Changes in Composition of Some Bioactive Molecules upon Inclusion of Lacticaseibacillus paracasei Probiotic Strains into a Standard Yogurt Starter Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Cultivation Conditions
2.2. Milk Fermentation
2.3. Viability of Lactic Acid Bacteria and pH Measurement
2.4. Proteolytic, Antioxidant and Angiotensin-I-Converting Enzyme Inhibitory Activities
2.5. Organic Acid Profile Determination
2.6. Fatty Acid Profile Determination
2.7. Volatile Organic Compound Profile Determination
2.8. Statistical Analysis
3. Results and Discussion
3.1. Bacterial Growth and Medium Acidification
3.2. Proteolytic, Antioxidant and ACE-Inhibitory Activities
3.3. Profile of Organic Acids
3.4. Profile of Total Fatty Acids
3.5. Profile of Volatile Organic Compounds (VOCs)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozen, M.; Dinleyici, E.C. The history of probiotics: The untold story. Benef. Microbes 2015, 6, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Rozhkova, I.V.; Moiseenko, K.V.; Glazunova, O.A.; Begunova, A.V.; Fedorova, T.V. 9 Russia and Commonwealth of Independent States (CIS) domestic fermented milk products. In Food Science and Technology; De Gruyter: Berlin, Germany, 2020; pp. 215–234. [Google Scholar]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Branco, G.F.; Cruz, A.G.; Faria, J.d.A.F.; Shah, N.P. Probiotic Dairy Products as Functional Foods. Compr. Rev. Food Sci. Food Saf. 2010, 9, 455–470. [Google Scholar] [CrossRef] [PubMed]
- Fisberg, M.; Machado, R. History of yogurt and current patterns of consumption. Nutr. Rev. 2015, 73, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Aryana, K.J.; Olson, D.W. A 100-Year Review: Yogurt and other cultured dairy products. J. Dairy Sci. 2017, 100, 9987–10013. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.E. Elie Metchnikoff’s and Paul Ehrlich’s impact on infection biology. Microbes Infect. 2008, 10, 1417–1419. [Google Scholar] [CrossRef]
- Cavaillon, J.-M.; Legout, S. Centenary of the death of Elie Metchnikoff: A visionary and an outstanding team leader. Microbes Infect. 2016, 18, 577–594. [Google Scholar] [CrossRef]
- El-Abbadi, N.H.; Dao, M.C.; Meydani, S.N. Yogurt: Role in healthy and active aging. Am. J. Clin. Nutr. 2014, 99, 1263S–1270S. [Google Scholar] [CrossRef]
- Desobry-Banon, S.; Vetier, N.; Hardy, J. Health benefits of yogurt consumption. A review. Int. J. Food Prop. 1999, 2, 1–12. [Google Scholar] [CrossRef]
- Kok, C.R.; Hutkins, R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr. Rev. 2018, 76, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Chandan, R.C.; Gandhi, A.; Shah, N.P. Yogurt: Historical Background, Health Benefits, and Global Trade. In Yogurt in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–29. [Google Scholar]
- Hill, D.; Sugrue, I.; Tobin, C.; Hill, C.; Stanton, C.; Ross, R.P. The Lactobacillus casei Group: History and Health Related Applications. Front. Microbiol. 2018, 9, 2107. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-H.; Li, S.-W.; Huang, L.; Watanabe, K. Identification and Classification for the Lactobacillus casei Group. Front. Microbiol. 2018, 9, 1974. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.M. The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health. In The Microbiota in Gastrointestinal Pathophysiology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 99–108. [Google Scholar]
- Moiseenko, K.V.; Begunova, A.V.; Savinova, O.S.; Glazunova, O.A.; Rozhkova, I.V.; Fedorova, T.V. Biochemical and Genomic Characterization of Two New Strains of Lacticaseibacillus paracasei Isolated from the Traditional Corn-Based Beverage of South Africa, Mahewu, and Their Comparison with Strains Isolated from Kefir Grains. Foods 2023, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Poon, T.; Juana, J.; Noori, D.; Jeansen, S.; Pierucci-Lagha, A.; Musa-Veloso, K. Effects of a Fermented Dairy Drink Containing Lacticaseibacillus paracasei subsp. paracasei CNCM I-1518 (Lactobacillus casei CNCM I-1518) and the Standard Yogurt Cultures on the Incidence, Duration, and Severity of Common Infectious Diseases: A Systematic. Nutrients 2020, 12, 3443. [Google Scholar] [CrossRef]
- Bengoa, A.A.; Dardis, C.; Garrote, G.L.; Abraham, A.G. Health-Promoting Properties of Lacticaseibacillus paracasei: A Focus on Kefir Isolates and Exopolysaccharide-Producing Strains. Foods 2021, 10, 2239. [Google Scholar] [CrossRef]
- Marshall, V.M. Starter cultures for milk fermentation and their characteristics. Int. J. Dairy Technol. 1993, 46, 49–56. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Suri, S.; Trif, M.; Ozogul, F. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 2022, 46, 101615. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Beltrán-Barrientos, L.M.; Hernández-Mendoza, A.; Torres-Llanez, M.J.; González-Córdova, A.F.; Vallejo-Córdoba, B. Invited review: Fermented milk as antihypertensive functional food. J. Dairy Sci. 2016, 99, 4099–4110. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Abdoul-Aziz, S.K.A.; Zhang, Y.; Wang, J. Milk Odd and Branched Chain Fatty Acids in Dairy Cows: A Review on Dietary Factors and Its Consequences on Human Health. Animals 2021, 11, 3210. [Google Scholar] [CrossRef] [PubMed]
- Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Torres-Gonzalez, M.; Kraft, J. Branched-Chain Fatty Acids—An Underexplored Class of Dairy-Derived Fatty Acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef] [PubMed]
- Blasi, F.; Cossignani, L. Fermentation as a strategy to increase conjugated linoleic acid in dairy products. Large Anim. Rev. 2019, 25, 101–104. [Google Scholar]
- Sieber, R.; Collomb, M.; Aeschlimann, A.; Jelen, P.; Eyer, H. Impact of microbial cultures on conjugated linoleic acid in dairy products—A review. Int. Dairy J. 2004, 14, 1–15. [Google Scholar] [CrossRef]
- Chinnadurai, K.; Tyagi, A. Conjugated Linoleic Acid: A Milk Fatty Acid with Unique Health Benefit Properties. In Soybean and Health; InTech: Bolton, UK, 2011. [Google Scholar]
- Miller, Á.; Stanton, C.; Murphy, J.; Devery, R. Conjugated linoleic acid (CLA)-enriched milk fat inhibits growth and modulates CLA-responsive biomarkers in MCF-7 and SW480 human cancer cell lines. Br. J. Nutr. 2003, 90, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Daniel, N.; Nachbar, R.T.; Tran, T.T.T.; Ouellette, A.; Varin, T.V.; Cotillard, A.; Quinquis, L.; Gagné, A.; St-Pierre, P.; Trottier, J.; et al. Gut microbiota and fermentation-derived branched chain hydroxy acids mediate health benefits of yogurt consumption in obese mice. Nat. Commun. 2022, 13, 1343. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Li, X.; Chen, H.; Guan, K.; Qi, X.; Yang, L.; Ma, Y. Evaluation of FAAs and FFAs in yogurts fermented with different starter cultures during storage. J. Food Compos. Anal. 2021, 96, 103666. [Google Scholar] [CrossRef]
- Gu, Y.; Li, X.; Xiao, R.; Dudu, O.E.; Yang, L.; Ma, Y. Impact of Lactobacillus paracasei IMC502 in coculture with traditional starters on volatile and non-volatile metabolite profiles in yogurt. Process Biochem. 2020, 99, 61–69. [Google Scholar] [CrossRef]
- Wang, J.; Sun, H.; Guo, S.; Sun, Y.; Kwok, L.-Y.; Zhang, H.; Peng, C. Comparison of the effects of single probiotic strains Lactobacillus casei Zhang and Bifidobacterium animalis ssp. lactis Probio-M8 and their combination on volatile and nonvolatile metabolomic profiles of yogurt. J. Dairy Sci. 2021, 104, 7509–7521. [Google Scholar] [CrossRef]
- Glazunova, O.A.; Moiseenko, K.V.; Savinova, O.S.; Fedorova, T.V. In Vitro and In Vivo Antihypertensive Effect of Milk Fermented with Different Strains of Common Starter Lactic Acid Bacteria. Nutrients 2022, 14, 5357. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 1979, 27, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Torkova, A.A.; Ryazantseva, K.A.; Agarkova, E.Y.; Kruchinin, A.G.; Tsentalovich, M.Y.; Fedorova, T.V. Rational design of enzyme compositions for the production of functional hydrolysates of cow milk whey proteins. Appl. Biochem. Microbiol. 2017, 53, 669–679. [Google Scholar] [CrossRef]
- Rozhkova, I.V.; Yurova, E.A.; Leonova, V.A. Evaluation of the Amino Acid Composition and Content of Organic Acids of Complex Postbiotic Substances Obtained on the Basis of Metabolites of Probiotic Bacteria Lacticaseibacillus paracasei ABK and Lactobacillus helveticus H9. Fermentation 2023, 9, 460. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Moiseenko, K.V.; Glazunova, O.A.; Savinova, O.S.; Ajibade, B.O.; Ijabadeniyi, O.A.; Fedorova, T.V. Analytical Characterization of the Widely Consumed Commercialized Fermented Beverages from Russia (Kefir and Ryazhenka) and South Africa (Amasi and Mahewu): Potential Functional Properties and Profiles of Volatile Organic Compounds. Foods 2021, 10, 3082. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Robles-Rodríguez, C.E.; Szymańska, E.; Huppertz, T.; Özkan, L. Dynamic modeling of milk acidification: An empirical approach. Food Bioprod. Process. 2021, 128, 41–51. [Google Scholar] [CrossRef]
- Begunova, A.V.; Savinova, O.S.; Glazunova, O.A.; Moiseenko, K.V.; Rozhkova, I.V.; Fedorova, T.V. Development of Antioxidant and Antihypertensive Properties during Growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on Cow’s Milk: Fermentation and Peptidomics Study. Foods 2020, 10, 17. [Google Scholar] [CrossRef]
- Supplee, G.C.; Bellis, B. Citric acid content of milk and milk products. J. Biol. Chem. 1921, 48, 453–461. [Google Scholar] [CrossRef]
- Arup, P.S. Citric acid determinations in milk and milk products. Analyst 1938, 63, 635. [Google Scholar] [CrossRef]
- Fernandez-Garcia, E.; McGregor, J.U. Determination of Organic Acids During the Fermentation and Cold Storage of Yogurt. J. Dairy Sci. 1994, 77, 2934–2939. [Google Scholar] [CrossRef]
- Adhikari, K.; Grün, I.U.; Mustapha, A.; Fernando, L.N. Changes in the profile of organic acids in plain set and stirred yogurts during manufacture and refrigerated storage. J. Food Qual. 2002, 25, 435–451. [Google Scholar] [CrossRef]
- Tormo, M.; Izco, J. Alternative reversed-phase high-performance liquid chromatography method to analyse organic acids in dairy products. J. Chromatogr. A 2004, 1033, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Mullin, W.J.; Emmons, D.B. Determination of organic acids and sugars in cheese, milk and whey by high performance liquid chromatography. Food Res. Int. 1997, 30, 147–151. [Google Scholar] [CrossRef]
- Dursun, A.; Güler, Z.; Şekerli, Y.E. Characterization of volatile compounds and organic acids in ultra-high-temperature milk packaged in tetra brik cartons. Int. J. Food Prop. 2017, 20, 1511–1521. [Google Scholar] [CrossRef]
- Gould, I.A.; Frantz, R.S. Formic Acid Content of Milk Heated to High Temperatures as Determined by the Distillation Procedure. J. Dairy Sci. 1946, 29, 27–31. [Google Scholar] [CrossRef]
- Budinich, M.F.; Perez-Díaz, I.; Cai, H.; Rankin, S.A.; Broadbent, J.R.; Steele, J.L. Growth of Lactobacillus paracasei ATCC 334 in a cheese model system: A biochemical approach. J. Dairy Sci. 2011, 94, 5263–5277. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Sieuwerts, S. Microbial Interactions in the Yoghurt Consortium: Current Status and Product Implications. SOJ Microbiol. Infect. Dis. 2016, 4, 1–5. [Google Scholar] [CrossRef]
- Courtin, P.; Rul, F. Interactions between microorganisms in a simple ecosystem: Yogurt bacteria as a study model. Lait 2004, 84, 125–134. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Bessa, R.J.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Colombo, M.L.; Risè, P.; Giavarini, F.; De Angelis, L.; Galli, C.; Bolis, C.L. Marine macroalgae as sources of polyunsaturated fatty acids. Plant Foods Hum. Nutr. 2006, 61, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.R.K.; Jha, B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 2010, 120, 749–757. [Google Scholar] [CrossRef]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated fats and cardiovascular health: Current evidence and controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef]
- Briggs, M.; Petersen, K.; Kris-Etherton, P. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Mitra, B.; Zabetakis, I. Dairy Fats and Cardiovascular Disease: Do We Really Need to Be Concerned? Foods 2018, 7, 29. [Google Scholar] [CrossRef]
- Huth, P.J.; Park, K.M. Influence of Dairy Product and Milk Fat Consumption on Cardiovascular Disease Risk: A Review of the Evidence. Adv. Nutr. 2012, 3, 266–285. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Chiu, S.; Bergeron, N.; Krauss, R.M. Saturated Fats Versus Polyunsaturated Fats Versus Carbohydrates for Cardiovascular Disease Prevention and Treatment. Annu. Rev. Nutr. 2015, 35, 517–543. [Google Scholar] [CrossRef] [PubMed]
- Moiseenko, K.V.; Shabaev, A.V.; Glazunova, O.A.; Savinova, O.S.; Fedorova, T.V. Changes in Fatty Acid Profiles and the Formation of Volatile Organic Compounds During Fermentation of Cow’s Milk with Probiotic Lacticaseibacillus paracasei Strains. Appl. Biochem. Microbiol. 2023, 59, 636–645. [Google Scholar] [CrossRef]
- Salvador López, J.M.; Van Bogaert, I.N.A. Microbial fatty acid transport proteins and their biotechnological potential. Biotechnol. Bioeng. 2021, 118, 2184–2201. [Google Scholar] [CrossRef] [PubMed]
- Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. Volatile Flavor Compounds in Cheese as Affected by Ruminant Diet. Molecules 2020, 25, 461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, Y.; Zhao, C.; Xue, Y.; Tan, D.; Wang, S.; Jia, M.; Wu, H.; Ma, A.; Chen, G. Milk lipids characterization in relation to different heat treatments using lipidomics. Food Res. Int. 2022, 157, 111345. [Google Scholar] [CrossRef]
Strains | Ratio, v/v | Abbreviation |
---|---|---|
One-strain fermentations | ||
L. delbrueckii Lb100 | - | - |
L. delbrueckii Lb200 | - | - |
S. thermophilus 16t | - | - |
Two-strain fermentations | ||
S. thermophilus 16t, L. delbrueckii Lb100 | 4:1 | Str16t + Lb100 |
S. thermophilus 16t and L. delbrueckii Lb200 | 4:1 | Str16t + Lb200 |
Three-strain fermentations | ||
S. thermophilus 16t, L. delbrueckii Lb100 and L. paracasei KF1 | 2:1:2 | Str16t + Lb100 + KF1 |
S. thermophilus 16t, L. delbrueckii Lb100 and L. paracasei MA3 | 2:1:2 | Str16t + Lb100 + MA3 |
S. thermophilus 16t, L. delbrueckii Lb200 and L. paracasei KF1 | 2:1:2 | Str16t + Lb200 + KF1 |
S. thermophilus 16t, L. delbrueckii Lb200 and L. paracasei MA3 | 2:1:2 | Str16t + Lb200 + MA3 |
Sample 2 | pH 1 | lg(CFU·mL−1) at the End of Fermentation 1 | Δlg (CFU·mL−1) | ||
---|---|---|---|---|---|
S. thermophilus 16t | Total Lactobacillus spp. | S. thermophilus 16t | Total Lactobacillus spp. | ||
Lb100 | 3.9 a (0.2) | - | 7.43 b (0.13) | - | 1.49 |
Lb200 | 4.1 a (0.1) | - | 7.03 b (0.53) | - | 1.23 |
Str16t | 4.4a (0.2) | 8.86 a (0.13) | - | 2.25 | - |
Str16t + Lb100 | 4.4 a (0.1) | 8.87 a (0.02) | 7.89 a (0.08) | 2.26 | 1.92 |
Str16t + Lb100 + KF1 | 4.3 a (0.1) | 8.68 a (0.17) | 7.69 a (0.21) | 2.37 | 1.22 |
Str16t + Lb100 + MA3 | 4.3 a (0.1) | 8.66 a (0.06) | 7.90 a (0.22) | 2.35 | 1.49 |
Str16t + Lb200 | 4.3 a (0.1) | 8.93 b (0.10) | 7.88 a (0.07) | 2.32 | 2.16 |
Str16t + Lb200 + KF1 | 4.3 a (0.1) | 9.00 b (0.11) | 7.00 b (0.30) | 2.69 | 1.77 |
Str16t + Lb200 + MA3 | 4.3 a (0.1) | 8.50 a (0.48) | 7.69 a (0.13) | 2.19 | 1.52 |
Sample 2 | Proteolytic Activity 1, mM (L-Leu) | Antioxidant Activity 1, µM (TE) | ACE-Inhibitory Activity IC50 1, mg·mL−1 |
---|---|---|---|
Lb100 | 9.93 a (0.33) | 1006 a (90) | 2.23 a (0.12) |
Lb200 | 6.96 b (0.66) | 888 b (75) | 2.83 b (0.09) |
Str16t | 3.98 c (0.48) | 541 c (93) | 3.24 b (0.21) |
Str16t + Lb100 | 4.99 c (0.21) | 717 c (85) | 3.47 b (0.32) |
Str16t + Lb100 + KF1 | 4.96 c (0.08) | 686 c (13) | 1.48 c (0.17) |
Str16t + Lb100 + MA3 | 4.80 c (0.14) | 606 c (43) | 2.39 a (0.21) |
Str16t + Lb200 | 4.65 c (0.16) | 646 c (77) | 2.34 a (0.16) |
Str16t + Lb200 + KF1 | 4.17 c (0.63) | 625 c (18) | 1.41 c (0.12) |
Str16t + Lb200 + MA3 | 5.02 c (0.22) | 646 c (25) | 2.51 a (0.14) |
Organic Acid | Relative Abundance in Sample 1, mg·(100 mL)−1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Milk | Lb100 | Lb200 | Str16t | Str16t Lb100 (4:1) | Str16t Lb100 KF1 (2:1:2) | Str16t Lb100 MA3 (2:1:2) | Str16t Lb200 (4:1) | Str16t Lb200 KF1 (2:1:2) | Str16t Lb200 MA3 (2:1:2) | |
Citric acid | 142 a (8) | 148 a (6) | 145 a (8) | 151 a (8) | 144 a (8) | 147 a (7) | 154 a (5) | 156 a (7) | 146 a (9) | 149 a (8) |
Formic acid | 21.6 a (2.3) | 7.8 b (1.1) | 6.4 b (0.8) | 8.1 b (1.5) | 8.4 b (2) | 7.7 b (0.9) | 6.7 b (1.0) | 6.7 b (1.4) | 7.2 b (0.8) | 7.1 b (1.7) |
Acetic acid | 7.3 a (0.3) | 7.5 a (0.2) | 6.5 a (0.5) | 3.1 b (0.8) | 7.6 a (0.2) | 8.8 c (0.3) | 8.8 c (0.6) | 6.5 a (1.2) | 7.8 d (0.2) | 7.9 d (0.1) |
Lactic acid | ND | 999 a (15) | 865 b (21) | 676 c (22) | 724 d (15) | 807 e (24) | 836 e (14) | 748 d (23) | 791 f (10) | 792 f (15) |
Fatty Acid | Relative Abundance in Samples 1, % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name | Abbreviation | Milk | Lb100 | Lb200 | Str16t | Str16t Lb100 (4:1) | Str16t Lb100 KF1 (2:1:2) | Str16t Lb100 MA3 (2:1:2) | Str16t Lb200 (4:1) | Str16t Lb200 KF1 (2:1:2) | Str16t Lb200 MA3 (2:1:2) |
Medium-chain saturated fatty acids (MCSFAs) | |||||||||||
Hexanoic acid | C6:0 | 1.93 a (0.07) | 3.09 b (0.15) | 2.38 a (0.28) | 2.09 a (0.11) | 2.15 a (0.06) | 2.45 a (0.38) | 1.75 c (0.05) | 2.12 a (0.05) | 2.09 a (0.2) | 2.74 a (0.28) |
Heptanoic acid | C7:0 | 0.07 a (0.01) | 0.08 a (0.01) | 0.08 a (0.01) | ND | 0.05 a (0.01) | 0.06 a (0.01) | 0.06 a (0.01) | 0.07 a (0.01) | ND | 0.08 a (0.01) |
Octanoic acid | C8:0 | 3.00 a (0.48) | 4.12 b (1.01) | 2.41 a (0.24) | 2.46 a (0.44) | 2.90 a (0.40) | 2.44 a (0.24) | 2.23 a (0.35) | 2.52 a (0.14) | 2.82 a (0.21) | 3.15 a (0.25) |
Nonanoic acid | C9:0 | 0.13 a (0.01) | 0.18 b (0.01) | ND | ND | 0.06 c (0.02) | 0.09 c (0.01) | 0.05 c (0.01) | 0.11 c (0.01) | 0.10 c (0.01) | 0.11 c (0.01) |
Decanoic acid | C10:0 | 4.71 a (0.18) | 5.31 a (1.15) | 3.22 a (0.76) | 2.87 c (0.17) | 3.25 c (0.11) | 3.10 c (0.02) | 2.45 c (0.18) | 2.57 c (0.53) | 3.06 c (0.34) | 3.54 c (0.47) |
Undecanoic acid | C11:0 | 0.10 a (0.01) | ND | ND | ND | 0.07 a (0.01) | 0.05 a (0.01) | 0.07 a (0.01) | ND | 0.06 a (0.01) | 0.07 a (0.01) |
Dodecanoic acid | C12:0 | 4.41 a (0.72) | 4.24 a (0.12) | 3.61 a (0.46) | 2.73 a (0.83) | 3.31 a (0.20) | 3.29 a (0.69) | 2.68 a (0.08) | 3.04 a (0.24) | 2.86 a (0.23) | ND |
Total MCSFAs: | 14.3 a (1.0) | 17.0 b (1.1) | 11.7 a (1.6) | 10.2 c (1.0) | 11.80 c (0.2) | 11.50 c (1.1) | 9.3 c (0.5) | 10.4 c (0.7) | 11.0 c (0.4) | 9.7 c (1.01) | |
Long-chain saturated fatty acids (LCSFAs) | |||||||||||
Tridecanoic acid | C13:0 | 0.13 a (0.01) | ND | 0.17 a (0.02) | ND | 0.09 a (0.01) | 0.1 a (0.01) | 0.08 a (0.01) | 0.11 a (0.01) | ND | 0.12 a (0.02) |
Tetradecanoic acid | C14:0 | 10.13 a (0.5) | 5.77 b (1.01) | 5.37 b (1.08) | 7.89 b (0.70) | 8.44 a (0.86) | 8.51 a (0.93) | 7.39 b (0.51) | 7.28 b (1.86) | 7.09 b (1.36) | 7.98 a (1.48) |
Pentadecanoic acid | C15:0 | 1.53 a (0.31) | 1.41 a (0.06) | 2.55 b (0.26) | 1.48 a (0.15) | 1.46 a (0.11) | 1.63 a (0.25) | 1.54 a (0.25) | 1.74 a (0.3) | 1.47 a (0.08) | 1.52 a (0.02) |
Hexadecanoic acid | C16:0 | 22.37 a (2.11) | 24.35 a (3.94) | 23.05 a (6.04) | 23.65 a (0.83) | 24.57 a (1.01) | 22.18 a (3.01) | 23.10 a (0.96) | 25.46 a (1.40) | 22.05 a (0.74) | 26.81 a (0.94) |
Heptadecanoic acid | C17:0 | 0.55 a (0.08) | 0.67 b (0.03) | ND | 0.86 b (0.24) | 0.66 a (0.02) | 0.7 b (0.17) | 0.96 b (0.28) | 1.03 b (0.20) | 0.85 b (0.04) | 0.79 a (0.10) |
Octadecanoic acid | C18:0 | 10.06 a (0.25) | 11.03 a (0.39) | 15.6 b (3.35) | 12.65 b (0.61) | 9.79 a (2.56) | 11.74 b (0.24) | 12.86 b (0.87) | 11.92 a (1.56) | 11.93 b (0.59) | 11.95 b (0.48) |
Eicosanoic acid | C20:0 | 0.38 a (0.13) | 0.43 a (0.11) | 0.50 b (0.02) | 0.75 (0.05) | 0.36 a (0.05) | 0.43 b (0.03) | 0.41 b (0.03) | 0.62 (0.05) | 0.46 b (0.01) | 0.44 b (0.04) |
Docosanoic acid | C22:0 | 1.07 a (0.04) | 1.26 a (0.1) | 1.35 a (0.14) | 1.56 b (0.06) | 1.48 b (0.04) | 1.6 b (0.06) | 1.73 b (0.06) | 1.43 b (0.25) | 1.31 b (0.15) | 1.41 b (0.21) |
Tricosanoic acid | C23:0 | 1.19 a (0.07) | 1.39 a (0.16) | 1.39 a (0.29) | 1.87 b (0.2) | 1.56 a (0.41) | 1.79 b (0.46) | 1.65 a (0.15) | 1.78 b (0.27) | 1.58 a (0.23) | 1.49 a (0.11) |
Tetracosanoic acid | C24:0 | 0.72 a (0.11) | 0.79 a (0.04) | 1.06 a (0.2) | 1.19 b (0.13) | 1.08 a (0.04) | 1.27 b (0.09) | 1.46 b (0.03) | 1.12 a (0.14) | 0.96 a (0.12) | 1.02 a (0.09) |
Total LCSFAs: | 48.11 a (2.33) | 47.11 a (3.11) | 51.04 a (3.33) | 51.89 a (1.51) | 49.50 a (2.23) | 49.94 a (1.57) | 51.17 a (1.38) | 52.48 a (1.23) | 47.69 a (1.74) | 53.52 a (0.93) | |
Monounsaturated fatty acids (MUFAs) | |||||||||||
4-Decenoic acid | C10:1 (n-6) | 0.92 a (0.03) | 1.05 a (0.1) | 0.61 b (0.04) | 0.62 b (0.06) | 0.63 b (0.13) | 0.64 b (0.08) | 0.54 b (0.05) | 0.55 b (0.04) | 0.67 b (0.03) | 0.69 b (0.05) |
5-Dodecenoic acid | C12:1 (n-7) | ND | 0.19 a (0.02) | ND | ND | 0.14 a (0.01) | ND | ND | 0.15 a (0.02) | ND | 0.16 a (0.01) |
9-Tetradecenoic acid | C14:1 (n-5) | 1.01 a (0.08) | 0.24 b (0.01) | 0.48 b (0.04) | 0.38 b (0.08) | 0.41 b (0.07) | 0.46 b (0.04) | 0.37 b (0.05) | 0.50 b (0.01) | 0.44 b (0.02) | 0.54 b (0.07) |
9-Hexadecenoic acid | C16:1 (n-7) | 1.9 a (0.08) | 0.66 b (0.12) | 0.96 b (0.11) | 1.33 b (0.15) | 1.36 b (0.09) | 1.51 b (0.08) | 1.42 b (0.26) | 1.44 b (0.11) | 1.56 b (0.22) | 1.41 b (0.1) |
10-Heptadecenoic acid | C17:1 (n-7) | 0.28 a (0.06) | ND | ND | 0.27 a (0.02) | 0.26 a (0.04) | 0.28 a (0.01) | 0.30 a (0.04) | 0.28 a (0.01) | 0.24 a (0.04) | 0.29 a (0.02) |
12-Octadecenoic acid | C18:1 (n-6) | 1.79 a (0.06) | 1.82 a (0.11) | 2.34 b (0.11) | 1.99 a (0.13) | 2.09 a (0.28) | 2.05 a (0.22) | 2.41 b (0.27) | 2.43 b (0.28) | 2.25 b (0.17) | 2.08 a (0.14) |
9-Octadecenoic acid | C18:1 (n-9) | 22.16 a (2.68) | 18.85 a (0.29) | 19.14 a (0.61) | 20.96 a (2.92) | 22.07 a (2.17) | 21.52 a (1.09) | 21.04 a (0.53) | 19.31 a (0.86) | 22.39 a (2.64) | 18.91 a (1.5) |
6-Octadecenoic acid | C18:1 (n-12) | 1.52 a (0.15) | 1.37 a (0.13) | 1.91 b (0.3) | 2.04 b (0.26) | 1.76 b (0.04) | 1.62 a (0.34) | 2.68 b (0.35) | 2.29 b (0.03) | 2.17 b (0.3) | 1.74 a (0.26) |
10-Nonadecenoic acid | C19:1 (n-9) | ND | 0.38 b (0.04) | 0.58 (0.09) | 0.11 a (0.01) | 0.17 a (0.01) | 0.18 a (0.01) | ND | ND | ND | 0.15 a (0.02) |
11-Eicosenoic acid | C20:1 (n-9) | 0.06 a (0.01) | ND | ND | 0.64 b (0.07) | 0.22 c (0.03) | 0.57 b (0.02) | 0.58 b (0.09) | 0.53 b (0.02) | 0.54 b (0.06) | 0.67 b (0.1) |
Total MUFAs: | 29.64 a (2.52) | 24.55 b (0.36) | 26.03 b (0.52) | 28.35 a (2.67) | 29.11 a (2.39) | 28.83 a (0.97) | 29.34 a (0.74) | 27.48 b (0.85) | 30.27 a (1.96) | 26.65 b (1.26) | |
Polyunsaturated fatty acids (PUFAs) | |||||||||||
9,12-Octadecadienoic acid | C18:2 (n-6) | 4.93 a (0.9) | 4.18 a (0.19) | 4.38 a (0.82) | 5.78 b (0.2) | 5.62 b (0.7) | 5.04 a (0.6) | 5.87 b (0.65) | 5.25 a (1.06) | 6.45 b (0.42) | 5.51 b (0.31) |
8,11,14-Eicosatrienoic acid | C20:3 (n-6) | 0.36 a (0.01) | 0.36 a (0.01) | 0.43 b (0.03) | 0.46 b (0.01) | 0.45 b (0.05) | 0.49 b (0.01) | 0.42 b (0.06) | 0.44 b (0.03) | 0.51 b (0.13) | 0.47 b (0.11) |
5,8,11,14-Eicosatetraenoic acid | C20:4 (n-6) | 0.51 a (0.06) | 0.38 b (0.02) | 0.53 a (0.11) | 0.68 (0.08) | 0.64 (0.03) | 0.71 (0.1) | 0.75 (0.12) | 0.55 a (0.07) | 0.64 a (0.12) | 0.59 a (0.04) |
7,10,13,16-Docosatetraenoic acid | C22:4 (n-6) | 0.27 a (0.04) | 0.40 b (0.03) | ND | 0.36 b (0.01) | 0.37 b (0.05) | 0.48 b (0.06) | 0.37 b (0.02) | 0.33 b (0.04) | 0.45 b (0.07) | 0.38 b (0.03) |
7,10,13,16,19-Docosapentaenoic acid | C22:5 (n-3) | 0.06 a (0.01) | ND | ND | ND | 0.09 b (0.01) | 0.09 b (0.01) | ND | ND | ND | ND |
Total PUFAs: | 6.13 a (0.84) | 5.31 a (0.21) | 5.34 a (0.86) | 7.29 b (0.23) | 7.17 b (0.63) | 6.81 a (0.46) | 7.41 b (0.76) | 6.56 a (0.99) | 8.05 b (0.26) | 6.94 b (0.29) | |
Conjugated fatty acids (CFAs) | |||||||||||
10-trans,12-cis-Octadecadienoic acid | 10trans,12cis-C18:2 | ND | ND | ND | ND | ND | 0.58 a (0.05) | 0.38 b (0.06) | 0.42 b (0.05) | 0.66 a (0.04) | 0.43 b (0.1) |
9-cis,11-trans-Octadecadienoic acid | 9cis,11trans-C18:2 | ND | ND | 0.51 a (0.1) | ND | ND | 0.15 b (0.01) | 0.35 c (0.02) | 0.31 c (0.02) | 0.23 d (0.06) | 0.19 d (0.02) |
Total CFAs: | ND | ND | 0.51 a (0.1) | ND | ND | 0.72 b (0.05) | 0.73 b (0.05) | 0.73 b (0.04) | 0.89 c (0.08) | 0.62 a (0.1) | |
Branched-chain fatty acids (BCFA) | |||||||||||
Tridecanoic acid, 12-methyl- | 12MeC13:0 (iso-C14:0) | 0.11 a (0.02) | ND | ND | ND | 0.10 a (0.01) | 0.11 a (0.02) | 0.09 a (0.01) | 0.10 a (0.02) | 0.09 a (0) | 0.11 a (0) |
Tetradecanoic acid, 13-methyl- | 13MeC14:0 (iso-C15:0) | 0.19 a (0.05) | 0.09 b (0.02) | ND | 0.18 a (0.01) | 0.15 a (0.01) | 0.16 a (0.02) | 0.16 a (0.02) | 0.19 a (0.02) | 0.15 a (0.01) | 0.19 a (0.02) |
Tetradecanoic acid, 9-methyl- | 9MeC14:0 | 0.46 a (0.01) | 0.21 b (0.04) | 0.28 b (0.01) | 0.38 b (0.01) | 0.32 b (0.03) | 0.37 b (0.05) | 0.32 b (0.02) | 0.39 b (0.04) | 0.39 b (0.04) | 0.41 a (0.05) |
Pentadecanoic acid, 14-methyl- | 14MeC15:0 (iso-C16:0) | 0.23 a (0.04) | 0.27 a (0.03) | 0.26 a (0.04) | 0.22 a (0.04) | 0.27 a (0) | 0.25 a (0.02) | 0.28 a (0.03) | 0.30 a (0.02) | 0.26 a (0.03) | 0.27 a (0.02) |
Hexadecanoic acid, 15-methyl- | 15MeC16:0 (iso-C17:0) | 0.22 a (0.01) | 0.23 a (0.01) | 0.34 b (0.02) | 0.23 a (0.03) | 0.29 b (0.04) | 0.31 b (0.05) | 0.37 b (0.02) | 0.40 b (0.06) | 0.32 b (0.02) | 0.28 a (0.04) |
Hexadecanoic acid, 14-methyl- | 14MeC16:0 (anteiso-C17:0) | 0.36 a (0.09) | 0.38 a (0.03) | 0.55 b (0.13) | 0.43 a (0.1) | 0.44 a (0.05) | 0.36 a (0.1) | 0.42 a (0.09) | 0.48 b (0.03) | 0.38 a (0.06) | 0.38 a (0.04) |
Total BCFA: | 1.57 a (0.03) | 1.17 b (0.13) | 1.43 a (0.16) | 1.44 a (0.1) | 1.58 a (0.1) | 1.55 a (0.13) | 1.64 a (0.09) | 1.84 c (0.11) | 1.59 a (0.02) | 1.63 a (0.02) | |
2-Hydroxy branched-chain fatty acids (2OH-BCFAs) | |||||||||||
Pentanoic acid, 2-hydroxy-4-methyl- | 2OH-4MeC5:0 (2OH-iso-C6:0) | ND | 3.38 a (0.62) | 3.31 a (0.55) | 0.19 b (0.04) | 0.26 c (0.03) | 0.23 b (0.03) | 0.17 b (0.01) | 0.19 b (0.02) | 0.21 b (0.04) | 0.32 d (0.01) |
Pentanoic acid, 2-hydroxy-3-methyl- | 2OH-3MeC5:0 (2OH-anteiso-C6:0) | ND | 1.15 a (0.03) | 0.49 b (0.06) | 0.23 c (0.07) | 0.23 c (0.02) | 0.17 c (0.03) | 0.16 d (0.01) | 0.17 d (0.02) | 0.20 c (0.01) | 0.30 f (0.03) |
Total 2OH-BCFAs: | ND | 4.52 a (0.64) | 3.80 a (0.61) | 0.42 b (0.11) | 0.49 c (0.03) | 0.4 b (0.03) | 0.32 c (0.01) | 0.37 c (0.02) | 0.41 b (0.03) | 0.62 d (0.05) | |
oxo-Saturated fatty acids (oxo-SFAs) | |||||||||||
Pentanoic acid, 4-oxo- | 4O-C5:0 | 0.20 a (0.02) | 0.32 b (0.02) | 0.16 a (0.01) | 0.47 c (0.03) | 0.36 b (0.03) | 0.27 b (0.03) | 0.12 d (0.01) | 0.12 d (0.01) | 0.15 d (0.01) | 0.33 b (0.06) |
Total oxo-SFAs: | 0.20 a (0.02) | 0.32 b (0.02) | 0.16 a (0.01) | 0.47 c (0.03) | 0.36 b (0.03) | 0.27 b (0.03) | 0.12 d (0.01) | 0.12 d (0.01) | 0.15 d (0.01) | 0.33 b (0.06) |
Index Information | Index Value for the Samples 1, Arbitrary Units | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name | GENERAL Interpretation | Milk | Lb100 | Lb200 | Str16t | Str16t Lb100 (4:1) | Str16t Lb100 KF1 (2:1:2) | Str16t Lb100 MA3 (2:1:2) | Str16t Lb200 (4:1) | Str16t Lb200 KF1 (2:1:2) | Str16t Lb200 MA3 (2:1:2) |
Index of atherogenicity (IA) | The lower, the better | 1.89 a (0.05) | 1.73 b (0.01) | 1.54 b (0.36) | 1.64 b (0.24) | 1.7 b (0.07) | 1.67 b (0.03) | 1.51 b (0.08) | 1.69 b (0.15) | 1.4 b (0.22) | 1.75 b (0.15) |
Health-promoting index (HPI) | The higher, the better | 0.53 a (0.01) | 0.58 b (0.01) | 0.68 b (0.18) | 0.62 b (0.09) | 0.59 b (0.02) | 0.61 b (0.01) | 0.66 b (0.04) | 0.59 b (0.05) | 0.73 b (0.12) | 0.57 b (0.05) |
Index of thrombogenicity (IT) | The lower, the better | 2.36 a (0.23) | 2.76 a (0.25) | 2.81 a (0.32) | 2.49 a (0.25) | 2.34 a (0.27) | 2.35 a (0.16) | 2.36 a (0.16) | 2.63 a (0.22) | 2.15 a (0.18) | 2.79 a (0.14) |
Hypo/hyper-cholesterolemic ratio (HH) | The higher, the better | 0.77 a (0.09) | 0.71 a (0.16) | 0.80 a (0.23) | 0.83 a (0.14) | 0.81 a (0.07) | 0.84 a (0.06) | 0.86 a (0.04) | 0.72 a (0.15) | 0.96 b (0.08) | 0.74 a (0.12) |
Unsaturation index (UI) | The higher, the better | 44.02 a (1.84) | 37.09 b (0.41) | 38.19 b (1.94) | 45.46 a (2.94) | 46.19 a (2.15) | 45.61 a (0.87) | 46.82 a (1.99) | 42.8 a (2.69) | 49.04 c (1.9) | 42.94 a (0.98) |
Volatile Compound | Relative Abundance in Sample, % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Milk | Lb100 | Lb200 | Str16t | Str16t Lb100 (4:1) | Str16t Lb100 KF1 (2:1:2) | Str16t Lb100 MA3 (2:1:2) | Str16t Lb200 (4:1) | Str16t Lb200 KF1 (2:1:2) | Str16t Lb200 MA3 (2:1:2) | |
Short-chain fatty acids (SCFAs) | ||||||||||
Butanoic (butyric) acid (C4:0) | ND | ND | 19 | ND | 14 | 16 | 19 | 12 | 16 | ND |
Caproic acid (C6:0) | ND | 32 | 30 | 34 | 30 | 22 | 21 | 28 | 23 | 32 |
Caprylic acid (C8:0) | ND | 23 | 19 | 16 | 22 | 16 | 11 | 24 | 8 | 7.3 |
Capric acid (C10:0) | ND | 7.1 | 5.4 | 4.6 | 4.4 | 2.7 | 2.9 | 6.1 | 1.2 | 1.6 |
Total SCFAs: | ND | 62 | 73 | 55 | 70 | 57 | 54 | 70 | 48 | 41 |
Medium-chain methyl ketones (MCMKs) | ||||||||||
2-Heptanone | ND | 8.5 | 4 | ND | 3.3 | 2.5 | ND | 3.3 | ND | ND |
2-Nonanone | 24 | 12 | ND | 10 | 5.8 | 4.7 | ND | 5.5 | 4.3 | 7.1 |
2-Undecanone | 7 | 3.4 | ND | 3.4 | 2 | 1.2 | 0.7 | 1.8 | 1.3 | 1.5 |
Total MCMKs: | 31 | 24 | 4 | 13 | 11 | 8.4 | 0.7 | 11 | 5.6 | 8.6 |
Furan-containing compounds (FCCs) | ||||||||||
2-Amylfuran | 14 | ND | 6.5 | ND | 3 | 2.5 | ND | 2.8 | 2.2 | 4.5 |
Furfuryl alcohol | 55 | 14 | 13 | 19 | 11 | 9.4 | 8.4 | 9.6 | 15 | ND |
Total FCCs: | 69 | 14 | 20 | 19 | 14 | 12 | 8 | 12 | 17 | 4 |
Other VOCs | ||||||||||
Acetoin | ND | ND | ND | 13 | 4.5 | 23 | 37 | 6.9 | 29 | 46 |
Benzoic acid | ND | ND | 3.1 | ND | ND | ND | ND | ND | ND | ND |
Total Other VOCs: | ND | ND | 3.1 | 13 | 4.5 | 23 | 37 | 6.9 | 29 | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moiseenko, K.V.; Glazunova, O.A.; Savinova, O.S.; Shabaev, A.V.; Fedorova, T.V. Changes in Composition of Some Bioactive Molecules upon Inclusion of Lacticaseibacillus paracasei Probiotic Strains into a Standard Yogurt Starter Culture. Foods 2023, 12, 4238. https://doi.org/10.3390/foods12234238
Moiseenko KV, Glazunova OA, Savinova OS, Shabaev AV, Fedorova TV. Changes in Composition of Some Bioactive Molecules upon Inclusion of Lacticaseibacillus paracasei Probiotic Strains into a Standard Yogurt Starter Culture. Foods. 2023; 12(23):4238. https://doi.org/10.3390/foods12234238
Chicago/Turabian StyleMoiseenko, Konstantin V., Olga A. Glazunova, Olga S. Savinova, Alexander V. Shabaev, and Tatyana V. Fedorova. 2023. "Changes in Composition of Some Bioactive Molecules upon Inclusion of Lacticaseibacillus paracasei Probiotic Strains into a Standard Yogurt Starter Culture" Foods 12, no. 23: 4238. https://doi.org/10.3390/foods12234238
APA StyleMoiseenko, K. V., Glazunova, O. A., Savinova, O. S., Shabaev, A. V., & Fedorova, T. V. (2023). Changes in Composition of Some Bioactive Molecules upon Inclusion of Lacticaseibacillus paracasei Probiotic Strains into a Standard Yogurt Starter Culture. Foods, 12(23), 4238. https://doi.org/10.3390/foods12234238