Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges
Abstract
:1. Introduction
2. Pathogenesis of HUA
2.1. Excessive UA Production
2.2. Reduced UA Excretion
3. Food-Derived Protein Peptides in the Treatment of HUA
3.1. XO Inhibitory Peptides
3.1.1. Marine Organisms
3.1.2. Ovalbumin
3.1.3. Milk
3.1.4. Spider Venom
3.1.5. Protein-Rich Processing by-Products
3.1.6. Nuts
3.1.7. Rice
3.1.8. Legumes
Sources | Peptides | Inhibitory Effects | Contact Sites | Interaction Types | Ref. |
---|---|---|---|---|---|
Pacific bluefin tuna (Thunnus Orientalis) | ICRK | IC50 = 7.23 mg/mL | Glu802, Glu1261, Phe914, Ala1079, Lys771, Leu648, Thr1010, Val1011, Ser876 | Hydrogen bond, salt bridge, carbon-hydrogen bond, unfavorable donor-donor | [51] |
FDAK | IC50 = 14.18 mg/mL | Leu648, Asn768, Glu802, Lys771, Phe1009, Phe914, Ala1079, Pro1076 | Charge attraction, π-π stacking, carbon-hydrogen bond, hydrogen bond, π-alkyl action | ||
MMER | IC50 = 16.30 mg/mL | Pro1076, Asn650, Lys771, Glu802, Phe649, Phe1009, Gly647, Leu648 | Carbon-hydrogen bond, salt bridge, π-sulfur bond, hydrogen bond | ||
Skipjack tuna (Katsuwonus pelamis) | ACECD | IC50 = 7.23 mg/mL | Leu648, Phe649, Asn768, Met770, Lys771, Glu802, Leu873, His875, Ser876, Glu879, Phe914, Phe1009, Thr1010, Val1011, Pro1012, Phe1013, Leu1014, Pro1076, Ala1079, Phe1142 | Hydrogen bond, van der Waals force, hydrophobic interaction | [21] |
ND | EEAK | IC50 = 173.00 ± 0.06 μM | Arg880, Thr1010, Leu648, Lys771, Gln1122, Ser876, Glu802, Phe649, Phe914 | Hydrogen bond, carbon-hydrogen bond, salt bridge, charge attraction, π-cation interaction, π-anion interaction | [52] |
Round scad (Decapterus maruadsi) | KGFP | XO inhibition rate of 5.43 ± 0.20% | Ala1079, Ser1080, Glu802, Phe798 | Hydrogen bond, π-π stacking | [53] |
FPSV | XO inhibition rate of 22.61 ± 1.81% | Phe914, Phe1009 | π-π stacking | ||
FPFP | XO inhibition rate of 20.09 ± 2.41% | Phe914, Phe1009, Phe775 | π-π stacking | ||
WPDGR | XO inhibition rate of 16.21 ± 0.78% | Phe914, Phe1009 | π-π stacking | ||
Auxis thazard | PDL | IC50 = 4.37 ± 0.11 mg/mL | Asn768, Ser876, His875, Glu802, Leu873, Lys771, Phe914, Thr803, Pro1076, Thr1010, Arg880, Ala1079, Ala1078, Ala910, Phe1009, Leu1014, Asp872, Phe649, Phe1013, Val1011 | Hydrogen bond, van der Waals force, hydrophobic interaction | [55] |
SVGGAL | IC50 = 5.59 ± 0.09 mg/mL | Leu648, Asn768, Glu802, Lys771, Phe649, Val1011, Leu1014, Phe914, Phe1009, Leu873, Thr803, Ser876, Phe1013, Met770, Gln1016 | Hydrogen bond, van der Waals force, hydrophobic interaction | ||
Small yellow croaker (Larimichthys polyactis) | WDDMEKIW | IC50 = 3.16 ± 0.03 mM | Ile1190, Ala1189, Leu744, Gln1201, His579, Val1200, Gly1197, Glu1196, Phe1219, Ile1235, Ile1229, Phe1232, Pro1230, His741, Ala1231, Tyr743, Phe238, Phe742, Tyr592, Met1038, Gly1039, Gly796, Met794, Gly795, Ala582, Gln585, Gln1194, Gly1193 | Hydrogen bond, charge attraction, hydrophobic interaction | [56] |
APPERKYSVW | IC50 = 5.86 ± 0.02 mM | Arg912, Met1038, Ala582, His579, Gln585, Met794, Gly796, Gly795, Leu744, Tyr743, Tyr592, Gly39, Gln194, Gly193, Gln21, Phe798, Ala1198, Glu1196, Ile1235, Phe1239, Gly1197, Val1200, Phe1232, Ala1231 | Hydrogen bond, hydrophobic interaction | ||
Ostrea rivularis Gould | ALSGSW | IC50 = 2.17 ± 0.09 mM | Phe1142, Thr1010, Ser876, Tyr1140, Glu879, Leu648, Leu1014, Leu712, Val1011, Leu1014, Pro1076 | Hydrogen bond, carbon-hydrogen bond, π-σ interaction, charge attraction | [57] |
GGYGIF | IC50 = 4.28 ± 0.43 mM | Asn768, Arg880, Thr1010, Phe914, Leu873, Glu879, Phe649, Ser876, His875, Leu648, Leu712, Val1011, Pro1012, Phe1013, Pro1076, Leu1014, Phe1142 | Hydrogen bond, carbon-hydrogen bond, π-hydrogen bond, hydrophobic interaction, π-σ interaction, π-π stacking | ||
MAIGLW | IC50 = 3.48 ± 0.09 mM | Leu648, Glu879, Tyr1140, His875, Leu873, Phe914, Phe1009, Val1011, Pro1012, Phe1013, Leu1014 | Hydrogen bond, carbon-hydrogen bond, hydrophobic interaction | ||
AEAQMWR | IC50 = 8.85 ± 0.05 mM | Mos3004, Thr1010, Glu80, Glu1261, Arg880 | Salt bridge, hydrogen bond, carbon-hydrogen bond, charge attraction | ||
Pacific white shrimp (Litopenaeus vannamei) | AGGINLAR | IC50 = 88.51 ± 13.78 mM | Glu802 | Hydrogen bond, carbon-hydrogen bond, salt bridge, charge attraction | [59] |
EFGMGGW | IC50 = 90.30 ± 2.24 mM | Arg880 | Hydrogen bond, carbon-hydrogen bond, charge attraction | ||
Pacific white shrimp | EDDDA | IC50 = 259.46 ± 11.91 mM | Arg880, Val1011, Thr1010, Asn768 | Hydrogen bond | [60] |
AGDY | IC50 = 21.82 ± 0.15 mM | Asn768, Gul802, Phe914, Lys771 | Hydrogen bond, charge attraction | ||
GDEY | IC50 = 20.67 ± 0.30 mM | Val1011, Thr1010, Ser876, Lys771, Phe914 | Hydrogen bond, charge attraction, π-π stacking | ||
YGDE | IC50 = 47.34 ± 1.55 mM | Asn768, Arg880, Glu802, Phe914 | Hydrogen bond, hydrophobic interaction, π-π stacking | ||
YNITGW | IC50 = 9.78 ± 0.13 mM | Asn768, Glu879, Ser876, His875, Pro1076, Val1011, Leu1014, Leu873, Pro1012, Lys771, Phe914 | Hydrogen bond, carbon-hydrogen bond, hydrophobic interaction, charge attraction, π-π stacking | ||
PDARG | IC50 = 35.01 ± 1.18 mM | Asn768, Glu802, Lys771, Phe914 | Hydrogen bond, charge attraction, π-π stacking | ||
VTGW | IC50 = 118.68 ± 4.84 mM | Thr1010, Asn768, Lys771 | Hydrogen bond, hydrophobic interaction | ||
Bonito | WML | ND | Asn768, Mos3004 | Hydrogen bond, π-sulfur bond | [20] |
PGACSN | ND | Glu802, Arg880, Glu1261 | Hydrogen bond, charge attraction | ||
Tuna | FH | IC50 = 25.70 mM | Leu648, Phe649, Asn768, Met770, Lys771, Glu802, Thr803, Asp872, Leu873, His875, Ser976, Glu879, Ser876, Arg880, Phe914, Phe1009, Thr1010, Val1011, Phe1013, Leu1014, Ser1075, Pro1076, Ala1078, Ala1079, Try1121 | Hydrogen bond, π-π stacking | [54] |
Egg | EEK | IC50 = 141.00 µmol/L | Lys771, Asn768, Ser876, Glu802, Thr1010, Arg880, Phe1009, His875, Glu879 | Carbon-hydrogen bond, salt bridge, hydrogen bond, attractive charge interaction | [62] |
Whey | PEW | IC50 = 3.46 ± 0.22 mM | Lys771, Asn768, Ser876, Thr1010, Phe1009, Phe914 | Hydrophobic interaction, hydrogen bond, π-π stacking | [64] |
LLW | IC50 = 3.02 ± 0.17 mM | Phe911, Gln767, Ala1078, Glu802, Gln1040, Phe1009, Phe914 | Hydrophobic interaction, hydrogen bond, π-π stacking | ||
Whey | GL | IC50 = 10.20 ± 0.89 mM | Ser876, Arg880, Ser1008, Phe1009, Thr1010, Val1011, Glu802, Ala910, Phe914, Ala1078, Ala1079, Leu648, Leu873, Leu1014, Pro1076, Glu1261 | Hydrogen bond, hydrophobic interaction, van der Waals forces | [65] |
PM | IC50 = 23.82 ± 0.94 mM | Arg880, Phe914, Glu1261, Glu802, Arg912, Leu648, Gln767, Phe798, Gly799, Leu873, Ser876, Ala910, Phe911, Gly913, Phe1005, Phe1009, Thr1010, Pro1076, Ala1078, Ala1079, Ser1080 | Hydrogen bond, hydrophobic interaction, van der Waals forces | ||
AL | IC50 = 34.49 ± 0.89 mM | Glu802, Arg880, Ala910, Phe914, Ala1078, Gln767, Phe798, Gly799, Leu873, Ser876, Phe911, Arg912, Gly913, Phe1009, Thr1010, Val1011, Leu1014, Pro1076, Thr1077, Ala1079, Ser1080, Glu1261 | Hydrogen bond, hydrophobic interaction, van der Waals forces | ||
AM | IC50 = 40.45 ± 0.92 mM | Arg880, Glu1261, Glu802, Arg912, Gln767, Phe798, Gly799, Leu873, Phe911, Gly913, Phe914, Phe1009, Thr1010, Val1011, Leu1014, Pro1076, Ala1078, Ala1079, Ser1080 | Hydrogen bond, hydrophobic interaction, van der Waals forces | ||
Milk | QLKRFSFRSFIWR | IC50 = 6.26 ± 0.03 mM | Phe649, His875 | Hydrophobic interaction, hydrogen bond | [66] |
GPVRGPFPIIV | IC50 = 4.67 ± 0.24 mM | Glu879 | Hydrogen bond | ||
VYPFPGPI | IC50 = 5.75 ± 0.12 mM | Ser774 | Hydrogen bond | ||
GFININSLR | IC50 = 6.25 ± 0.46 mM | Ser774, Glu879 | Hydrogen bond | ||
AVFPSIVGR | IC50 = 5.04 ± 0.24 mM | Glu879 | Hydrogen bond | ||
VYPFPGPIPN | IC50 = 7.96 ± 0.36 mM | Ser774 | Hydrogen bond | ||
VYPFPGPIHN | IC50 = 8.02 ± 0.35 mM | His875 | Hydrogen bond | ||
LVYPFPGPIHN | IC50 = 6.05 ± 0.03 mM | Ser774, His875 | Hydrogen bond | ||
Pacific cod bone-flesh mixture | FF | IC50 = 0.80 mM | Ser876, Thr1010, Phe914, Mos3004 | Hydrogen bond, π-π stacking, van der Waals force | [71] |
YF | IC50 = 0.52 mM | Asn768, Ser876, Thr1010, Phe914, Phe1009, Mos3004 | Hydrogen bond, π-π stacking, van der Waals force | ||
WPW | IC50 = 1.68 mM | Glu879, Thr1010, Phe914, Phe1009, Mos3004 | Hydrogen bond, π-π stacking, van der Waals force | ||
WPDARG | IC50 = 0.40 mM | Ser710, Glu711, Phe1142 | Hydrogen bond | ||
YNVTGW | IC50 = 0.23 mM | Mos3004, Ser876, Glu879, Thr1010, Glu126 | Hydrogen bond, π-π stacking | ||
Hemoglobin | IVYPW | IC50 = 0.63 ± 0.03 mM | Phe1013, Thr1010 | π-π stacking, hydrogen bond | [73] |
YPWTQ | IC50 = 0.97 ± 0.03 mM | His875 | π-cation interaction, π-σ interaction | ||
LITGLW | IC50 = 1.09 ± 0.03 mM | Phe1142, Glu879 | π-σ interaction, Hydrogen bond | ||
Feather | GNQQVHLQSQDM | IC50 = 12.15 mg/mL | Glu802, Asn768, Arg871, His875, Arg880, Phe1009, Thr1010, Glu802, Glu1261 | Hydrogen bond, charge attraction | [77] |
Dephenolized walnut meal | WPPKN | IC50 = 17.75 ± 0.12 mg/mL | Leu1014, Glu802, Phe914, Arg880, Val1011, Phe1013, Asp872, His875, Leu873, Thr1010, Ser876, Glu879 | Hydrogen bond | [22] |
ADIYTE | IC50 = 19.01 ± 0.23 mg/mL | Leu1014, Glu802, Phe1013, Glu879, Val1011, Asp872, His875, Leu873, Thr803, Ser876, Lys771 | Hydrogen bond | ||
Walnut | PPKNW | ND | Phe649, Leu712, His875, Glu879, Phe883, Pro1012, Phe1013, Tyr1140, Phe1142, Glu1143 | Hydrogen bond, hydrophobic interaction, van der Waals force | [75] |
WDQW | ND | Glu802, Leu873, Ser876, Arg880, Phe914, Phe1009, Thr1010, Val1011, Leu1014, Ala1078, Ala1079, Mos3004, Leu648, Phe649, Leu712, His875, Glu879, Pro1012, Phe1013, Pro1076, Phe1142 | Hydrogen bond, hydrophobic interaction, van der Waals force | ||
Macadamia integrifolia antimicrobial protein 2 | PGPR | IC50 = 24.84 ± 0.02 mM | Arg880, Phe914, Thr1010, Leu1014 | π-σ interaction, hydrogen bond | [83] |
GPY | IC50 = 30.44 ± 0.33 mM | Phe914, Thr1010 | π-π stacking, hydrogen bond | ||
HGGR | IC50 = 24.89 ± 0.19 mM | Glu802, Arg880, Phe914, Thr1010 | charge attraction, hydrogen bond | ||
Rice (Oryza sativa) | AAAAMAGPK-NH2 | ND | Ala1, Ala2, Ala3, Ala4, Ala6, Met5, Pro8, Gly7, Lys9 | Hydrogen bond | [84] |
AAAAGAKAR | ND | Asn19, Asp21, Glu232 | Hydrogen bond | [86] | |
Kidney bean | DWYDIK | XO inhibition rate of 68.63 ± 5.07% | Glu802, Lys771, Ser876 | Hydrogen bond | [90] |
Soy | SHECN | ND | Asp197, Lys178, Gly152, Thr154, Ala150, Arg114, Glu209, Asp206 | Hydrogen bond, hydrophobic interaction, π-π stacking | [91] |
SHCMN | ND | Phe1013, Glu802, Phe649, Val1011, Thr1010, Glu879, His875 | Hydrogen bond, hydrophobic interaction, π-π stacking |
3.1.9. Mushrooms
3.2. Peptides That Inhibit or Downregulate Key Enzymes in Purine Metabolism
3.3. Peptides That Regulate the Expression Levels of UA Transporters
3.4. Peptides That Restore Intestinal Flora Composition
Sources | Hydrolysates | Peptides | Flora with Increased Relative Abundance | Flora with Decreased Relative Abundance | Ref. |
---|---|---|---|---|---|
Sea cucumber | Enzymatic hydrolysates of Apostichopus japonicus | NA | Lactobacillus, Lachnospiraceae, Clostridiales | Porphyromonadaceae, Coriobacteriaceae, Bacteroides | [98] |
Enzymatic hydrolysates of Acaudina leucoprocta | NA | Lactobacillus, Lachnospiraceae, Ruminococcaceae, Clostridiales, Streptococcus | Porphyromonadaceae, Bacteroides | ||
Tuna | NA | Tuna meat oligopeptides | Bacteroidetes, Actinobacteria | Firmicutes, Proteobacteria | [97] |
NA | NA | CE | Bacteroidetes, Akkermansia | Firmicutes, Proteobacteria, Actinobacteria, Chytridiomycota, Escherichia coli | [101] |
NA | KE | Bacteroidetes, Akkermansia | Firmicutes, Proteobacteria, Actinobacteria, Chytridiomycota | ||
NA | NA | Anserine | Firmicutes, Lactobacillaceae, Clostridiaceae, Saccharomyces cerevisiae, Roseburia, Coprococcus | Bacteroidetes, Proteobacteria, Alcaligenes, Lachnoclostridium | [102] |
NA | NA | Marine fish protein peptide | Lactobacillus, Blautia, Colidextribacter, Intestinimonas | ND | [112] |
Sacha inchi (Plukenetia volubilis Linneo) | Sacha inchi oil press-cake protein hydrolysates | NA | Ruminococcaceae, Akkermansia, Alistipes | Streptococcus, Lactobacillus | [80] |
4. Advantages and Challenges of Food-Derived Protein Peptides in the Treatment of HUA
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviation List
References
- Zhang, M.; Zhu, X.; Wu, J.; Huang, Z.; Zhao, Z.; Zhang, X.; Xue, Y.; Wan, W.; Li, C.; Zhang, W. Prevalence of hyperuricemia among Chinese adults: Findings from two nationally representative cross-sectional surveys in 2015–2016 and 2018–2019. Front. Immunol. 2022, 12, 791983. [Google Scholar] [CrossRef] [PubMed]
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Zeng, C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. Am. J. Transl. Res. 2020, 12, 3167. [Google Scholar] [PubMed]
- Day, R.O.; Graham, G.G.; Hicks, M.; McLachlan, A.J.; Stocker, S.L.; Williams, K.M. Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin. Pharmacokinet. 2007, 46, 623–644. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Fogacci, F.; Kuwabara, M.; Borghi, C. Therapeutic strategies for the treatment of chronic hyperuricemia: An evidence-based update. Medicina 2021, 57, 58. [Google Scholar] [CrossRef] [PubMed]
- Edwards, N.L. Febuxostat: A new treatment for hyperuricaemia in gout. Rheumatology 2009, 48, ii15–ii19. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, K.; Aoyagi, Y.; Fukuuchi, T.; Inazawa, K.; Yamaoka, N. Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia. Biol. Pharm. Bull. 2014, 37, 709–721. [Google Scholar] [CrossRef]
- Cheng-yuan, W.; Jian-gang, D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front. Nutr. 2023, 10, 1186161. [Google Scholar] [CrossRef]
- Li, D.; Zhang, M.; La, A.L.T.Z.; Lyu, Z.; Li, X.; Feng, Y.; Liu, D.; Guo, Y.; Hu, Y. Quercetin-enriched Lactobacillus aviarius alleviates hyperuricemia by hydrolase-mediated degradation of purine nucleosides. Pharmacol. Rev. 2023, 196, 106928. [Google Scholar] [CrossRef]
- Lou, Y.; Gao, Q.; Fan, M.; Waleed, A.-A.; Wang, L.; Li, Y.; Qian, H. Ferulic acid ameliorates hyperuricemia by regulating xanthine oxidase. Int. J. Biol. Macromol. 2023, 253, 126542. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.; Li, K.; Cao, H.; Liu, M.; Chen, Q.; Wu, Y.; Zhang, Y.; Wang, T. Eurycoma longifolia alkaloid components ameliorate hyperuricemic nephropathy via regulating serum uric acid level and relieving inflammatory reaction. J. Nat. Med. 2023, 77, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Ren, P.; Xue, C.; Wang, Y.; Tang, Q. Guluronate oligosaccharides exerts beneficial effects on hyperuricemia and regulation of gut microbiota in mice. Food Biosci. 2023, 54, 102855. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, Q.; Zhou, L.; Sun, Y.; Han, X.; Cheng, X.; Wu, M.; Lv, W.; Wang, J.; Zhao, W. Quinoa (Chenopodium quinoa Willd.) bran saponins alleviate hyperuricemia and inhibit renal injury by regulating the PI3K/AKT/NFκB signaling pathway and uric acid transport. J. Agric. Food. Chem. 2023, 71, 6635–6649. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Pino, F.; Leon, M.J.; Millan-Linares, M.C.; Montserrat-de la Paz, S. Antimicrobial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems. Trends Food Sci. Technol. 2023, 135, 32–42. [Google Scholar] [CrossRef]
- Huang, P.; Miao, J.; Li, J.; Li, Y.; Wang, X.; Yu, Y.; Cao, Y. Novel antioxidant peptides from pearl shell meat hydrolysate and their antioxidant activity mechanism. Molecules 2023, 28, 864. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Feng, Y.; Yang, Y.; Cheng, L.; Zhou, M.; Guo, Y.; Ren, D. Isolation, identification and molecular docking of anti-inflammatory peptides from walnut (Juglans regia L.) meal hydrolysates. Food Funct. 2023, 13, 6093–6105. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Ling, Q.; Sheng, X.; Bao, G.; Zhao, X.; Gu, Q.; Shi, Y.; Wang, X. Identification of a novel post-digestion angiotensin I-converting enzyme inhibitory peptide from silver Prussian carp (Carassius auratus gibelio) roe. ACS Food Sci. Technol. 2023, 3, 450–458. [Google Scholar] [CrossRef]
- Ajayi, F.F.; Mudgil, P.; Jobe, A.; Antony, P.; Vijayan, R.; Gan, C.-Y.; Maqsood, S. Novel plant-protein (Quinoa) derived bioactive peptides with potential anti-hypercholesterolemic activities: Identification, characterization and molecular docking of bioactive peptides. Foods 2023, 12, 1327. [Google Scholar] [CrossRef]
- Hu, J.; Lai, X.; Wu, X.; Wang, H.; Weng, N.; Lu, J.; Lyu, M.; Wang, S. Isolation of a novel anti-diabetic α-glucosidase oligo-peptide inhibitor from fermented rice bran. Foods 2023, 12, 183. [Google Scholar] [CrossRef]
- Li, Y.; Kang, X.; Li, Q.; Shi, C.; Lian, Y.; Yuan, E.; Zhou, M.; Ren, J. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity. Peptides 2018, 107, 45–53. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, Y.; Deng, L.; Zhao, M.; Tang, J.; Zhang, H.; Feng, F.; Wang, J. Exploring the potential of novel xanthine oxidase inhibitory peptide (ACECD) derived from Skipjack tuna hydrolysates using affinity-ultrafiltration coupled with HPLC-MALDI-TOF/TOF-MS. Food Chem. 2021, 347, 129068. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kang, X.; Shi, C.; Li, Y.; Majumder, K.; Ning, Z.; Ren, J. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides. Food Funct. 2018, 9, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Murota, I.; Tamai, T.; Baba, T.; Sato, R.; Hashimoto, K.; Park, E.Y.; Nakamura, Y.; Sato, K. Uric acid lowering effect by ingestion of proteolytic digest of shark cartilage and its basic fraction. J. Food Biochem. 2010, 34, 182–194. [Google Scholar] [CrossRef]
- Bleyer, A.J.; Hart, T.C. Genetic factors associated with gout and hyperuricemia. Adv. Chronic Kidney Dis. 2006, 13, 124–130. [Google Scholar] [CrossRef]
- Pei, W.; Xu, L.; Varshney, G.K.; Carrington, B.; Bishop, K.; Jones, M.; Huang, S.C.; Idol, J.; Pretorius, P.R.; Beirl, A. Additive reductions in zebrafish PRPS1 activity result in a spectrum of deficiencies modeling several human PRPS1-associated diseases. Sci. Rep. 2016, 6, 29946. [Google Scholar] [CrossRef] [PubMed]
- Mishima, E.; Mori, T.; Nakajima, Y.; Toyohara, T.; Kikuchi, K.; Oikawa, Y.; Matsuhashi, T.; Maeda, Y.; Suzuki, T.; Kudo, M. HPRT-related hyperuricemia with a novel p. V35M mutation in HPRT1 presenting familial juvenile gout. CEN Case Rep. 2020, 9, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Ekpenyong, C.E.; Daniel, N. Roles of diets and dietary factors in the pathogenesis, management and prevention of abnormal serum uric acid levels. PharmaNutrition 2015, 3, 29–45. [Google Scholar] [CrossRef]
- Villegas, R.; Xiang, Y.-B.; Elasy, T.; Xu, W.-H.; Cai, H.; Cai, Q.; Linton, M.; Fazio, S.; Zheng, W.; Shu, X.-O. Purine-rich foods, protein intake, and the prevalence of hyperuricemia: The Shanghai Men’s Health Study. Nutr. Metab. Cardiovas. 2012, 22, 409–416. [Google Scholar] [CrossRef]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef]
- Qu, X.; Sui, J.; Mi, N.; Lin, H. Determination of four different purines and their content change in seafood by high-performance liquid chromatography. J. Sci. Food Agric. 2017, 97, 520–525. [Google Scholar] [CrossRef]
- Kan, Y.; Zhang, Z.; Yang, K.; Ti, M.; Ke, Y.; Wu, L.; Yang, J.; He, Y. Influence of D-amino acids in beer on formation of uric acid. Food Technol. Biotechnol. 2019, 57, 418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, L.; Zhang, Y.; Zeng, C. Recent advances in fructose intake and risk of hyperuricemia. Biomed. Pharmacother. 2020, 131, 110795. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shi, Y.; Zhuang, S.; Liu, N. Recent advances on uric acid transporters. Oncotarget 2017, 8, 100852. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wu, J.; Liu, W.; Xie, Y.; Liu, Y.; Zhang, S.; Xu, W.; Tang, L.; Wang, J.; Zhao, G. Systematic structure-activity relationship (SAR) exploration of diarylmethane backbone and discovery of a highly potent novel uric acid transporter 1 (URAT1) inhibitor. Molecules 2018, 23, 252. [Google Scholar] [CrossRef]
- Hosoyamada, M.; Ichida, K.; Enomoto, A.; Hosoya, T.; Endou, H. Function and localization of urate transporter 1 in mouse kidney. J. Am. Soc. Nephrol. 2004, 15, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Yusnaini, R.; Nasution, R.; Saidi, N.; Arabia, T.; Idroes, R.; Ikhsan, I.; Bahtiar, R.; Iqhrammullah, M. Ethanolic extract from Limonia acidissima L. fruit attenuates serum uric acid level via URAT1 in potassium oxonate-induced hyperuricemic rats. Pharmaceuticals 2023, 16, 419. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Fan, Y.; Yu, Z.; You, G. Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol. Ther. 2021, 217, 107647. [Google Scholar] [CrossRef] [PubMed]
- Dinour, D.; Gray, N.K.; Campbell, S.; Shu, X.; Sawyer, L.; Richardson, W.; Rechavi, G.; Amariglio, N.; Ganon, L.; Sela, B.-A. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J. Am. Soc. Nephrol. 2010, 21, 64. [Google Scholar] [CrossRef]
- Preitner, F.; Bonny, O.; Laverrière, A.; Rotman, S.; Firsov, D.; Da Costa, A.; Metref, S.; Thorens, B. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc. Natl. Acad. Sci. USA 2009, 106, 15501–15506. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, C.; Lin, B.; Yu, M.; Wang, X.; Wang, J.; Chen, S.; Yu, C. The regulation effect of GLUT9/SLC2A9 on intrahepatic uric acid level and metabolic associated fatty liver disease. Hrpatol. Int. 2022, 16, 1064–1074. [Google Scholar] [CrossRef]
- Rizwan, A.N.; Burckhardt, G. Organic anion transporters of the SLC22 family: Biopharmaceutical, physiological, and pathological roles. Pharm. Res. 2007, 24, 450–470. [Google Scholar] [CrossRef] [PubMed]
- Eraly, S.A.; Vallon, V.; Rieg, T.; Gangoiti, J.A.; Wikoff, W.R.; Siuzdak, G.; Barshop, B.A.; Nigam, S.K.J.P.g. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol. Genom. 2008, 33, 180–192. [Google Scholar] [CrossRef]
- Bataille, A.M.; Goldmeyer, J.; Renfro, J.L. Avian renal proximal tubule epithelium urate secretion is mediated by Mrp4. Am. J. Physiol.-Reg. I 2008, 295, R2024–R2033. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Nakayama, A.; Sakiyama, M.; Chiba, T.; Shimizu, S.; Kawamura, Y.; Nakashima, H.; Nakamura, T.; Takada, Y.; Oikawa, Y. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci. Rep. 2014, 4, 3755. [Google Scholar] [CrossRef] [PubMed]
- Ichida, K.; Matsuo, H.; Takada, T.; Nakayama, A.; Murakami, K.; Shimizu, T.; Yamanashi, Y.; Kasuga, H.; Nakashima, H.; Nakamura, T. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 2012, 3, 764. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-M.; Chen, C.-S.; Chen, C.-T.; Liang, Y.-C.; Lin, J.-K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun. 2002, 294, 167–172. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Hu, Y.; Ma, Y. Effect of luteolin on xanthine oxidase: Inhibition kinetics and interaction mechanism merging with docking simulation. Food Chem. 2013, 141, 3766–3773. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, G.; Liao, Y.; Pan, J. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism. Int. J. Biol. Macromol. 2015, 81, 274–282. [Google Scholar] [CrossRef]
- Enroth, C.; Eger, B.T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E.F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA 2000, 97, 10723–10728. [Google Scholar] [CrossRef]
- Senadheera, T.R.; Hossain, A.; Shahidi, F. Marine bioactives and their application in the food industry: A review. Appl. Sci. 2023, 13, 12088. [Google Scholar] [CrossRef]
- Bu, Y.; Wang, F.; Zhu, W.; Li, X. Combining bioinformatic prediction and assay experiment to identify novel xanthine oxidase inhibitory peptides from Pacific bluefin tuna (Thunnus orientalis). E3S Web Conf. 2020, 185, 04062. [Google Scholar] [CrossRef]
- Yu, Z.; Kan, R.; Wu, S.; Guo, H.; Zhao, W.; Ding, L.; Zheng, F.; Liu, J. Xanthine oxidase inhibitory peptides derived from tuna protein: Virtual screening, inhibitory activity, and molecular mechanisms. J. Sci. Food Agric. 2021, 101, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhou, Y.; Zhou, S.; Chen, S.; Wu, Y.; Li, L.; Yang, X. Purification and identification of novel xanthine oxidase inhibitory peptides derived from round scad (Decapterus maruadsi) protein hydrolysates. Mar. Drugs 2021, 19, 538. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Su, G.; Sun-Waterhouse, D.; Waterhouse, G.I.; Zhao, M.; Liu, Y. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem. 2019, 272, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Ji, H.; Song, W.; Peng, S.; Zhan, S.; Qu, Y.; Chen, M.; Zhang, D.; Liu, S. Identification and molecular docking of two novel peptides with xanthine oxidase inhibitory activity from Auxis thazard. Food Sci. Technol. 2022, 42, e106921. [Google Scholar] [CrossRef]
- Chen, X.; Guan, W.; Li, Y.; Zhang, J.; Cai, L. Xanthine oxidase inhibitory peptides from Larimichthys polyactis: Characterization and in vitro/in silico evidence. Foods 2023, 12, 982. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Jiang, X.; Mao, Z.; Zhang, J.; Sun, J.; Mao, X. Exploration, sequence optimization and mechanism analysis of novel xanthine oxidase inhibitory peptide from Ostrea rivularis Gould. Food Chem. 2023, 404, 134537. [Google Scholar] [CrossRef]
- Wei, L.; Ji, H.; Song, W.; Peng, S.; Zhan, S.; Qu, Y.; Chen, M.; Zhang, D.; Liu, S. Hypouricemic, hepatoprotective and nephroprotective roles of oligopeptides derived from Auxis thazard protein in hyperuricemic mice. Food Funct. 2021, 12, 11838–11848. [Google Scholar] [CrossRef]
- Mao, Z.; Jiang, H.; Mao, X. Identification and anti-hyperuricemic activity of xanthine oxidase inhibitory peptides from pacific white shrimp and swimming crab based on molecular docking screening. J. Agric. Food. Chem. 2023, 71, 1620–1627. [Google Scholar] [CrossRef]
- Mao, Z.; Jiang, H.; Sun, J.; Mao, X. Virtual screening and structure optimization of xanthine oxidase inhibitory peptides from whole protein sequences of pacific white shrimp via molecular docking. Food Chem. 2023, 429, 136837. [Google Scholar] [CrossRef]
- Salim, M.A.S.M.; Gan, C.-Y. Dual-function peptides derived from egg white ovalbumin: Bioinformatics identification with validation using in vitro assay. J. Funct. Foods 2020, 64, 103618. [Google Scholar] [CrossRef]
- Yu, Z.; Cao, Y.; Kan, R.; Ji, H.; Zhao, W.; Wu, S.; Liu, J.; Shiuan, D. Identification of egg protein-derived peptides as xanthine oxidase inhibitors: Virtual hydrolysis, molecular docking, and in vitro activity evaluation. Food Sci. Hum. Wellness 2022, 11, 1591–1597. [Google Scholar] [CrossRef]
- Samtiya, M.; Samtiya, S.; Badgujar, P.C.; Puniya, A.K.; Dhewa, T.; Aluko, R.E. Health-promoting and therapeutic attributes of milk-derived bioactive peptides. Nutrients 2022, 14, 3001. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Guan, K.; Liu, C.; Chen, H.; Ma, Y.; Wang, R. Whey protein peptides PEW and LLW synergistically ameliorate hyperuricemia and modulate gut microbiota in potassium oxonate and hypoxanthine-induced hyperuricemic rats. J. Dairy Sci. 2023, 106, 7367–7381. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Gong, H.; Zou, Y.; Mao, X. Antihyperuricemic activity and inhibition mechanism of xanthine oxidase inhibitory peptides derived from whey protein by virtual screening. J. Dairy Sci. 2023. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-F.; Liu, M.-Q.; Li, Z.-H.; Zhang, H.-L.; Hao, J.-Q.; Liu, B.-H.; Li, X.-Y.; Yin, Y.-Q.; Wang, X.-H.; Zhou, Q. Purification and identification of xanthine oxidase inhibitory peptides from enzymatic hydrolysate of α-lactalbumin and bovine colostrum casein. Food Rev. Int. 2023, 169, 112882. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides 2012, 37, 263–272. [Google Scholar] [CrossRef]
- Qi, X.; Chen, H.; Guan, K.; Wang, R.; Ma, Y. Anti-hyperuricemic and nephroprotective effects of whey protein hydrolysate in potassium oxonate induced hyperuricemic rats. J. Sci. Food Agric. 2021, 101, 4916–4924. [Google Scholar] [CrossRef]
- Shin, M.K.; Hwang, I.-W.; Kim, Y.; Kim, S.T.; Jang, W.; Lee, S.; Bang, W.Y.; Bae, C.-H.; Sung, J.-S. Antibacterial and anti-inflammatory effects of novel peptide toxin from the spider Pardosa astrigera. Antibiotics 2020, 9, 422. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, N.; Bian, W.; Zhang, Y.; Wu, Y.; Peng, Y.; Ru, Z.; Fu, Z.; Wang, Y.; Li, C. Peptide NCTX15 derived from spider toxin gland effectively relieves hyperuricemia in mice. Biochem. Biophys. Res. Commun. 2023, 689, 149222. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, Y.; Liu, J.; Hu, Z.; Du, Y.; Sun, J.; Mao, X. Separation, identification and docking analysis of xanthine oxidase inhibitory peptides from pacific cod bone-flesh mixture. LWT 2022, 167, 113862. [Google Scholar] [CrossRef]
- Abou-Diab, M.; Thibodeau, J.; Deracinois, B.; Flahaut, C.; Fliss, I.; Dhulster, P.; Bazinet, L.; Nedjar, N. Bovine hemoglobin enzymatic hydrolysis by a new eco-efficient process-part II: Production of bioactive peptides. Membranes 2020, 10, 268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Jiang, Z.; Lei, J.; Yan, Q.; Chang, C. Novel hemoglobin-derived xanthine oxidase inhibitory peptides: Enzymatic preparation and inhibition mechanisms. J. Funct. Foods 2023, 102, 105459. [Google Scholar] [CrossRef]
- Wang, S.; Xue, Y.; Zhang, P.; Yan, Q.; Li, Y.; Jiang, Z. CRISPR/Cas9 system-mediated multi-copy expression of an alkaline serine protease in Aspergillus niger for the production of XOD-inhibitory peptides. J. Agric. Food. Chem. 2023, 71, 15194–15203. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shi, C.; Wang, M.; Zhou, M.; Liang, M.; Zhang, T.; Yuan, E.; Wang, Z.; Yao, M.; Ren, J. Tryptophan residue enhances in vitro walnut protein-derived peptides exerting xanthine oxidase inhibition and antioxidant activities. J. Funct. Foods 2019, 53, 276–285. [Google Scholar] [CrossRef]
- Peng, Z.; Mao, X.; Zhang, J.; Du, G.; Chen, J. Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microb. Cell Fact. 2019, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.-D.; Li, F.; Zhang, Y.-M.; Huang, X.-N.; Yu, F.-T.; Su, L.-Y.; Liu, X.-L.; Wang, C.-H. Preparation, purification, and identification of novel feather keratin-derived peptides with antioxidative and xanthine oxidase inhibitory activities. J. Agric. Food. Chem. 2023, 71, 8061–8070. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Vázquez, J.A.; Pérez-Martín, R.I.; Sotelo, C.G. Hydrolysates of fish skin collagen: An opportunity for valorizing fish industry byproducts. Mar. Drugs 2017, 15, 131. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, R.; Wei, Y.; Cai, M.; Ma, Y.; Gu, R.; Zhang, H.; Pan, X. Rice peptide and collagen peptide prevented potassium oxonate-induced hyperuricemia and renal damage. Food Biosci. 2021, 42, 101147. [Google Scholar] [CrossRef]
- Wang, K.; Wu, S.; Li, P.; Xiao, N.; Wen, J.; Lin, J.; Lu, S.; Cai, X.; Xu, Y.; Du, B. Sacha inchi oil press-cake protein hydrolysates exhibit anti-hyperuricemic activity via attenuating renal damage and regulating gut microbiota. Foods 2022, 11, 2534. [Google Scholar] [CrossRef]
- Chirinos, R.; Aquino, M.; Pedreschi, R.; Campos, D. Optimized methodology for alkaline and enzyme-assisted extraction of protein from sacha inchi (Plukenetia volubilis) kernel cake. J. Food Process Eng. 2017, 40, e12412. [Google Scholar] [CrossRef]
- Acevedo-Juárez, S.; Guajardo-Flores, D.; Heredia-Olea, E.; Antunes-Ricardo, M. Bioactive peptides from nuts: A review. Int. J. Food Sci. Technol. 2022, 57, 2226–2234. [Google Scholar] [CrossRef]
- Zhao, L.; Ai, X.; Pan, F.; Zhou, N.; Zhao, L.; Cai, S.; Tang, X. Novel peptides with xanthine oxidase inhibitory activity identified from macadamia nuts: Integrated in silico and in vitro analysis. Eur. Food Res. Technol. 2022, 248, 2031–2042. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; Zeng, L.; Yin, S.; Hu, Y.; Li, S.; Fu, Y.; Zhang, X.; Xie, C.; Shu, L. RDP3, a novel antigout peptide derived from water extract of rice. J. Agric. Food. Chem. 2020, 68, 7143–7151. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Yang, Y.; Lyu, X.; Dong, N.; Shan, A. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci. Rep. 2016, 6, 27258. [Google Scholar] [CrossRef]
- Shu, L.; Yang, M.; Liu, N.; Liu, Y.; Sun, H.; Wang, S.; Zhang, Y.; Li, Y.; Yang, X.; Wang, Y. Short hexapeptide optimized from rice-derived peptide 1 shows promising anti-hyperuricemia activities. J. Agric. Food. Chem. 2022, 70, 6679–6687. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, Y.; Yang, M.; Bian, W.; Zeng, L.; Yin, S.; Xiong, Z.; Hu, Y.; Wang, S.; Meng, B. New rice-derived short peptide potently alleviated hyperuricemia induced by potassium oxonate in rats. J. Agric. Food. Chem. 2018, 67, 220–228. [Google Scholar] [CrossRef]
- Liu, N.; Meng, B.; Zeng, L.; Yin, S.; Hu, Y.; Li, S.; Fu, Y.; Zhang, X.; Xie, C.; Shu, L. Discovery of a novel rice-derived peptide with significant anti-gout potency. Food Funct. 2020, 11, 10542–10553. [Google Scholar] [CrossRef]
- Garcés-Rimón, M.; Morales, D.; Miguel-Castro, M. Potential role of bioactive proteins and peptides derived from legumes towards metabolic syndrome. Nutrients 2022, 14, 5271. [Google Scholar] [CrossRef]
- Wu, Y.; He, H.; Hou, T. Purification, identification, and computational analysis of xanthine oxidase inhibitory peptides from kidney bean. J. Food Sci. 2021, 86, 1081–1088. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, N.; Ge, Q.; Lv, R.; Lin, S. Antioxidant soy peptide can inhibit xanthine oxidase activity and improve LO2 cell damage. Food Biosci. 2023, 52, 102455. [Google Scholar] [CrossRef]
- Wan, Y.; Qian, J.; Li, Y.; Shen, Y.; Chen, Y.; Fu, G.; Xie, M. Inhibitory mechanism of xanthine oxidase activity by caffeoylquinic acids in vitro. Int. J. Biol. Macromol. 2021, 184, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Godínez, G.; Díaz, R. Fungal productions of biological active proteins. In Fungi in Sustainable Food Production; Springer: Berlin/Heidelberg, Germany, 2021; pp. 65–84. [Google Scholar]
- Jang, I.-T.; Hyun, S.-H.; Shin, J.-W.; Lee, Y.-H.; Ji, J.-H.; Lee, J.-S. Characterization of an anti-gout xanthine oxidase inhibitor from Pleurotus ostreatus. Mycobiology 2014, 42, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Bzowska, A.; Kulikowska, E.; Shugar, D. Purine nucleoside phosphorylases: Properties, functions, and clinical aspects. Pharmacol. Ther. 2000, 88, 349–425. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Saboury, A.; Haertlé, T. Adenosine deaminase inhibition. Int. J. Biol. Macromol. 2019, 141, 1246–1257. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, X.; Tang, S.; Lu, C.; Wan, H.; Zhou, J.; Li, Y.; Ming, T.; Wang, Z.J.; Su, X. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota. FASEB J. 2020, 34, 5061–5076. [Google Scholar] [CrossRef]
- Wan, H.; Han, J.; Tang, S.; Bao, W.; Lu, C.; Zhou, J.; Ming, T.; Li, Y.; Su, X. Comparisons of protective effects between two sea cucumber hydrolysates against diet induced hyperuricemia and renal inflammation in mice. Food Funct. 2020, 11, 1074–1086. [Google Scholar] [CrossRef]
- Lu, C.; Tang, S.; Han, J.; Fan, S.; Huang, Y.; Zhang, Z.; Zhou, J.; Ming, T.; Li, Y.; Su, X. Apostichopus japonicus oligopeptide induced heterogeneity in the gastrointestinal tract microbiota and alleviated hyperuricemia in a microbiota-dependent manner. Mol. Nutr. Food Res. 2021, 65, 2100147. [Google Scholar] [CrossRef]
- Nishino, T. XDH and XO research and drug discovery—Personal history. Molecules 2023, 28, 4440. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, S.; Lu, G.; Sun, N.; Wang, R.; Lu, C.; Han, J.; Zhou, J.; Li, Y.; Ming, T. Systematic investigation of the amino acid profiles that are correlated with xanthine oxidase inhibitory activity: Effects, mechanism and applications in protein source screening. Free Radic. Biol. Med. 2021, 177, 326–336. [Google Scholar] [CrossRef]
- Halimulati, M.; Wang, R.; Aihemaitijiang, S.; Huang, X.; Ye, C.; Zhang, Z.; Li, L.; Zhu, W.; Zhang, Z.; He, L. Anti-hyperuricemic effect of anserine based on the gut-kidney axis: Integrated analysis of metagenomics and metabolomics. Nutrients 2023, 15, 969. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ni, C.; Zhao, J.; Wang, G.; Chen, W. Probiotics, bioactive compounds and dietary patterns for the effective management of hyperuricemia: A review. Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.; Chen, J.; Zhang, Y.; Qin, Q.; Li, W.; Yan, S.; Wang, Y.; Li, T.; Gao, X.; Tang, L. Structural and functional alterations of gut microbiota in males with hyperuricemia and high levels of liver enzymes. Front. Med. 2021, 8, 779994. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Chen, R.; Zhang, Y.; Lin, X.; Yang, X. Altered gut microbiota in children with hyperuricemia. Front. Endocrinol. 2022, 13, 848715. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Bu, Y.; Hao, H.; Liu, Q.; Wang, T.; Liu, Y.; Yi, H. Effect and potential mechanism of Lactobacillus plantarum Q7 on hyperuricemia in vitro and in vivo. Front. Nutr. 2022, 9, 954545. [Google Scholar] [CrossRef] [PubMed]
- Hartwich, K.; Poehlein, A.; Daniel, R. The purine-utilizing bacterium Clostridium acidurici 9a: A genome-guided metabolic reconsideration. PLoS ONE 2012, 7, e51662. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, C.-X.; Guo, L.; Zhang, X.-X.; Xia, D.-Z. Effects of polysaccharides-riched Prunus mume fruit juice concentrate on uric acid excretion and gut microbiota in mice with adenine-induced chronic kidney disease. Curr. Res. Food Sci. 2022, 5, 2135–2145. [Google Scholar] [CrossRef]
- Fazel, R.; Zarei, N.; Ghaemi, N.; Namvaran, M.M.; Enayati, S.; Mirabzadeh Ardakani, E.; Azizi, M.; Khalaj, V. Cloning and expression of Aspergillus flavus urate oxidase in Pichia pastoris. Springerplus 2014, 3, 395. [Google Scholar] [CrossRef]
- Yamada, N.; Iwamoto, C.; Kano, H.; Yamaoka, N.; Fukuuchi, T.; Kaneko, K.; Asami, Y. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine. Nucleos. Nucleot. Nucl. 2016, 35, 670–676. [Google Scholar] [CrossRef]
- Wu, C.; Hu, Q.; Peng, X.; Luo, J.; Zhang, G. Marine fish protein peptide regulating potassium oxonate-induced intestinal dysfunction in hyperuricemia rats helps alleviate kidney inflammation. J. Agric. Food. Chem. 2022, 71, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Liu, J.; Chen, W.; He, Y.; Kahaer, M.; Li, R.; Tian, T.; Liu, Y.; Bai, B.; Cui, Y. Diagnostic model for predicting hyperuricemia based on alterations of the gut microbiome in individuals with different serum uric acid levels. Front. Endocrinol. 2022, 13, 925119. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Yan, J.; Chen, B.; Luo, Y.; Liu, L.; Sun, Z.; Lu, Y. The effect of menthol supplement diet on colitis-induced colon tumorigenesis and intestinal microbiota. Am. J. Transl. Res. 2021, 13, 38. [Google Scholar] [PubMed]
- Solano-Aguilar, G.I.; Jang, S.; Lakshman, S.; Gupta, R.; Beshah, E.; Sikaroodi, M.; Vinyard, B.; Molokin, A.; Gillevet, P.M.; Urban, J.F., Jr. The effect of dietary mushroom Agaricus bisporus on intestinal microbiota composition and host immunological function. Nutrients 2018, 10, 1721. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Sun, J.; Zhang, Y.; Shao, T.; Li, H.; Wang, M.; Zhang, L.; Bian, H.; Wen, C.; Xie, Z. Effect of a traditional Chinese medicine formula (CoTOL) on serum uric acid and intestinal flora in obese hyperuricemic mice inoculated with intestinal bacteria. Evid.-Based Complement. Altern. Med. 2020, 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, B.; Zhao, X.; Lin, Y.; Wang, J.; Wang, X.; Hu, N.; Wang, S. Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis. Food Funct. 2021, 12, 5637–5649. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Chen, L.; Ouyang, K.; Lin, S.; Zhang, Y.; He, J.; Wang, W. Chimonanthus nitens Oliv. leaves flavonoids alleviate hyperuricemia by regulating uric acid metabolism and intestinal homeostasis in mice. Food Sci. Hum. Wellness 2023, 12, 2440–2450. [Google Scholar] [CrossRef]
- Suarez, M.; Entenza, J.; Doerries, C.; Meyer, E.; Bourquin, L.; Sutherland, J.; Marison, I.; Moreillon, P.; Mermod, N. Expression of a plant-derived peptide harboring water-cleaning and antimicrobial activities. Biotechnol. Bioeng. 2003, 81, 13–20. [Google Scholar] [CrossRef]
- Wei, L.H.; Dong, Y.; Sun, Y.F.; Mei, X.S.; Ma, X.S.; Shi, J.; Yang, Q.l.; Ji, Y.R.; Zhang, Z.H.; Sun, H.N. Anticancer property of hemp bioactive peptides in Hep3B liver cancer cells through Akt/GSK3β/β-catenin signaling pathway. Food Sci. Nutr. 2021, 9, 1833–1841. [Google Scholar] [CrossRef]
- He, R.; Liu, M.; Zou, Z.; Wang, M.; Wang, Z.; Ju, X.; Hao, G. Anti-inflammatory activity of peptides derived from millet bran in vitro and in vivo. Food Funct. 2022, 13, 1881–1889. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Zhang, X.; Wu, Z.; Wu, Y.; Li, D.; Gao, J. Shizhifang ameliorates pyroptosis of renal tubular epithelial cells in hyperuricemia through inhibiting NLRP3 inflammasome. J. Ethnopharmacol. 2023, 317, 116777. [Google Scholar] [CrossRef]
- Yap, P.G.; Gan, C.Y. In vivo challenges of anti-diabetic peptide therapeutics: Gastrointestinal stability, toxicity and allergenicity. Trends Food Sci. Technol. 2020, 105, 161–175. [Google Scholar] [CrossRef]
- Barman, P.; Joshi, S.; Sharma, S.; Preet, S.; Sharma, S.; Saini, A. Strategic approaches to improvise peptide drugs as next generation therapeutics. Int. J. Pept. Res. Ther. 2023, 29, 61. [Google Scholar] [CrossRef]
- Soydan, M. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading? Chem. Biol. Drug Des. 2022, 101, 772–793. [Google Scholar]
Sources | Hydrolysates | Peptides | Dose | Main Results | Ref. |
---|---|---|---|---|---|
Pacific white shrimp (Litopenaeus vannamei) | NA | AEAQMWR | 2 mM | Decrease the mRNA and protein levels of URAT1 and GLUT9. | [59] |
NA | EFGMGGW | 2 mM | Decrease the mRNA and protein levels of URAT1 and GLUT9. | ||
NA | AGGINLAR | 2 mM | Decrease the mRNA and protein levels of URAT1 and GLUT9. | ||
Sea cucumber | Enzymatic hydrolysates of Apostichopus japonicus | NA | 150 mg·kg−1·d−1 | Decrease the mRNA levels of OAT4, GLUT9, and URAT1; Increase the mRNA levels of ABCG2, MRP4, and OAT1. | [98] |
Enzymatic hydrolysates of Acaudina leucoprocta | NA | 150 mg·kg−1·d−1 | Decrease the mRNA levels of OAT4, GLUT9, and URAT1; Increase the mRNA levels of ABCG2, MRP4, and OAT1. | ||
Tuna | NA | Tuna meat oligopeptides | 50, 300 mg·kg−1·d−1 | Decrease the mRNA and protein levels of URAT1 and GLUT9; Increase the mRNA and protein levels of ABCG2. | [97] |
Fish skin collagen | NA | Collagen peptide | 80 mg·kg−1·d−1 | Decrease the mRNA and protein levels of URAT1 and GLUT9; Increase the mRNA and protein levels of OAT1. | [79] |
NA | NA | CE | 10 mg·kg−1·d−1 | Decrease the mRNA and protein levels of GLUT9; Increase the mRNA and protein levels of ABCG2. | [101] |
NA | KE | 10 mg·kg−1·d−1 | Decrease the mRNA and protein levels of GLUT9; Increase the mRNA and protein levels of ABCG2. | ||
Whey | Whey protein hydrolyzate | NA | 200, 400, 800 mg·kg−1·bw | Decrease the mRNA and protein levels of URAT1; Increase the mRNA and protein levels of OAT1; Increase the mRNA level of ABCG2. | [68] |
NA | PEW | 30, 60 mg·kg−1 | Decrease the mRNA and protein levels of URAT1; Increase the mRNA and protein levels of OAT1. | [64] | |
NA | NA | Anserine | 1, 10, 100 mg·kg−1·bw | Decrease the protein levels of URAT1 and GLUT9; Increase the protein level of ABCG2. | [102] |
Auxis thazard | NA | Auxis thazard protein | 150, 300, 600 mg·kg−1·bw | Decrease the mRNA levels of GLUT9 and URAT1; Increase the mRNA levels of ABCG2 and OAT1. | [58] |
Nephila clavata | NA | QSGHTFK | 10,100 μg·kg−1, 1 mg·kg−1 | Decrease the protein levels of URAT1 and GLUT9; Increase the protein level of OAT1. | [70] |
Rice (Oryza sativa) | NA | AAAAGAMPK-NH2 | 5, 10, 100 μg·kg−1 | Decrease the protein level of URAT1. | [87] |
NA | AAAAMAGPK-NH2 | 100, 500 μg·kg−1, 1 mg·kg−1 | Decrease the protein level of URAT1. | [84] | |
NA | AAAAGA | 1 mg·kg−1 | Decrease the protein levels of URAT1 and GLUT9; Increase the protein level of OAT1. | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yang, J.; Rao, Q.; Wang, C.; Chen, X.; Zhang, Y.; Suo, H.; Song, J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023, 12, 4465. https://doi.org/10.3390/foods12244465
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods. 2023; 12(24):4465. https://doi.org/10.3390/foods12244465
Chicago/Turabian StyleChen, Yanchao, Jing Yang, Qinchun Rao, Chen Wang, Xiaoyong Chen, Yu Zhang, Huayi Suo, and Jiajia Song. 2023. "Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges" Foods 12, no. 24: 4465. https://doi.org/10.3390/foods12244465
APA StyleChen, Y., Yang, J., Rao, Q., Wang, C., Chen, X., Zhang, Y., Suo, H., & Song, J. (2023). Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods, 12(24), 4465. https://doi.org/10.3390/foods12244465