laurate | C13H26O2 | CO | 6.549 ± 0.344 | 1.627 ± 0.000 | — |
SP | 1.330 ± 0.239 | — | — | ||
CP | 2.252 ± 0.000 | — | — | ||
Methyl myristate | C15H30O2 | CO | 3.723 ± 0.859 | 1.651 ± 0.493 | — |
SP | 1.024 ± 0.123 | 0.421 ± 0.094 | 0.256 ± 0.014 | ||
CP | 1.165 ± 0.225 | 0.418 ± 0.109 | — | ||
Methyl palmitate | C17H34O2 | CO | 7.857 ± 0.000 | 1.347 ± 0.409 | 0.177 ± 0.053 |
SP | 1.506 ± 0.099 | 0.684 ± 0.023 | 0.323 ± 0.001 | ||
CP | 1.671 ± 0.472 | 0.205 ± 0.060 | 0.583 ± 0.000 | ||
Ethyl palmitate | C18H36O2 | CO | 1.614 ± 0.312 | 0.979 ± 0.442 | 0.130 ± 0.012 |
SP | 0.391 ± 0.118 | — | 0.161 ± 0.057 | ||
CP | 0.605 ± 0.112 | 0.251 ± 0.027 | 0.583 ± 0.000 | ||
Acids (9) | |||||
L-alanylglycine | C5H10N2O3 | CO | 0.163 ± 0.000 | 0.613 ± 0.337 | 0.925 ± 0.509 |
SP | 0.256 ± 0.141 | 0.314 ± 0.000 | 0.202 ± 0.061 | ||
CP | 0.270 ± 0.063 | — | 5.486 ± 0.468 | ||
Valeric acid | C5H10O2 | CO | — | — | 0.713 ± 0.156 |
SP | 0.179 ± 0.141 | 0.394 ± 0.000 | 8.747 ± 0.343 | ||
CP | — | 0.248 ± 0.010 | 6.857 ± 0.381 | ||
Acetic acid | C8H16O4 | CO | 5.168 ± 0.000 | 2.791 ± 0.988 | 26.559 ± 4.280 |
SP | 0.230 ± 0.000 | 17.207 ± 0.048 | 16.520 ± 1.031 | ||
CP | — | 19.976 ± 0.354 | 17.162 ± 1.348 | ||
Hydrocinnamic acid | C9H10O2 | CO | 51.837 ± 0.000 | 9.304 ± 0.000 | — |
SP | 0.055 ± 0.000 | 9.103 ± 0.748 | 8.775 ± 0.401 | ||
CP | 0.274 ± 0.000 | 5.686 ± 0.309 | 1.626 ± 0.488 | ||
2-Undecenoic acid | C11H20O2 | CO | — | — | — |
SP | — | — | — | ||
CP | 0.193 ± 0.000 | — | 3.192 ± 0.254 | ||
3-Hydroxydodecanoic acid | C12H24O3 | CO | 0.162 ± 0.131 | 0.229 ± 0.075 | — |
SP | 0.062 ± 0.009 | 0.319 ± 0.241 | 4.375 ± 0.151 | ||
CP | — | 0.150 ± 0.037 | 5.103 ± 0.000 | ||
17-octadecynoic acid | C18H32O2 | CO | 0.208 ± 0.000 | — | 0.397 ± 0.048 |
SP | — | — | 0.434 ± 0.322 | ||
CP | 0.127 ± 0.000 | 1.035 ± 0.000 | 2.993 ± 0.000 | ||
Oleic acid | C18H34O2 | CO | — | 0.433 ± 0.370 | — |
SP | 0.137 ± 0.079 | 0.604 ± 0.000 | 0.569 ± 0.000 | ||
CP | 0.340 ± 0.229 | 0.558 ± 0.388 | — | ||
Trans-13-Octadecenoic acid | C18H34O2 | CO | — | — | — |
SP | — | — | — | ||
CP | — | 1.567 ± 0.000 | 0.923 ± 0.000 | ||
Ketones (5) | |||||
3-Hydroxy-2-butanone | C4H8O2 | CO | 2.775 ± 0.000 | 3.693 ± 0.553 | 7.389 ± 0.488 c |
SP | — | 0.309 ± 0.030 | 0.265 ± 0.000 b | ||
CP | — | 0.499 ± 0.414 | 12.692 ± 7.241 a | ||
Methyl heptenone | C8H14O | CO | 0.956 ± 0.000 | 0.315 ± 0.128 | 1.077 ± 0.402 |
SP | 0.376 ± 0.136 | 0.148 ± 0.000 | 1.190 ± 0.258 | ||
CP | 0.279 ± 0.045 | 0.336 ± 0.156 | 8.837 ± 0.656 | ||
4-Octanone | C8H16O | CO | 3.174 ± 0.907 | 2.645 ± 0.032 | 2.779 ± 0.212 |
SP | 3.220 ± 0.239 | 2.950 ± 0.000 | 2.863 ± 0.164 | ||
CP | 3.284 ± 0.483 | 2.549 ± 0.195 | 8.678 ± 0.760 | ||
Piperitone | C10H16O | CO | 1.881 ± 0.535 | — | — |
SP | 0.450 ± 0.148 | 0.216 ± 0.000 | — | ||
CP | 0.448 ± 0.080 | 0.362 ± 0.000 | 4.568 ± 0.719 | ||
Methyl nonyl ketone | C11H22O | CO | 7.353 ± 0.205 | — | 4.329 ± 0.036 |
SP | 2.213 ± 0.531 | — | 6.189 ± 0.184 | ||
CP | 1.934 ± 0.357 | 2.561 ± 0.180 | 38.912 ± 0.646 | ||
Terpenes (8) | |||||
2,4-Diemthylstyrene | C10H12 | CO | — | — | — |
SP | 0.413 ± 0.000 | — | — | ||
CP | 0.743 ± 0.048 | — | — | ||
Cis-Anethol | C10H12O | CO | 1.113 ± 0.000 | 1.020 ± 0.302 | 2.362 ± 0.610 |
SP | 1.835 ± 0.538 | 0.898 ± 0.201 | 4.333 ± 0.000 | ||
CP | 1.777 ± 0.449 | 1.670 ± 0.397 | 15.919 ± 0.000 | ||
3-Carene | C10H16 | CO | 0.377 ± 0.000 | 0.200 ± 0.000 | 2.743 ± 0.754 |
SP | 0.065 ± 0.025 | 0.102 ± 0.000 | 4.175 ± 0.101 | ||
CP | 0.053 ± 0.001 | 0.567 ± 0.000 | 16.917 ± 4.787 | ||
α-Pinene | C15H24 | CO | 1.615 ± 0.377 | — | — |
SP | 0.480 ± 0.131 | — | 3.719 ± 0.000 | ||
CP | — | — | 27.814 ± 0.657 | ||
β-Caryophyllene | C15H24 | CO | 19.801 ± 1.683 | 4.539 ± 0.468 | 24.177 ± 6.468 |
SP | 4.675 ± 3.611 | 6.724 ± 3.234 | 14.050 ± 4.725 | ||
CP | 7.214 ± 1.140 | 8.555 ± 1.112 | 18.144 ± 4.937 | ||
α-caryophyllene | C15H24 | CO | 3.606 ± 0.000 | 0.711 ± 0.000 | 1.199 ± 0.255 |
SP | 0.696 ± 0.213 | 0.585 ± 0.213 | 2.243 ± 0.765 | ||
CP | 0.773 ± 0.113 | 0.756 ± 0.096 | 18.396 ± 2.725 | ||
Cedrene | C15H24 | CO | 35.454 ± 29.518 | 0.681 ± 0.511 | 9.485 ± 13.019 |
SP | 7.552 ± 5.869 | 0.447 ± 0.000 | 2.094 ± 1.475 | ||
CP | 5.030 ± 4.800 | — | — | ||
Caryophylleneoxide | C15H24O | CO | 0.857 ± 0.706 | 0.179 ± 0.000 | 0.578 ± 0.439 |
SP | 1.244 ± 0.000 | 0.585 ± 0.213 | 0.826 ± 0.633 | ||
CP | — | 0.164 ± 0.000 | 4.134 ± 1.702 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Hu, G.; Sun, X.; Sun, E.; Zhang, Y.; Zhong, Y.; Su, L.; Jin, Y.; Yang, F.; Zhao, L. The Effect of Lactiplantibacillus plantarum x3-2b Bacterial Powder on the Physicochemical Quality and Biogenic Amines of Fermented Lamb Jerky. Foods 2023, 12, 4147. https://doi.org/10.3390/foods12224147
Li X, Hu G, Sun X, Sun E, Zhang Y, Zhong Y, Su L, Jin Y, Yang F, Zhao L. The Effect of Lactiplantibacillus plantarum x3-2b Bacterial Powder on the Physicochemical Quality and Biogenic Amines of Fermented Lamb Jerky. Foods. 2023; 12(22):4147. https://doi.org/10.3390/foods12224147
Chicago/Turabian StyleLi, Xiaotong, Guanhua Hu, Xueying Sun, Erke Sun, Yue Zhang, Yancheng Zhong, Lin Su, Ye Jin, Fan Yang, and Lihua Zhao. 2023. "The Effect of Lactiplantibacillus plantarum x3-2b Bacterial Powder on the Physicochemical Quality and Biogenic Amines of Fermented Lamb Jerky" Foods 12, no. 22: 4147. https://doi.org/10.3390/foods12224147
APA StyleLi, X., Hu, G., Sun, X., Sun, E., Zhang, Y., Zhong, Y., Su, L., Jin, Y., Yang, F., & Zhao, L. (2023). The Effect of Lactiplantibacillus plantarum x3-2b Bacterial Powder on the Physicochemical Quality and Biogenic Amines of Fermented Lamb Jerky. Foods, 12(22), 4147. https://doi.org/10.3390/foods12224147