Green Onion (Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic Significance
Abstract
:1. Introduction
2. Characteristics of Allium fistulosum
3. Countrywide Distribution of Green Onions
4. Cultural and Culinary Applications
5. Nutritional Significance of Green Onions
5.1. Vitamins
5.2. Dietary Fiber
5.3. Calories and Fat
5.4. Minerals
6. Therapeutic Value of Green Onions
6.1. Anti-Inflammatory Activity of Allium fistulosum
6.2. AntiMicrobial Activity of Allium fistulosum
6.3. Anti-Arthritic Properties of Green Onions
6.4. Antiobesity Properties of Green Onions
6.5. AntiOxidant Properties of Green Onions
6.6. AntiCancer (AntiTumor) Properties of Green Onions
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bodirsky, B.L.; Dietrich, J.P.; Martinelli, E.; Stenstad, A.; Pradhan, P.; Gabrysch, S.; Mishra, A.; Weindl, I.; Le Mouël, C.; Rolinski, S. The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Sci. Rep. 2020, 10, 19778. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, S.; Bhadana, N.K.; Singh, B.; Shekhar, C. Vegetables: Source of adequate health benefits. Ann. Hortic. 2020, 13, 124–130. [Google Scholar] [CrossRef]
- Pistollato, F.; Iglesias, R.C.; Ruiz, R.; Aparicio, S.; Crespo, J.; Lopez, L.D.; Manna, P.P.; Giampieri, F.; Battino, M. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacol. Res. 2018, 131, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E.F. Global vegetable intake and supply compared to recommendations: A systematic review. Nutrients 2020, 12, 1558. [Google Scholar] [CrossRef] [PubMed]
- Rekhy, R.; McConchie, R. Promoting consumption of fruit and vegetables for better health. Have campaigns delivered on the goals? Appetite 2014, 79, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, S.; Shekhar, C. Nutritional components in green leafy vegetables: A review. J. Pharmacogn. Phytochem. 2020, 9, 2498–2502. [Google Scholar]
- Sung, Y.-Y.; Kim, D.-S.; Kim, S.-H.; Kim, H.K. Aqueous and ethanolic extracts of welsh onion, Allium fistulosum, attenuate high-fat diet-induced obesity. BMC Complement. Altern. Med. 2018, 18, 105. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-C.; Chang, H.-T.; Chang, S.-T.; Lin, S.-F.; Chang, Y.-H.; Jang, H.-D. A comparative study on the total antioxidant and antimicrobial potentials of ethanolic extracts from various organ tissues of Allium spp. Food Nutr. Sci. 2013, 4, 182–190. [Google Scholar]
- Khandagale, K.; Krishna, R.; Roylawar, P.; Ade, A.B.; Benke, A.; Shinde, B.; Singh, M.; Gawande, S.J.; Rai, A. Omics approaches in Allium research: Progress and way ahead. PeerJ 2020, 8, e9824. [Google Scholar] [CrossRef]
- Vlase, L.; Parvu, M.; Parvu, E.; Toiu, A. Phytochemical analysis of Allium fistulosum L. and A. ursinum L. Dig. J. Nanomater. Biostruct. (DJNB) 2013, 8, 457–467. [Google Scholar]
- Zolfaghari, B.; Yazdiniapour, Z.; Sadeghi, M.; Troiano, R.; Lanzotti, V. Furostanol Saponins from the Bulbs of Welsh Onion, Allium fistulosum L. Planta Medica 2016, 82, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Zhu, M.; Wang, Y.; Liu, H. The complete mitochondrial genome of Allium fistulosum L. (Amaryllidaceae). Mitochondrial DNA Part B 2023, 8, 890–894. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, X.; Liu, Y.; Cao, B.; Chen, Z.; Xu, K. Comparison of the effects of LED light quality combination on growth and nutrient accumulation in green onion (Allium fistulosum L.). Protoplasma 2021, 258, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Padula, G.; Xia, X.; Hołubowicz, R. Welsh onion (Allium fistulosum L.) seed physiology, breeding, production and trade. Plants 2022, 11, 343. [Google Scholar] [CrossRef] [PubMed]
- Kayat, F.; Mohammed, A.; Ibrahim, A.M. Spring Onion (Allium fistulosum L.) Breeding Strategies. In Advances in Plant Breeding Strategies: Vegetable Crops; Springer: Berlin/Heidelberg, Germany, 2021; pp. 135–182. [Google Scholar]
- Sahiba, J.; John-Paul, N.; Peter, T.; Dean, Y. The effects of different water amounts on green onion (Allium fistulosum L.) Growth. Expedition 2022, 13, 1–12. [Google Scholar]
- McCallum, J.; Baldwin, S.; Shigyo, M.; Deng, Y.; van Heusden, S.; Pither-Joyce, M.; Kenel, F. AlliumMap-A comparative genomics resource for cultivated Allium vegetables. BMC Genom. 2012, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ni, H.; Zhao, L.; Zhou, L.; Borrás-Hidalgo, O.; Cui, R. Correction: High nitrogen concentration alter microbial community in Allium fistulosum rhizosphere. PLoS ONE 2021, 16, e0246163. [Google Scholar] [CrossRef] [PubMed]
- Wako, T.; Yamashita, K.-i.; Tsukazaki, H.; Ohara, T.; Kojima, A.; Yaguchi, S.; Shimazaki, S.; Midorikawa, N.; Sakai, T.; Yamauchi, N. Screening and incorporation of rust resistance from Allium cepa into bunching onion (Allium fistulosum) via alien chromosome addition. Genome 2015, 58, 135–142. [Google Scholar] [CrossRef]
- Singh, B.K.; Ramakrishna, Y. Welsh onion (Allium fistulosum L.): A promising spicing-culinary herb of Mizoram. Indian J. Hill Farming 2017, 30, 201–208. [Google Scholar]
- Eom, J.S.; Lee, S.J.; Lee, Y.; Kim, H.S.; Choi, Y.Y.; Kim, H.S.; Kim, D.H.; Lee, S.S. Effects of supplementation levels of Allium fistulosum L. extract on in vitro ruminal fermentation characteristics and methane emission. PeerJ 2020, 8, e9651. [Google Scholar] [CrossRef]
- Balkrishna, A.; Chaudhary, M.; Sharma, H.; Srivastava, D.; Kukreti, A.; Kumar, A.; Arya, V. Phytochemistry, pharmacology, and medicinal aspects of Allium fistulosum L.: A narrative review. J. Appl. Pharm. Sci. 2023, 13, 107–118. [Google Scholar] [CrossRef]
- Waghulde, S.; Kale, M.; Patil, V. Cumulative phytochemical analysis and identification of drug lead compounds from medicinal plant extracts. Chem. Proc. 2021, 1, 1–15. [Google Scholar]
- Wang, J.; Qiao, L.; Wang, R.; Zhang, N.; Liu, Y.; Chen, H.; Sun, J.; Wang, S.; Zhang, Y. Effect of Frying Process on the Flavor Variations of Allium Plants. Foods 2023, 12, 1371. [Google Scholar] [CrossRef]
- Inden, H.; Asahira, T. Japanese bunching onion (Allium fistulosum L.). In Onions and Allied Crops. Volume III. Biochemistry, Food Sciences, and Minor Crops; CRC Press: Boca Raton, FL, USA, 1990; pp. 159–179. [Google Scholar]
- Immaculate, V.; Shlini, P.; Mary Clare, H. Isolation and purification of apigenin from Allium fistulosum. Int. J. Curr. Pharm. Res 2020, 12, 67–71. [Google Scholar]
- Tsukazaki, H.; Yaguchi, S.; Yamashita, K.-i.; Wako, T. QTL analysis of morphological traits and pseudostem pigmentation in bunching onion (Allium fistulosum). Euphytica 2017, 213, 1–10. [Google Scholar] [CrossRef]
- Yamasaki, A.; Tsukazaki, H. Bunching onion. In Edible Alliums: Botany, Production and Uses; CABI GB: Wallingford, UK, 2022; pp. 111–130. [Google Scholar]
- Padula, G.; Hołubowicz, R. Welsh onion from the Far East. Warzywa Owoce Miękkie 2018, 7, 34–36. [Google Scholar]
- Benke, A.P.; Mahajan, V.; Manjunathagowda, D.C.; Mokat, D.N. Interspecific hybridization in Allium crops: Status and prospectus. Genet. Resour. Crop Evol. 2022, 69, 1–9. [Google Scholar] [CrossRef]
- Maryati, W.; Isnaini, S. Response of welsh onion to various rates of compost application. J. Agrivigor. 2011, 10, 214–221. [Google Scholar]
- Liao, N.; Hu, Z.; Miao, J.; Hu, X.; Lyu, X.; Fang, H.; Zhou, Y.-M.; Mahmoud, A.; Deng, G.; Meng, Y.-Q. Chromosome-level genome assembly of bunching onion illuminates genome evolution and flavor formation in Allium crops. Nat. Commun. 2022, 13, 6690. [Google Scholar] [CrossRef]
- Țigu, A.B.; Moldovan, C.S.; Toma, V.-A.; Farcaș, A.D.; Moț, A.C.; Jurj, A.; Fischer-Fodor, E.; Mircea, C.; Pârvu, M. Phytochemical analysis and in vitro effects of Allium fistulosum L. and Allium sativum L. extracts on human normal and tumor cell lines: A comparative study. Molecules 2021, 26, 574. [Google Scholar] [CrossRef]
- Fukaya, M.; Nakamura, S.; Nakagawa, R.; Kinka, M.; Nakashima, S.; Matsuda, H. Cyclic sulfur-containing compounds from Allium fistulosum ‘Kujou’. J. Nat. Med. 2019, 73, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Pappu, H.; Rauf, A. First report of Iris yellow spot virus infecting green onion in Indonesia. Plant Dis. 2013, 97, 1665. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.T.; Ryuk, J.A.; Kim, H.J.; Jung, D.H.; Ko, B.S. Validation study on the geometric isomers from bulbs of Allium fistulosum and their conversion. Appl. Biol. Chem. 2020, 63, 1–12. [Google Scholar] [CrossRef]
- Gao, S.; Liu, X.; Liu, Y.; Cao, B.; Chen, Z.; Xu, K. Response characteristics of green onion (Allium fistulosum L.) to LED light quality under artificial climate chamber. Sci. Agric. Sin. 2020, 53, 2919–2928. [Google Scholar]
- Wang, A.; Luca, A.; Edelenbos, M. Emission of volatile organic compounds from yellow onion (Allium cepa L.) bulbs during storage. J. Food Sci. Technol. 2019, 56, 2940–2948. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-M.; Park, M.-K.; Mun, S.-J.; Jung, M.-Y.; Lee, S.-M.; Kim, Y.-S. Study on volatile profiles, polycyclic aromatic hydrocarbons, and acrylamide formed in Welsh onion (Allium fistulosum L.) fried in vegetable oils at different temperatures. Foods 2022, 11, 1335. [Google Scholar] [CrossRef] [PubMed]
- Brecht, P.; Dring, J.C.; Yanez, F.; Styczeń, A.; Mertowska, P.; Mertowski, S.; Grywalska, E. How Do Minerals, Vitamins, and Intestinal Microbiota Affect the Development and Progression of Heart Disease in Adult and Pediatric Patients? Nutrients 2023, 15, 3264. [Google Scholar] [CrossRef] [PubMed]
- Kamangar, F.; Emadi, A. Vitamin and mineral supplements: Do we really need them? Int. J. Prev. Med. 2012, 3, 221. [Google Scholar]
- Wang, J.; Qiao, L.; Liu, B.; Wang, J.; Wang, R.; Zhang, N.; Sun, B.; Chen, H.; Yu, Y. Characteristic aroma-active components of fried green onion (Allium fistulosum L.) through flavoromics analysis. Food Chem. 2023, 429, 136909. [Google Scholar] [CrossRef]
- Asensi-Fabado, M.A.; Munné-Bosch, S. Vitamins in plants: Occurrence, biosynthesis and antioxidant function. Trends Plant Sci. 2010, 15, 582–592. [Google Scholar] [CrossRef]
- Fischer, M.; Bacher, A. Biosynthesis of vitamin B2 and flavocoenzymes in plants. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2011; Volume 58, pp. 93–152. [Google Scholar]
- Tardy, A.-L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and minerals for energy, fatigue and cognition: A narrative review of the biochemical and clinical evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.C.; Hsu, P.C.; Chang, H.H. In vitro antioxidant and antibacterial activities of shallot and scallion. J. Food Sci. 2003, 68, 281–284. [Google Scholar] [CrossRef]
- Sung, Y.-Y.; Kim, S.-H.; Yoo, B.W.; Kim, H.K. The nutritional composition and anti-obesity effects of an herbal mixed extract containing Allium fistulosum and Viola mandshurica in high-fat-diet-induced obese mice. BMC Complement. Altern. Med. 2015, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Medina-Jaramillo, C.; Gomez-Delgado, E.; López-Córdoba, A. Improvement of the Ultrasound-Assisted Extraction of Polyphenols from Welsh Onion (Allium fistulosum) Leaves Using Response Surface Methodology. Foods 2022, 11, 2425. [Google Scholar] [CrossRef] [PubMed]
- Carazo, A.; Macáková, K.; Matoušová, K.; Krčmová, L.K.; Protti, M.; Mladěnka, P. Vitamin A update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients 2021, 13, 1703. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Averianova, L.A.; Balabanova, L.A.; Son, O.M.; Podvolotskaya, A.B.; Tekutyeva, L.A. Production of vitamin B2 (riboflavin) by microorganisms: An overview. Front. Bioeng. Biotechnol. 2020, 8, 1172. [Google Scholar] [CrossRef] [PubMed]
- Gasperi, V.; Sibilano, M.; Savini, I.; Catani, M.V. Niacin in the central nervous system: An update of biological aspects and clinical applications. Int. J. Mol. Sci. 2019, 20, 974. [Google Scholar] [CrossRef]
- Mandey, J.S.; Sompie, M.; Pontoh, C.J.; Rarumangkay, J.; Wolayan, F.R. Nutrients and phytochemicals of welsh onion (Allium fistulosum L.) and their importance in nutrition of poultry in the future—A review. Sci. Pap. Ser. D Anim. Sci.-Int. Sess. Sci. Commun. Fac. Anim. Sci. 2022, 65, 170–179. [Google Scholar]
- Pehlivan, F.E. Vitamin C: An antioxidant agent. Vitam. C 2017, 2, 23–35. [Google Scholar]
- Njus, D.; Kelley, P.M.; Tu, Y.-J.; Schlegel, H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free. Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [PubMed]
- Štajner, D.; Milić, N.; Čanadanović-Brunet, J.; Kapor, A.; Štajner, M.; Popović, B. Exploring Allium species as a source of potential medicinal agents. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2006, 20, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Nohara, T.; Fujiwara, Y.; El-Aasr, M.; Ikeda, T.; Ono, M.; Nakano, D.; Kinjo, J. Thiolane-type sulfides from garlic, onion, and Welsh onion. J. Nat. Med. 2021, 75, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Kolota, E.; Adamczewska-Sowinska, K.; Uklanska-Pusz, C. Yield and nutritional value of Japanese bunching onion (Allium fistulosum L.) depending on the growing season and plant maturation stage. J. Elem. 2012, 17, 587–596. [Google Scholar]
- Mishima, E.; Wahida, A.; Seibt, T.; Conrad, M. Diverse biological functions of vitamin K: From coagulation to ferroptosis. Nat. Metab. 2023, 5, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Jialal, I. Biochemistry, Fat Soluble Vitamins; StatPearls Publishing: St. Petersburg, FL, USA, 2021. [Google Scholar]
- Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 2003, 51, 571–581. [Google Scholar] [CrossRef] [PubMed]
- USDA. Agricultural Research Service, National Plant Germplasm System. Germplasm Resources Information Network (GRIN-Taxonomy); USDA: Washington, DC, USA, 2018. [Google Scholar]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.; Weickert, M.O. The health benefits of dietary fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Solah, V.A.; Kerr, D.A.; Hunt, W.J.; Johnson, S.K.; Boushey, C.J.; Delp, E.J.; Meng, X.; Gahler, R.J.; James, A.P.; Mukhtar, A.S. Effect of fibre supplementation on body weight and composition, frequency of eating and dietary choice in overweight individuals. Nutrients 2017, 9, 149. [Google Scholar] [CrossRef]
- Sung, Y.-Y.; Kim, S.-H.; Kim, D.-S.; Park, S.H.; Yoo, B.W.; Kim, H.K. Nutritional composition and anti-obesity effects of cereal bar containing Allium fistulosum (welsh onion) extract. J. Funct. Foods 2014, 6, 428–437. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bassal, A.; Leonardi, C.; Giuffrida, F.; Colla, G. Vegetable quality as affected by genetic, agronomic and environmental factors. J. Food Agric. Environ. 2012, 10, 680–688. [Google Scholar]
- Higashio, H.; Hirokane, H.; Sato, F.; Tokuda, S.; Uragami, A. Enhancement of functional compounds in Allium vegetables with UV radiation. In Proceedings of the I International Symposium on Human Health Effects of Fruits and Vegetables 744, Québec, QC, Canada, 17–20 August 2005; pp. 357–362. [Google Scholar]
- Keatinge, J.D.; Waliyar, F.; Jamnadas, R.H.; Moustafa, A.; Andrade, M.; Drechsel, P.; Hughes, J.d.A.; Kadirvel, P.; Luther, K. Relearning old lessons for the future of food—By bread alone no longer: Diversifying diets with fruit and vegetables. Crop Sci. 2010, 50, S-51–S-62. [Google Scholar] [CrossRef]
- Upadhyay, R.K. Nutritional and therapeutic potential of Allium vegetables. J. Nutr. Ther 2017, 6, 18–37. [Google Scholar] [CrossRef]
- Kaparapu, J.; Pragada, P.M.; Geddada, M.N.R. Fruits and vegetables and its nutritional benefits. In Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations; Springer: Berlin/Heidelberg, Germany, 2020; pp. 241–260. [Google Scholar]
- Bastaki, S.M.; Ojha, S.; Kalasz, H.; Adeghate, E. Chemical constituents and medicinal properties of Allium species. Mol. Cell. Biochem. 2021, 476, 4301–4321. [Google Scholar] [CrossRef]
- Liang, J.; Cui, L.; Li, J.; Guan, S.; Zhang, K.; Li, J. Aloe vera: A medicinal plant used in skin wound healing. Tissue Eng. Part B Rev. 2021, 27, 455–474. [Google Scholar] [CrossRef]
- Kasim, R.; Kasim, M.U. The Quality of Fresh-Cut Green Onions Treated with Different Application Times of Ultrasound. Int. J. Agric. Nat. Sci. 2018, 1, 49–53. [Google Scholar]
- Hirayama, Y.; Takanari, J.; Goto, K.; Ueda, H.; Tanaka, A.; Nishihira, J. Effect of Welsh onion (Allium fistulosum L.) green leaf extract on immune response in healthy subjects: A randomized, double-blind, placebo-controlled study. Funct. Foods Health Dis. 2019, 9, 123–133. [Google Scholar] [CrossRef]
- Ryuk, J.A.; Kim, H.J.; Hwang, J.T.; Ko, B.S. Effect of Allium fistulosum extracts on the stimulation of longitudinal bone growth in animal modeling diet-induced calcium and vitamin d deficiencies. Appl. Sci. 2021, 11, 7786. [Google Scholar] [CrossRef]
- Kothari, D.; Lee, W.-D.; Kim, S.-K. Allium flavonols: Health benefits, molecular targets, and bioavailability. Antioxidants 2020, 9, 888. [Google Scholar] [CrossRef]
- Gandhi, Y.; Kumar, R.; Grewal, J.; Rawat, H.; Mishra, S.K.; Kumar, V.; Shakya, S.K.; Jain, V.; Babu, G.; Sharma, P. Advances in anti-inflammatory medicinal plants and phytochemicals in the management of arthritis: A comprehensive review. Food Chem. Adv. 2022, 1, 100085. [Google Scholar] [CrossRef]
- Hannoodee, S.; Nasuruddin, D.N. Acute Inflammatory Response; StatPearls Publishing: St. Petersburg, FL, USA, 2020. [Google Scholar]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204. [Google Scholar] [CrossRef] [PubMed]
- Vanucci-Bacqué, C.; Bedos-Belval, F. Anti-inflammatory activity of naturally occuring diarylheptanoids—A review. Bioorg. Med. Chem. 2021, 31, 115971. [Google Scholar] [CrossRef] [PubMed]
- Skaper, S.D.; Facci, L.; Zusso, M.; Giusti, P. An inflammation-centric view of neurological disease: Beyond the neuron. Front. Cell. Neurosci. 2018, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Bonikowski, R.; Balawejder, M. Optimization of extraction process of antioxidant compounds from yellow onion skin and their use in functional bread production. LWT 2020, 117, 108614. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, J.-S.; Kim, S.-H.; Jeong, S.-H.; Jeong, U.-Y.; Jung, J.-E.; Lee, S.-K.; Lee, S.-H. Antioxidant and anti-inflammatory effects of ethanol extract from whole onion (Allium cepa L.) with leaves. Agriculture 2022, 12, 963. [Google Scholar] [CrossRef]
- Monika, N.; Sakthi, A. GC-MS studies on traditional plant Allium fistulosum L. bulbs. World J. Pharm. Pharm. Sci. 2018, 7, 823–834. [Google Scholar]
- Nazir, S.; Afroz, S.; Tauseef, H.; Afsheen, H.; Farooqui, R.; Rizvi, A. Phytochemical Analysis, Safety Profile, Analgesic, and Anti-inflammatory Effect of Ethanol Extract of Allium fistulosum L. Pak-Euro J. Med. Life Sci. 2022, 5, 135–146. [Google Scholar] [CrossRef]
- Marco, M.L. Defining how microorganisms benefit human health. Microb. Biotechnol. 2021, 14, 35–40. [Google Scholar] [CrossRef]
- Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist. 2020, 13, 4713–4738. [Google Scholar] [CrossRef]
- Kennedy, M.S.; Chang, E.B. The microbiome: Composition and locations. Prog. Mol. Biol. Transl. Sci. 2020, 176, 1–42. [Google Scholar] [PubMed]
- Lanzotti, V.; Scala, F.; Bonanomi, G. Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochem. Rev. 2014, 13, 769–791. [Google Scholar] [CrossRef]
- Singh, P.; Mahajan, V.; TP, A.S.; Banerjee, K.; Jadhav, M.R.; Kumar, P.; Gopal, J. Comparative evaluation of different Allium accessions for allicin and other allyl thiosulphinates. Ind. Crop. Prod. 2020, 147, 112215. [Google Scholar] [CrossRef]
- Sohn, H.-Y.; Ku, E.-J.; Ryu, H.-Y.; Jeon, S.-J.; Kim, N.-S.; Son, K.H. Antifungal activity of fistulosides, steroidal saponins, from Allium fistulosum L. J. Life Sci. 2006, 16, 310–314. [Google Scholar]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Factories 2020, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-B.; Miyake, S.; Umetsu, R.; Hayashi, K.; Chijimatsu, T.; Hayashi, T. Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chem. 2012, 134, 2164–2168. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Kulshreshtha, A.; Lall, R.; Gupta, S.C. Inflammation and ROS in arthritis: Management by Ayurvedic medicinal plants. Food Funct. 2021, 12, 8227–8247. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Jothi, G.; Mohana, T.; Vasconcelos, A.B.S.; Montalvão, M.M.; Hariharan, G.; Sridharan, G.; Kumar, P.M.; Gurgel, R.Q.; Li, H.-B. Anti-inflammatory natural products as potential therapeutic agents of rheumatoid arthritis: A systematic review. Phytomedicine 2021, 93, 153766. [Google Scholar] [CrossRef]
- Kamal, R.M.; Sabry, M.M.; Aly, Z.Y.; Hifnawy, M.S. Phytochemical and in-vivo anti-arthritic significance of Aloe thraskii Baker in combined therapy with methotrexate in adjuvant-induced arthritis in rats. Molecules 2021, 26, 3660. [Google Scholar] [CrossRef]
- Gessner, D.; Ringseis, R.; Eder, K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. 2017, 101, 605–628. [Google Scholar] [CrossRef]
- Camacho, S.; Ruppel, A. Is the calorie concept a real solution to the obesity epidemic? Glob. Health Action 2017, 10, 1289650. [Google Scholar] [CrossRef] [PubMed]
- Benton, D.; Young, H.A. Reducing calorie intake may not help you lose body weight. Perspect. Psychol. Sci. 2017, 12, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.-Y.; Yoon, T.; KiM, S.J.; Yang, W.-K.; KiM, H.K. Anti-obesity activity of Allium fistulosum L. extract by down-regulation of the expression of lipogenic genes in high-fat diet-induced obese mice. Mol. Med. Rep. 2011, 4, 431–435. [Google Scholar] [PubMed]
- Fan, P.; Xie, X.-H.; Chen, C.-H.; Peng, X.; Zhang, P.; Yang, C.; Wang, Y.-T. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy. DNA Cell Biol. 2019, 38, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Patel, A.K.; Shah, N.; Choudhary, A.K.; Jha, U.K.; Yadav, U.C.; Gupta, P.K.; Pakuwal, U. Oxidative stress and antioxidants in disease and cancer: A review. Asian Pac. J. Cancer Prev. 2014, 15, 4405–4409. [Google Scholar] [CrossRef] [PubMed]
- Youle, R.J. Mitochondria—Striking a balance between host and endosymbiont. Science 2019, 365, eaaw9855. [Google Scholar] [CrossRef]
- Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 2020, 21, 204–224. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive oxygen species-sources, functions, oxidative damage. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2020, 48, 124–127. [Google Scholar]
- Brillo, V.; Chieregato, L.; Leanza, L.; Muccioli, S.; Costa, R. Mitochondrial dynamics, ROS, and cell signaling: A blended overview. Life 2021, 11, 332. [Google Scholar] [CrossRef]
- Herb, M.; Schramm, M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Engwa, G.A. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. In Phytochemicals: Source of Antioxidants and Role in Disease Prevention. BoD–Books on Demand; IntechOpen: London, UK, 2018; Volume 7, pp. 49–74. [Google Scholar]
- Elisha, I.L.; Dzoyem, J.-P.; McGaw, L.J.; Botha, F.S.; Eloff, J.N. The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis. BMC Complement. Altern. Med. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fotina, A.; Fisinin, V.; Surai, P. Recent developments in usage of natural antioxidants to improve chicken meat production and quality. Bulg. J. Agric. Sci 2013, 19, 889–896. [Google Scholar]
- Ajayi, G.O.; Akinsanya, M.A.; Agbabiaka, A.T.; Oyebanjo, K.S.; Hungbo, T.D.; Olagunju, J. Limonene: A major bioactive constituent in Allium fistulosum identified by GC-MS analysis. J. Phytopharm. 2019, 8, 257–259. [Google Scholar] [CrossRef]
- Kurnia, D.; Ajiati, D.; Heliawati, L.; Sumiarsa, D. Antioxidant properties and structure-antioxidant activity relationship of Allium species leaves. Molecules 2021, 26, 7175. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, K.J.; Chan, W. Plant uptake and metabolism of nitrofuran antibiotics in spring onion grown in nitrofuran-contaminated soil. J. Agric. Food Chem. 2017, 65, 4255–4261. [Google Scholar] [CrossRef] [PubMed]
- Mysiak, B.; Tendaj, M. Content of phenolic acids in edible parts of some Alliums species grown for the green bunching. Acta Sci. Pol. Hortorum Cultus 2008, 7, 57–62. [Google Scholar]
- Yamamoto, Y.; Aoyama, S.; Hamaguchi, N.; Rhi, G.-S. Antioxidative and antihypertensive effects of Welsh onion on rats fed with a high-fat high-sucrose diet. Biosci. Biotechnol. Biochem. 2005, 69, 1311–1317. [Google Scholar] [CrossRef]
- Wang, B.-S.; Chen, J.-H.; Liang, Y.-C.; Duh, P.-D. Effects of Welsh onion on oxidation of low-density lipoprotein and nitric oxide production in macrophage cell line RAW 264.7. Food Chem. 2005, 91, 147–155. [Google Scholar] [CrossRef]
- Knox, S.S. From’omics’ to complex disease: A systems biology approach to gene-environment interactions in cancer. Cancer Cell Int. 2010, 10, 1–13. [Google Scholar] [CrossRef]
- Deo, S.; Sharma, J.; Kumar, S. GLOBOCAN 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists. Ann. Surg. Oncol. 2022, 29, 6497–6500. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, N.P.; Dalgaard, F.; Kyrø, C.; Murray, K.; Bondonno, C.P.; Lewis, J.R.; Croft, K.D.; Gislason, G.; Scalbert, A.; Cassidy, A. Flavonoid intake is associated with lower mortality in the Danish Diet Cancer and Health Cohort. Nat. Commun. 2019, 10, 3651. [Google Scholar] [CrossRef] [PubMed]
- Zolfaghari, B.; Yazdiniapour, Z.; Sadeghi, M.; Akbari, M.; Troiano, R.; Lanzotti, V. Cinnamic acid derivatives from welsh onion (Allium fistulosum) and their antibacterial and cytotoxic activities. Phytochem. Anal. 2021, 32, 84–90. [Google Scholar] [CrossRef]
- Pan, Y.; Zheng, Y.M.; Ho, W.S. Effect of quercetin glucosides from Allium extracts on HepG2, PC-3 and HT-29 cancer cell lines. Oncol. Lett. 2018, 15, 4657–4661. [Google Scholar] [CrossRef]
- Arulselvan, P.; Wen, C.-C.; Lan, C.-W.; Chen, Y.-H.; Wei, W.-C.; Yang, N.-S. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: Cellular and molecular mechanisms in mice. PLoS ONE 2012, 7, e44658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Yoon, J.B.; Han, J.; Seo, Y.A.; Kang, B.-H.; Lee, J.; Ochar, K. Green Onion (Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic Significance. Foods 2023, 12, 4503. https://doi.org/10.3390/foods12244503
Kim S-H, Yoon JB, Han J, Seo YA, Kang B-H, Lee J, Ochar K. Green Onion (Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic Significance. Foods. 2023; 12(24):4503. https://doi.org/10.3390/foods12244503
Chicago/Turabian StyleKim, Seong-Hoon, Jung Beom Yoon, Jiwon Han, Yum Am Seo, Byeong-Hee Kang, Jaesu Lee, and Kingsley Ochar. 2023. "Green Onion (Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic Significance" Foods 12, no. 24: 4503. https://doi.org/10.3390/foods12244503
APA StyleKim, S. -H., Yoon, J. B., Han, J., Seo, Y. A., Kang, B. -H., Lee, J., & Ochar, K. (2023). Green Onion (Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic Significance. Foods, 12(24), 4503. https://doi.org/10.3390/foods12244503