Application of Immobilized Enzymes in Juice Clarification
Abstract
:1. Introduction
2. Immobilized Enzymes in Juice Clarification
2.1. Immobilization Methods
2.1.1. Adsorption
2.1.2. Entrapment
2.1.3. Covalent Binding
2.1.4. Cross-Linking
2.2. Immobilization Support
2.2.1. Magnetic Nanoparticles
2.2.2. Alginate
2.2.3. Chitosan
2.2.4. Other Supports
2.2.5. Summary and Discussion
2.3. Catalytic Conditions of Immobilized Enzymes in Juice Clarification
3. Application of Different Immobilized Enzymes in Juice Clarification
3.1. Pectinase
3.2. Laccase
3.3. Xylanase
3.4. Other Enzymes
3.5. Summary and Discussion
4. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Hegazi, N.M.; El-Shamy, S.; Fahmy, H.; Farag, M.A. Pomegranate juice as a super-food: A comprehensive review of its extraction, analysis, and quality assessment approaches. J. Food Compos. Anal. 2021, 97, 103773. [Google Scholar] [CrossRef]
- Ozyilmaz, G.; Gunay, E. Clarification of apple, grape and pear juices by co-immobilized amylase, pectinase and cellulase. Food Chem. 2023, 398, 133900. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.G.; Duthie, S.J.; Kyle, J.A.M. Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutr. Res. Rev. 2000, 13, 79–106. [Google Scholar] [CrossRef] [PubMed]
- Netzel, M.; Netzel, G.; Kammerer, D.R.; Schieber, A.; Carle, R.; Simons, L.; Bitsch, I.; Bitsch, R.; Konczak, L. Cancer cell antiproliferation activity and metabolism of black carrot anthocyanins. Innov. Food Sci. Emerg. Technol. 2007, 8, 365–372. [Google Scholar] [CrossRef]
- Antunes, M.D.C.; Dandlen, S.; Cavaco, A.M.; Miguel, G. Effects of Postharvest Application of 1-MCP and Postcutting Dip Treatment on the Quality and Nutritional Properties of Fresh-Cut Kiwifruit. J. Agric. Food Chem. 2010, 58, 6173–6181. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, A.d.S.; Rosenthal, A.; de Massaguer, P.R. The fate of patulin in apple juice processing: A review. Food Res. Int. 2008, 41, 441–453. [Google Scholar] [CrossRef]
- Firouz, M.S.; Farahmandi, A.; Hosseinpour, S. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason. Sonochem. 2019, 57, 73–88. [Google Scholar] [CrossRef]
- Erkan-Koc, B.; Turkyilmaz, M.; Yemis, O.; Ozkan, M. Effects of various protein- and polysaccharide-based clarification agents on antioxidative compounds and colour of pomegranate juice. Food Chem. 2015, 184, 37–45. [Google Scholar] [CrossRef]
- Benucci, I.; Mazzocchi, C.; Lombardelli, C.; Cacciotti, I.; Esti, M. Multi-enzymatic Systems Immobilized on Chitosan Beads for Pomegranate Juice Treatment in Fluidized Bed Reactor: Effect on Haze-Active Molecules and Chromatic Properties. Food Bioprocess Technol. 2019, 12, 1559–1572. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, C.; Lozano-Sanchez, J.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Crit. Rev. Food Sci. Nutr. 2017, 57, 501–523. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Rinken, T. Immobilization of Pectinolytic Enzymes on Nylon 6/6 Carriers. Appl. Sci. 2021, 11, 4591. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, F.; Lu, Y.; Ge, W.; Zhang, M.; Yue, B. Immobilization of pectinase from Penicillium oxalicum F67 onto magnetic cornstarch microspheres: Characterization and application in juice production. J. Mol. Catal. B-Enzym. 2013, 97, 137–143. [Google Scholar] [CrossRef]
- Esawy, M.A.; Gamal, A.A.; Kamel, Z.; Ismail, A.M.S.; Abdel-Fattah, A.F. Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohydr. Polym. 2013, 92, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B.; Pal, A.; Kumar, S.; Jain, V. Biochemical characterization and kinetic comparison of encapsulated haze removing acidophilic xylanase with partially purified free xylanase isolated from Aspergillus flavus MTCC 9390. J. Food Sci. Technol.-Mysore 2015, 52, 191–200. [Google Scholar] [CrossRef]
- Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Strategies for Stabilization of Enzymes in Organic Solvents. ACS Catal. 2013, 3, 2823–2836. [Google Scholar] [CrossRef]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed]
- Borges Reis, C.L.; Almeida de Sousa, E.Y.; Serpa, J.d.F.; Oliveira, R.C.; Sousa dos Santos, J.C. Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Quim. Nova 2019, 42, 768–783. [Google Scholar]
- Cantone, S.; Ferrario, V.; Corici, L.; Ebert, C.; Fattor, D.; Spizzo, P.; Gardossi, L. Efficient immobilisation of industrial biocatalysts: Criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem. Soc. Rev. 2013, 42, 6262–6276. [Google Scholar] [CrossRef]
- Seenuvasan, M.; Malar, C.G.; Preethi, S.; Balaji, N.; Iyyappan, J.; Kumar, M.A.; Kumar, K.S. Fabrication, characterization and application of pectin degrading Fe3O4-SiO2 nanobiocatalyst. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2273–2279. [Google Scholar] [CrossRef]
- Moriya, M.; Tatsu, Y. Diversity of food allergy. J. Nutr. Sci. Vitaminol. 2015, 61, S106–S108. [Google Scholar] [CrossRef]
- Shokri, Z.; Seidi, F.; Karami, S.; Li, C.; Saeb, M.R.; Xiao, H. Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydr. Polym. 2021, 262, 117963. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem. Soc. 2022, 51, 6251–6290. [Google Scholar] [CrossRef]
- Jacob, N.; Sukumaran, R.K.; Prema, P. Optimization of Enzymatic Clarification of Sapodilla Juice: A Statistical Perspective. Appl. Biochem. Biotechnol. 2008, 151, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Dal Magro, L.; Pessoa, J.P.S.; Klein, M.P.; Fernandez-Lafuente, R.; Rodrigues, R.C. Enzymatic clarification of orange juice in continuous bed reactors: Fluidized-bed versus packed-bed reactor. Catal. Today 2021, 362, 184–191. [Google Scholar] [CrossRef]
- Lu, J.; Nie, M.; Li, Y.; Zhu, H.; Shi, G. Design of composite nanosupports and applications thereof in enzyme immobilization: A review. Colloids Surf. B Biointerfaces 2022, 217, 112602. [Google Scholar] [CrossRef] [PubMed]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.S. Enzyme immobilization technologies and industrial applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Owusu-Fordjour, M.; Xu, L.; Ding, Z.; Gu, Z. Immobilization of Laccase on Magnetic Chelator Nanoparticles for Apple Juice Clarification in Magnetically Stabilized Fluidized Bed. Front. Bioeng. Biotechnol. 2020, 8, 589. [Google Scholar] [CrossRef]
- Yavaser, R.; Karagozler, A.A. Covalent immobilization of papain onto poly (hydroxyethyl methacrylate)-chitosan cryogels for apple juice clarification. Food Sci. Technol. Int. 2020, 26, 629–641. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol. Adv. 2021, 52, 107821. [Google Scholar] [CrossRef]
- Guisan, J.M.; Fernandez-Lorente, G.; Rocha-Martin, J. Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Curr. Opin. Green Sustain. Chem. 2022, 35, 100593. [Google Scholar] [CrossRef]
- Del, A.J.; Alcantara, A.R.; Fernandez-Lafuente, R.; Fernandez-Lucas, J. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. Bioresour. Technol. 2021, 322, 124547. [Google Scholar]
- Arana-Pea, S.; Carballares, D.; Morellon-Sterlling, R. Enzyme co-immobilization: Always the biocatalyst designers’ choice…or not? Biotechnol. Adv. 2020, 10, 107584. [Google Scholar]
- Kotchakorn, T.; Tomoko, M. Recent advances in enzyme immobilization utilizing. Org. Process Res. Dev. 2022, 26, 1857–1877. [Google Scholar]
- Pose, B.T.; Martínez, C.J.; Eibes, G. 3D Printing: An emerging technology forbiocatalyst immobilization. Macromol. Biosci. 2022, 22, 2200110. [Google Scholar]
- Zhang, S.; Bilal, M.; Zdarta, J.; Cui, J.; Kumar, A.; Franco, M.; Ferreira, L.F.R.; Iqbal, H.M.N. Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Res. Int. 2021, 140, 109979. [Google Scholar] [CrossRef] [PubMed]
- Rana, H.; Sharma, A.; Dutta, S.; Goswami, S. Recent Approaches on the Application of Agro Waste Derived Biocomposites as Green Support Matrix for Enzyme Immobilization. J. Polym. Environ. 2022, 30, 4936–4960. [Google Scholar] [CrossRef]
- Nadar, S.S.; Patil, P.D.; Rohra, N.M. Magnetic nanobiocatalyst for extraction of bioactive ingredients: A novel approach. Trends Food Sci. Technol. 2020, 103, 225–238. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Lock, S.S.M.; Yap, P.S.; Cheah, K.W.; Chan, Y.H.; Yiin, C.L.; Ku, A.Z.E.; Loy, A.C.M.; Chin, B.L.F.; Chai, Y.H. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects. Sci. Total Environ. 2022, 832, 154868. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Y.; Su, R.; An, N.; Zhang, Y.; Wei, Y.; Ma, B. A novel method for immobilizing anammox bacteria in polyurethane foam carriers through dewatering. J. Water Process Eng. 2023, 53, 103738. [Google Scholar] [CrossRef]
- Remonatto, D.; Miotti, R.H., Jr.; Monti, R.; Bassan, J.C.; de Paula, A.V. Applications of immobilized lipases in enzymatic reactors: A review. Process Biochem. 2022, 114, 1–20. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, S.; Princy; Arya, S.K.; Kaur, A. Enzyme immobilization: Implementation of nanoparticles and an insight into polystyrene as the contemporary immobilization matrix. Process Biochem. 2022, 120, 22–34. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Li, F.L.; Zhang, Y.W.; Gupta, R.K.; Patel, S.K.S.; Lee, J.K. Recent strategies for the immobilization of therapeutic enzymes. Polymers 2022, 14, 1409. [Google Scholar] [CrossRef] [PubMed]
- Cristina, A.; Garcia, G.; Ángel. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar]
- Rafiee, F.; Rezaee, M. Different strategies for the lipase immobilization on the chitosan-based supports and their applications. Int. J. Biol. Macromol. 2021, 179, 170–195. [Google Scholar] [CrossRef]
- Gan, J.S.; Bagheri, A.R.; Aramesh, N. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis—A review. Int. J. Biol. Macromol. 2020, 167, 502–515. [Google Scholar] [CrossRef]
- de Alencar Guimarães, N.C.; Glienke, N.N.; Contato, A.G.; Galeano, R.M.S.; Marchetti, C.R.; Rosa, M.P.G.; de Sa Teles, J.S.; de Oliveira Simas, A.L.; Zanoelo, F.F.; Masui, D.C.; et al. Production and Biochemical Characterization of Aspergillus japonicus Pectinase Using a Low-Cost Alternative Carbon Source for Application in the Clarification of Fruit Juices. Waste Biomass Valorization 2023. [Google Scholar] [CrossRef]
- Chauhan, S.; Vohra, A.; Lakhanpal, A.; Gupta, R. Immobilization of Commercial Pectinase (Polygalacturonase) On Celite and Its Application in Juice Clarification. J. Food Process. Preserv. 2015, 39, 2135–2141. [Google Scholar] [CrossRef]
- Sahin, S.; Ozmen, I. Immobilization of pectinase on Zr-treated pumice for fruit juice industry. J. Food Process. Preserv. 2020, 44, 14661. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, W.; Cai, Y. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021, 403, 126272. [Google Scholar] [CrossRef]
- Chen, Z.; Oh, W.D.; Yap, P.S. Recent advances in the utilization of immobilized laccase for the degradation of phenolic com-pounds in aqueous solutions: A review. Chemosphere 2022, 307, 135824. [Google Scholar] [CrossRef] [PubMed]
- Rajdeo, K.; Harini, T.; Lavanya, K.; Fadnavis, N.W. Immobilization of pectinase on reusable polymer support for clarification of apple juice. Food Bioprod. Process. 2016, 99, 12–19. [Google Scholar] [CrossRef]
- de Oliveira, R.L.; Dias, J.L.; da Silva, O.S.; Porto, T.S. Immobilization of pectinase from Aspergillus aculeatus in alginate beads and clarification of apple and umbu juices in a packed bed reactor. Food Bioprod. Process. 2018, 109, 9–18. [Google Scholar] [CrossRef]
- Andrade, P.M.L.; Baptista, L.; Bezerra, C.O.; Peralta, R.M.; Goes-Neto, A.; Uetanabaro, A.P.T.; da Costa, A.M. Immobilization and characterization of tannase from Penicillium rolfsii CCMB 714 and its efficiency in apple juice clarification. J. Food Meas. Charact. 2021, 15, 1005–1013. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Ghamdi, S.S.; El-Shishtawy, R.M. Immobilization of horseradish peroxidase on amidoximated acrylic polymer activated by cyanuric chloride. Int. J. Biol. Macromol. 2016, 91, 663–670. [Google Scholar] [CrossRef]
- Kharazmi, S.; Taheri-Kafrani, A.; Soozanipour, A.; Nasrollahzadeh, M.; Varma, R.S. Xylanase immobilization onto trichlorotriazine-functionalized polyethylene glycol grafted magnetic nanoparticles: A thermostable and robust nanobiocatalyst for fruit juice clarification. Int. J. Biol. Macromol. 2020, 163, 402–413. [Google Scholar] [CrossRef]
- Morellon-Sterling, R.; Tavano, O.; Bolivar, J.M.; Berenguer-Murcia, A.; Vela-Gutierrez, G.; Sabir, J.S.M.; Tacias-Pascacio, V.G.; Fernandez-Lafuente, R. A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. Int. J. Biol. Macromol. 2022, 210, 682–702. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mokarram, R.R.; Shahvalizadeh, R.; Sarabandi, K.; Lim, L.T.; Hamishehkar, H. Immobilization and stabilization of pectinase on an activated montmorillonite support and its application in pineapple juice clarification. Food Biosci. 2020, 36, 100625. [Google Scholar] [CrossRef]
- de Souza Bezerra, T.M.; Bassan, J.C.; de Oliveira Santos, V.T.; Ferraz, A.; Monti, R. Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochem. 2015, 50, 417–423. [Google Scholar] [CrossRef]
- Sojitra, U.V.; Nadar, S.S.; Rathod, V.K. Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr. Polym. 2017, 157, 677–685. [Google Scholar] [CrossRef]
- Zhen, Q.; Wang, M.; Qi, W.; Su, R.; He, Z. Preparation of beta-mannanase CLEAs using macromolecular cross-linkers. Catal. Sci. Technol. 2013, 3, 1937–1941. [Google Scholar] [CrossRef]
- Amin, F.; Bhatti, H.N.; Bilal, M.; Asgher, M. Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. Int. J. Biol. Macromol. 2017, 95, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Bogra, P.; Kumar, A.; Kuhar, K.; Panwar, S.; Singh, R. Immobilization of tomato (Lycopersicon esculentum) pectinmethylesterase in calcium alginate beads and its application in fruit juice clarification. Biotechnol. Lett. 2013, 35, 1895–1900. [Google Scholar] [CrossRef] [PubMed]
- Jana, A.; Halder, S.K.; Ghosh, K.; Paul, T.; Vagvolgyi, C.; Mondal, K.C.; Das Mohapatra, P.K. Tannase Immobilization by Chitin-Alginate Based Adsorption-Entrapment Technique and Its Exploitation in Fruit Juice Clarification. Food Bioprocess Technol. 2015, 8, 2319–2329. [Google Scholar] [CrossRef]
- Solis-Fuentes, J.A.; Raga-Carbajal, E.; Duran-de-Bazua, M.C. Direct Sucrose Hydrolysis in Sugarcane Juice with Immobilized Invertase: Multi-response Optimization Using Desirability Function on Conversion and Reactor Volumetric Productivity. Sugar Tech. 2015, 17, 266–275. [Google Scholar] [CrossRef]
- Yang, S.Q.; Dai, X.Y.; Wei, X.Y.; Zhu, Q.; Zhou, T. Co-immobilization of pectinase and glucoamylase onto sodium aliginate/graphene oxide composite beads and its application in the preparation of pumpkin-hawthorn juice. J. Food Biochem. 2019, 43, 12741. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Asgher, M.; Iqbal, H.M.; Hu, H.; Zhang, X. Delignification and fruit juice clarification properties of alginate-chitosan-immobilized ligninolytic cocktail. LWT-Food Sci. Technol. 2017, 80, 348–354. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, F.; Zhou, B.; Li, J.; Li, B.; Liang, H. Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocoll. 2019, 89, 691–699. [Google Scholar] [CrossRef]
- Mosafa, L.; Moghadam, M.; Shahedi, M. Papain enzyme supported on magnetic nanoparticles: Preparation, characterization and application in the fruit juice clarification. Chin. J. Catal. 2013, 34, 1897–1904. [Google Scholar] [CrossRef]
- Kumar, L.; Nagar, S.; Mittal, A.; Garg, N.; Gupta, V.K. Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grape juices. J. Food Sci. Technol.-Mysore 2014, 51, 1737–1749. [Google Scholar] [CrossRef]
- Ramirez Tapias, Y.A.; Rivero, C.W.; Lopez Gallego, F.; Guisan, J.M.; Trelles, J.A. Stabilization by multipoint covalent attachment of a biocatalyst with polygalacturonase activity used for juice clarification. Food Chem. 2016, 208, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Shahrestani, H.; Taheri-Kafrani, A.; Soozanipour, A.; Tavakoli, O. Enzymatic clarification of fruit juices using xylanase immobilized on 1,3,5-triazine-functionalized silica-encapsulated magnetic nanoparticles. Biochem. Eng. J. 2016, 109, 51–58. [Google Scholar] [CrossRef]
- Lettera, V.; Pezzella, C.; Cicatiello, P.; Piscitelli, A.; Giacobelli, V.G.; Galano, E.; Amoresano, A.; Sannia, G. Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chem. 2016, 196, 1272–1278. [Google Scholar] [CrossRef]
- Dal Magro, L.; Silveira, V.C.C.; de Menezes, E.W.; Benvenutti, E.V.; Nicolodi, S.; Hertz, P.F.; Klein, M.P.; Rodrigues, R.C. Magnetic biocatalysts of pectinase and cellulase: Synthesis and characterization of two preparations for application in grape juice clarification. Int. J. Biol. Macromol. 2018, 115, 35–44. [Google Scholar] [CrossRef]
- Azimi, S.Z.; Hosseini, S.S.; Khodaiyan, F. Continuous clarification of grape juice using a packed bed bioreactor including pectinase enzyme immobilized on glass beads. Food Biosci. 2021, 40, 100877. [Google Scholar] [CrossRef]
- Suryawanshi, R.K.; Jana, U.K.; Prajapati, B.P.; Kango, N. Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem. 2019, 289, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Heshmati, M.K.; Sarabandi, K.; Fathi, M.; Lim, L.T.; Hamishehkar, H. Activated alginate-montmorillonite beads as an efficient carrier for pectinase immobilization. Int. J. Biol. Macromol. 2019, 137, 253–260. [Google Scholar] [CrossRef]
- Oktay, B.; Demir, S.; Kayaman-Apohan, N. Immobilization of pectinase on polyethyleneimine based support via spontaneous amino-yne click reaction. Food Bioprod. Process. 2020, 122, 159–168. [Google Scholar] [CrossRef]
- Sojitra, U.V.; Nadar, S.S.; Rathod, V.K. A magnetic tri-enzyme nanobiocatalyst for fruit juice clarification. Food Chem. 2016, 213, 296–305. [Google Scholar] [CrossRef]
- Muley, A.B.; Thorat, A.S.; Singhal, R.S.; Babu, K.H. A tri-enzyme co-immobilized magnetic complex: Process details, kinetics, thermodynamics and applications. Int. J. Biol. Macromol. 2018, 118, 1781–1795. [Google Scholar] [CrossRef]
- Soozanipour, A.; Taheri-Kafrani, A.; Barkhori, M.; Nasrollahzadeh, M. Preparation of a stable and robust nanobiocatalyst by efficiently immobilizing of pectinase onto cyanuric chloride-functionalized chitosan grafted magnetic nanoparticles. J. Colloid Interface Sci. 2019, 536, 261–270. [Google Scholar] [CrossRef]
- Diano, N. Apple Juice Clarification by Immobilized Pectolytic Enzymes in Packed or Fluidized Bed Reactors. J. Agric. Food Chem. 2008, 56, 11471–11477. [Google Scholar] [CrossRef]
- Kharazmi, S.; Taheri-Kafrani, A. Bi-enzymatic nanobiocatalyst based on immobilization of xylanase and pectinase onto functionalized magnetic nanoparticles for efficient fruit juice clarification. LWT 2023, 183, 114914. [Google Scholar] [CrossRef]
- Shahid, F.; Aman, A.; Qader, S.A.U. Immobilization of Dextranase Using Anionic Natural Polymer Alginate as a Matrix for the Degradation of a Long-Chain Biopolymer (Dextran). Int. J. Polym. Sci. 2019, 2019, 1354872. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Sci. Total Environ. 2017, 575, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Navarro-López, D.E. Nanocatalytic performance of pectinase immobilized over in situ prepared magnetic nanoparticles. Heliyon 2023, 9, e19021. [Google Scholar] [CrossRef] [PubMed]
- Matveeva, V.; Bronstein, L. Magnetic nanoparticle-containing supports as carriers of immobilized enzymes: Key factors influencing the biocatalyst performance. Nanomaterials 2021, 11, 2257. [Google Scholar] [CrossRef]
- Khalid, N.; Kalsoom, U.; Ahsan, Z. Non-magnetic and magnetically responsive support materials immobilized peroxidases for biocatalytic degradation of emerging dye pollutants—A review. Int. J. Biol. Macromol. 2022, 207, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, C.S.; Angelotti, J.A.; Fernandez-Lafuente, R.; Hirata, D.B. Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects—A review. Int. J. Biol. Macromol. 2022, 215, 434–449. [Google Scholar] [CrossRef]
- Patil, P.D.; Kelkar, R.K.; Patil, N.P.; Pise, P.V.; Patil, S.P.; Patil, A.S. Magnetic nanoflowers: A hybrid platform for enzyme immobilization. Crit. Rev. Biotechnol. 2023, 223, 0518. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Khodaiyan, F.; Mousavi, S.M.; Azimi, S.Z. Clarification of the pomegranate juice in a bioreactor packed by pectinase enzymes immobilized on the glass bead activated with polyaldehyde polysaccharides. LWT-Food Sci. Technol. 2021, 137, 110500. [Google Scholar] [CrossRef]
- Silva, J.d.C.; Lopes de Franca, P.R.; Converti, A.; Porto, T.S. Kinetic and thermodynamic characterization of a novel Aspergillus aculeatus URM4953 polygalacturonase. Comparison of free and calcium alginate-immobilized enzyme. Process Biochem. 2018, 74, 61–70. [Google Scholar] [CrossRef]
- Monier, M.; Ayad, D.M.; Wei, Y.; Sarhan, A.A. Immobilization of horseradish peroxidase on modified chitosan beads. Int. J. Biol. Macromol. 2010, 46, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.; Murtza, A.; Zafar, M.; Bhatti, K.H.; Rehman, A.; Anwar, Z. Chitosan-immobilized pectinolytics with novel catalytic features and fruit juice clarification potentialities. Int. J. Biol. Macromol. 2017, 104, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, J.; Zhang, X.; Zhao, B. An Enzyme Net Coating the Surface of Nanoparticles: A Simple and Efficient Method for the Immobilization of Phospholipase D. Ind. Eng. Chem. Res. 2016, 55, 10555–10565. [Google Scholar] [CrossRef]
- Oliveira Monteiro, L.M.; Pereira, M.G.; Vici, A.C.; Heinen, P.R.; Buckeridge, M.S.; Teixeira de Moraes Polizeli, M.d.L. Efficient hydrolysis of wine and grape juice anthocyanins by Malbranchea pulchella beta-glucosidase immobilized on MANAE-agarose and ConA-Sepharose supports. Int. J. Biol. Macromol. 2019, 136, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Kharazmi, S.; Taheri-Kafrani, A.; Soozanipour, A. Efficient immobilization of pectinase on trichlorotriazine-functionalized polyethylene glycol-grafted magnetic nanoparticles: A stable and robust nanobiocatalyst for fruit juice clarification. Food Chem. 2020, 325, 126890. [Google Scholar] [CrossRef]
- Dal Magro, L.; Hertz, P.F.; Fernandez-Lafuente, R.; Klein, M.P.; Rodrigues, R.C. Preparation and characterization of a Combi-CLEAs from pectinases and cellulases: A potential biocatalyst for grape juice clarification. RSC Adv. 2016, 6, 27242–27251. [Google Scholar] [CrossRef]
- Martin, M.C.; DellOlio, G.A.G.; Villar, M.A.; Morata, V.I.; Lopez, O.V.; Ninago, M.D. Preparation and Characterization of an Immobilized Enological Pectinase on Agar-Alginate Beads. Macromol. Symp. 2020, 394, 1900208. [Google Scholar] [CrossRef]
- Cerreti, M.; Markosova, K.; Esti, M.; Rosenberg, M.; Rebros, M. Immobilisation of pectinases into PVA gel for fruit juice application. Int. J. Food Sci. Technol. 2017, 52, 531–539. [Google Scholar] [CrossRef]
- Bakshi, G.; Ananthanarayan, L. Characterization of lemon peel powder and its application as a source of pectin degrading enzyme in clarification of cloudy apple juice. J. Food Sci. Technol. 2022, 59, 2535–2544. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.; Asad, S.A.; Nazli, Z.H.; Kalsoom, U.; Bhatti, H.N.; Bilal, M. Immobilization, biochemical, thermodynamic, and fruit juice clarification properties of lignocellulosic biomass–derived exo-polygalacturonase from Penicillium paxilli. Biomass Convers. Biorefinery 2022, 13, 13181–13196. [Google Scholar] [CrossRef]
- Karataş, E.; Tülek, A.; Yildirim, D.; Tamtürk, F.; Binay, B. Immobilization of Sporothrix schenckii 1099-18 exo-polygalacturonase in magnetic mesoporous silica yolk-shell spheres: Highly reusable biocatalysts for apple juice clarification. Food Biosci. 2021, 43, 101324. [Google Scholar] [CrossRef]
- Santana, M.L.; Bispo, J.A.C.; de Sena, A.R.; Teshima, E.; de Brito, A.R.; Costa, F.S.; Franco, M.; de Assis, S.A. Clarification of tangerine juice using cellulases from Pseudoyma sp. J. Food Sci. Technol. 2021, 58, 44–51. [Google Scholar] [CrossRef]
- Muller, S.; Concha, D.; Vasquez, P.; Rodriguez-Nuñez, K.; Martinez, R.; Bernal, C. Effect of the immobilization of pectinase on the molecular weight distribution of pectin oligosaccharides obtained from citrus pectin. Biocatal. Agric. Biotechnol. 2022, 43, 102389. [Google Scholar] [CrossRef]
- Rehman, H.U.; Aman, A.; Zohra, R.R.; Ul Qader, S.A. Immobilization of pectin degrading enzyme from Bacillus lichernformis KIBGE IB-21 using agar-agar as a support. Carbohydr. Polym. 2014, 102, 622–626. [Google Scholar] [CrossRef]
- Garg, G.; Singh, A.; Kaur, A.; Singh, R.; Kaur, J.; Mahajan, R. Microbial pectinases: An ecofriendly tool of nature for industries. 3 Biotech 2016, 6, 47. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mahale, S.; Dhar, R. Response surface optimization of the enzymatic clarification process for apple ber juice and pasteurization by thermal and pulsed light treatments. J. Food Meas. Charact. 2023, 17, 4495–4505. [Google Scholar] [CrossRef]
- Pinelo, M.; Arnous, A.; Meyer, A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006, 17, 579–590. [Google Scholar] [CrossRef]
- Upadhyay, P.; Shrivastava, R.; Agrawal, P.K. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 2016, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Huang, X.; Jiang, L.; Shen, Q.; Sun, H.; Yi, M.; Wang, X.; Yao, X.; Wu, Y.; Zhang, C.; et al. Improved degradation of petroleum contaminants in hydraulic fracturing flowback and produced water using laccase immobilized on functionalized biochar. Environ. Technol. Innov. 2023, 32, 103280. [Google Scholar] [CrossRef]
- Park, S.; Jung, D.; Do, H.; Yun, J.; Lee, D.; Hwang, S.; Lee, S.H. Laccase-Mediator System Using a Natural Mediator as a Whitening Agent for the Decolorization of Melanin. Polymers 2021, 13, 3671. [Google Scholar] [CrossRef]
- Ribeiro, D.S.; Henrique, S.M.B.; Oliveira, L.S.; Macedo, G.A.; Fleuri, L.F. Enzymes in juice processing: A review. Int. J. Food Sci. Technol. 2010, 45, 635–641. [Google Scholar] [CrossRef]
- Neifar, M.; Ellouze-Ghorbel, R.; Kamoun, A.; Baklouti, S.; Mokni, A.; Jaouani, A.; Ellouze-Chaabouni, S. Effective clarification of pomegranate juice using laccase treatment optimized by response surface methodology followed by ultrafiltration. J. Food Process Eng. 2011, 34, 1199–1219. [Google Scholar] [CrossRef]
- Gassara-Chatti, F.; Brar, S.K.; Ajila, C.M.; Verma, M.; Tyagi, R.D.; Valero, J.R. Encapsulation of ligninolytic enzymes and its application in clarification of juice. Food Chem. 2013, 137, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Arregui, L. Laccases: Structure, function, and potential application in water bioremediation. Microb. Cell Factories 2019, 18, 200. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P. Fungal laccases—Occurrence and properties. FEMS Microbiol. Rev. 2006, 30, 215–242. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xia, A.; Huang, Y.; Zhu, X.; Zhu, X.; Cai, K.; Wei, Z.; Liao, Q. How can vanillin improve the performance of lignocellulosic biomass conversion in an immobilized laccase microreactor system? Bioresour Technol. 2023, 374, 128775. [Google Scholar] [CrossRef] [PubMed]
- Narnoliya, L.K.; Agarwal, N.; Patel, S.N.; Singh, S.P. Kinetic characterization of laccase from Bacillus atrophaeus, and its potential in juice clarification in free and immobilized forms. J. Microbiol. 2019, 57, 900–909. [Google Scholar] [CrossRef]
- Alagöz, D.; Varan, N.E.; Yildirim, D.; Fernandéz-Lafuente, R. Optimization of the immobilization of xylanase from Thermomyces lanuginosus to produce xylooligosaccharides in a batch type reactor. Mol. Catal. 2022, 531, 112647. [Google Scholar] [CrossRef]
- Shallom, D.; Shoham, Y. Microbial hemicellulases. Curr. Opin. Microbiol. 2003, 6, 219–228. [Google Scholar] [CrossRef]
- Kumar, V.; Shukla, P. Extracellular xylanase production from T. lanuginosus VAPS24 at pilot scale and thermostability enhancement by immobilization. Process Biochem. 2018, 71, 53–60. [Google Scholar] [CrossRef]
- Alagöz, D.; Varan, N.E.; Toprak, A.; Yildirim, D.; Tukel, S.S.; Fernandez-Lafuente, R. Immobilization of xylanase on differently functionalized silica gel supports for orange juice clarification. Process Biochem. 2022, 113, 270–280. [Google Scholar] [CrossRef]
- Li, X.T.; Jiang, Z.Q.; Li, L.T.; Yang, S.Q.; Feng, W.Y.; Fan, J.Y.; Kusakabe, I. Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresour. Technol. 2005, 96, 1370–1379. [Google Scholar] [CrossRef]
- Lee, W.C.; Yusof, S.; Hamid, N.S.A.; Baharin, B.S. Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). J. Food Eng. 2006, 73, 55–63. [Google Scholar] [CrossRef]
- Nagar, S.; Mittal, A.; Gupta, V.K. Enzymatic clarification of fruit juices (Apple, Pineapple, and Tomato) using purified Bacillus pumilus SV-85S xylanase. Biotechnol. Bioprocess Eng. 2013, 17, 1165–1175. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Iqbal, H.M.N.; Hu, H.; Zhang, X. Gelatin-Immobilized Manganese Peroxidase with Novel Catalytic Characteristics and Its Industrial Exploitation for Fruit Juice Clarification Purposes. Catal. Lett. 2016, 146, 2221–2228. [Google Scholar] [CrossRef]
Immobilization Method | Support | Enzyme | Immobilization Capacity (mg/g Support) | Activity Recovery (%) | pH | Temperature (°C) | Ref. |
---|---|---|---|---|---|---|---|
Adsorption | Magnetic cornstarch microspheres (MMCSs) | Pectinase | 50 * | 60 | 4.5 | 50 | [13] |
Celite | Polygalacturonase | 20 * | / | 5.5 | 45 | [48] | |
Polyethyleneimine-modified polymer | Pectinase | 22 * | 95 | 3.0 | 40 | [52] | |
Sodium alginate | Exo-polygalacturonase | / | / | 5.5 | 55 | [62] | |
Zr-treated pumice | Pectinase | 229 | / | 7.0 | 50 | [49] | |
Entrapment | Polyvinyl alcohol sponge | Pectinase | 30.5 | 91 | 6.0 | 50 | [14] |
Calcium alginate beads | Pectinmethylesterase | / | / | 8.5 | 60 | [63] | |
Alginate | Tannase | / | 79 | / | / | [64] | |
Calcium alginate | Invertase | / | / | 4.0 | 50 | [65] | |
Alginate beads | Xylanase | / | 80 | 5.0 | 55 | [15] | |
Gelatin hydrogel | Manganese peroxidase | / | / | 6.0 | 60 | [66] | |
Alginate chitosan | Ligninolytic enzyme | / | / | / | / | [67] | |
Alginate beads | Pectinase | / | 80 | 3.0 | 40 | [53] | |
Sodium alginate/Graphene oxide composite beads | Pectinase and glucoamylase | / | / | 4.0 | 40 | [66] | |
Chitosan beads | Enzyme cocktail | 300 | / | 4.0 | 70 | [25] | |
Calcium alginate | Tannase | / | 50 | 4.3 | 44 | [54] | |
Calcium alginate microspheres | Pectinases | 39 | 63 | 3.5 | 60 | [68] | |
Chitin + alginate | Tannase | / | / | 5.0 | 40 | [64] | |
Charcoal + alginate | Tannase | / | / | / | / | [64] | |
Covalent binding | Magnetic nanoparticles (3-chloropropyl) tri-methoxysilane | Papain | / | ~75.15 | 7.0 | 50 | [69] |
PVP-stabilized ferrite-based silica-coated nanoparticles (Fe3O4–SiO2); functionalizing agent: (3Chloropropyl) trimethoxysilane | Papain | / | 75% | 9.0 | 80 | [69] | |
Magnetic nanoparticles Glutaraldehyde | Pectinase | 19 | / | 4.0 | 50 | [20] | |
Aluminum oxide pellets | Extracellular xylanase | / | 58 | 9.0 | 65 | [70] | |
Green coconut husk fibers Glutaraldehyde | Laccase | / | 100 | 6.0 | 60 | [59] | |
Glyoxyl–agarose | Polygalacturonase | / | / | / | 40 | [71] | |
Polyethylenimine–agarose | Polygalacturonase | / | / | / | / | [71] | |
Monoaminoethyl–N-aminoethyl–agarose | Polygalacturonase | / | / | / | / | [71] | |
Magnetic nanoparticles | Xylanases | 280 | 55 | 6.5 | 65 | [72] | |
Poly(methacrylate) beads | Laccase | / | 67 | 6.5 | 75 | [73] | |
Sodium alginate | Exo-polygalacturonase | / | / | 5.5 | 55 | [62] | |
Iron oxide nanoparticles | Pectinase | / | / | / | / | [74] | |
Iron oxide nanoparticles | Xylanase | / | / | / | / | [74] | |
Iron oxide nanoparticles | Cellulase | / | / | / | / | [74] | |
Magnetite Glutaraldehyde | Pectinase and cellulase | / | 10 | 3.0 | 60 | [75] | |
Glass beads Glutaraldehyde | Pectinases | / | ~59 | 5.5 | 50 | [76] | |
Magnetic nanoparticles | Pectinase | 173 | / | 4.5 | 50 | [56] | |
Magnetic nanoparticles | Xylanase | / | / | 7.5 | 70 | [56] | |
Cryogels | Papain | 15.2 ± 2.54 | / | 8.0 | 65 | [29] | |
Magnetic chelator nanoparticles | Laccase | / | / | 5.0 | 50 | [29] | |
Aluminum oxide pellets Glutaraldehyde | Multi-enzymatic system | / | / | 5.0 | 60 | [77] | |
Alginate–montmorillonite beads | Pectinase | / | / | 5.0 | 40 | [78] | |
Polyethyleneimine cryogel | Pectinase | / | / | 6.5 | 55 | [79] | |
Montmorillonite Glutaraldehyde | Pectinase | / | 60 | 5.0 | 40 | [58] | |
Cross-linking | Magnetic nanoparticles Glutaraldehyde | α-Amylase, pectinase and cellulase | / | 75 | 6.0 | 50 | [80] |
Chitosan magnetic nanoparticles Dextran polyaldehyde | Pectinase | / | 85 | / | / | [60] | |
Fe3O4 magnetic nanoparticles Glutaraldehyde | Cellulase, pectinase and xylanase | / | / | ~5.0 | 60 | [80] | |
Oxides: ferrites; functionalizing agent: 3-amino propyltriethoxysilane (APTES) Glutaraldehyde | α-Amylase, pectinase, and cellulase | / | 77 | 5.5 | 45 | [79] | |
Ferrite-based nano-particles; functionalizing agent: 3-amino propyltriethoxysilane (APTES) Glutaraldehyde | Cellulase, pectinase, and xylanase | / | 85 | 4 | 50 | [81] | |
Ferrite-based nano-particles; functionalizing agent: 3-Amino propyl-trimethoxy silane (APTMS) Glutaraldehyde | Pectinase and cellulase | / | 10 | 4.8 | 60 | [74] |
Immobilized Enzyme | Immobilization Method | pH | Temperature (°C) | Time (h) | Reaction Equipment | Source of Fruit Juice | Clarification Rate (Increased) | Turbidity (Reduced) | Viscosity (Reduced) | Color (Reduced) | Transmittance (Increased) | Reducing Sugar (Increased) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Enzymatic cocktail | Entrapment | 4.8 | 40 | 71 | Fluidized-bed/packed-bed reactor | Orange | 83% | / | / | / | / | / | [25] |
Enzymatic cocktail | Entrapment | 4.8 | 40 | 54 | Packed-bed reactor | Orange | 87% | / | / | / | / | / | [25] |
Tannase | Entrapment | / | 30 | 2.0 | Shake flask | Apple | / | 70% | 44.7% | / | / | / | [54] |
Xylanase | Covalent | 4.5 | 50 | 2.0 | / | Pineapple | / | 42% | / | / | / | / | [56] |
Laccase | Covalent | / | 35 | 0.5 | Fluidized bed | Apple | / | / | / | 33.7% | 20.2% | / | [29] |
Pectinase | Covalent | 3.4 | 40 | 3.0 | / | Pineapple | / | / | 40% | / | 84.5% * | 20.7% | [78] |
Bromelain, pectinex | Covalent | / | 30 | 8.0 | Fluidized bed | Pomegranate | / | 35% | / | / | / | / | [10] |
Pectinase | Covalent | / | 20 | 2.5 | / | Grape | / | / | / | 62.2% * | 554% * | / | [99] |
Papain | Covalent | / | 50 | 1.0 | Shake flask | Pomegranate | / | 51.7% * | / | / | / | / | [69] |
Pectinase | Adsorption | 4.5 | 50 | 1.5 | / | Apple | / | / | / | / | / | / | [13] |
Pectinase | Entrapment | 3.5 | 50 | 24 | / | Orange | / | / | 75% | / | / | / | [14] |
Pectinmethylesterase | Entrapment | / | 4 | 1.0 | / | Orange | / | / | 56% | / | 57.1% | / | [63] |
Pectinase | Covalent | 6.5 | 55 | / | Shake flask | Apple | 50% | / | / | / | / | / | [79] |
Pectinase | Covalent | / | 40 | 3.0 | / | Pineapple | / | / | / | / | 41.97% * | / | [58] |
Pectinase | Covalent | 4.5 | 50 | 2.0 | / | Pineapple | / | 59% | / | / | / | / | [97] |
Pectinase | Cross-linking | / | 50 | 0.7 | Packed bed reactor | Pomegranate | 18.46% * | 75.2% * | / | / | / | / | [91] |
A tri-enzyme mixture of cellulase, pectinase, and xylanase | Cross-linking | 5.0 | 55 | 1.5 | / | Papaya | / | / | / | / | 9.36% * | 198% * | [80] |
Pectinase | Entrapment | 3.0 | 40 | 0.83 | Packed bed reactor | Apple | 97.22% | / | 20.8% | / | / | / | [53] |
Exo-polygalacturonase | Covalent | / | 50 | 1.0 | / | Apple | / | 72.7% | 66% | / | / | / | [62] |
Exo-polygalacturonase | Covalent | / | 50 | 1.0 | / | Grape | / | 72.2% | 85.5% | / | / | / | [62] |
Exo-polygalacturonase | Covalent | / | 50 | 1.0 | / | Peach | / | 86.4% * | 84.3% * | / | / | / | [62] |
Pectinase | Cross-linking | / | 50 | 2.5 | / | Apple | / | 74% | / | / | / | / | [60] |
Ligninolytic | Entrapment | / | / | 1.0 | Packed bed reactor system | Apple | / | 84.02% | 77.04% | / | / | / | [67] |
Ligninolytic | Entrapment | / | / | 1.0 | Packed bed reactor system | Grape | / | 57.84% | 83.01% | / | / | / | [67] |
Ligninolytic | Entrapment | / | / | 1.0 | Packed bed reactor system | Orange | / | 86.14% | 75.86% | / | / | / | [67] |
Ligninolytic | Covalent | / | / | 1.0 | Packed bed reactor system | Pomegranate | / | 82.13% | 86.95% | / | / | / | [67] |
A tri-enzyme mixture of cellulase, pectinase and xylanase | Covalent | / | 45 | 0.17 | / | Pineapple | / | / | / | / | 30% | 12% | [74] |
A tri-enzyme mixture of cellulase, pectinase and xylanase | Covalent | / | 45 | 0.17 | / | Orange | / | / | / | / | 29% | 26% | [74] |
Polygalacturonase | Cross-linking | / | / | 1.0 | / | Apples | / | 75.5% | 81% * | 64% | / | / | [94] |
Polygalacturonase | Cross-linking | / | / | 1.0 | / | Peach | / | 68.4% * | 80% * | 61.8% * | / | / | [94] |
Pectin methylesterase | Cross-linking | / | / | 1.0 | / | Mango | 70% * | 65% * | 60% * | / | / | [94] | |
pectinlyase | / | / | / | 1.0 | / | Apricot | / | 80% * | 80% * | 65% * | / | / | [91] |
Pectinases | Covalent | / | 40 | 2 | Batch reactor | Apple | / | 80% | / | / | / | / | [100] |
Pectinases | Covalent | / | 40 | 2 | Batch reactor | Pomegranate | / | 4% | / | / | / | / | [100] |
Pectinases | Covalent | 5.02 | 30 | 0.5 | Lemon peel | Apple | / | 43% | / | / | / | / | [101] |
Enzymatic cocktail | Cross-linking | 4.8 | 90 | 1.5 | Packed bed and fluidized bed reactors | Orange | 60% | / | / | / | / | / | [25] |
A tri-enzyme mixture of cellulase, pectinase, and xylanase | Covalent | / | 50 | 3 | / | Apple, grape, and pear | 73%, 67%, 57% | 27%, 33%, 43% | / | / | / | / | [2] |
Exo-polygalacturonase | Cross-linking | 6.5 | 70 | / | / | Grape and pineapple | 93% | / | 55% | / | / | / | [102] |
Exo-polygalacturonase | Cross-linking | 4 | 60 | / | / | Apple | / | 82.0% | / | / | / | 90% | [103] |
Pectinases | Cross-linking | 50 | 0.5 | Packed bed reactor | Pomegranate | 96.13% | 82.6% | / | / | / | / | [91] | |
Pectinases | Cross-linking | / | 50 | 2.5 | / | Apple | 44.7% | / | / | / | / | / | [104] |
Pectinases | Cross-linking | / | 50 | 1.5 | / | Orange | 100% | 65% | / | / | / | / | [104] |
α-Amylase, pectinase, and cellulase | Cross-linking | 3 | 50 | 2.5 | / | Apple, pineapple, and grapes | 41%, 46% and 53% | / | / | / | / | / | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Xu, H.; Wang, M.; Yu, X.; Cui, Y.; Xu, L.; Ma, A.; Ding, Z.; Huo, S.; Zou, B.; et al. Application of Immobilized Enzymes in Juice Clarification. Foods 2023, 12, 4258. https://doi.org/10.3390/foods12234258
Wang F, Xu H, Wang M, Yu X, Cui Y, Xu L, Ma A, Ding Z, Huo S, Zou B, et al. Application of Immobilized Enzymes in Juice Clarification. Foods. 2023; 12(23):4258. https://doi.org/10.3390/foods12234258
Chicago/Turabian StyleWang, Feng, Hui Xu, Miaomiao Wang, Xiaolei Yu, Yi Cui, Ling Xu, Anzhou Ma, Zhongyang Ding, Shuhao Huo, Bin Zou, and et al. 2023. "Application of Immobilized Enzymes in Juice Clarification" Foods 12, no. 23: 4258. https://doi.org/10.3390/foods12234258
APA StyleWang, F., Xu, H., Wang, M., Yu, X., Cui, Y., Xu, L., Ma, A., Ding, Z., Huo, S., Zou, B., & Qian, J. (2023). Application of Immobilized Enzymes in Juice Clarification. Foods, 12(23), 4258. https://doi.org/10.3390/foods12234258