Cornelian Cherry (Cornus mas) Powder as a Functional Ingredient for the Formulation of Bread Loaves: Physical Properties, Nutritional Value, Phytochemical Composition, and Sensory Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cornelian Cherry Powder (CCP)
2.3. Composite Flour Preparation
2.4. Bread Loaf Preparation
2.5. Determination of Compositional Profile and Energetic Value
2.6. Determination of Radical Scavenging Activity and Polyphenolic Compounds
2.7. Volume Analysis
2.8. Sensory Assessment
2.9. Statistical Analysis
3. Results
3.1. Characterization of Cornelian Cherry Powder
3.2. Compositional Profile and Energetic Value of Experimental Bread Loaves
3.3. Antioxidant Activity and Polyphenolic Compounds of Experimental Bread Loaves
3.4. Volume of Experimental Bread Loaves
3.5. Sensory Properties of Experimental Bread Loaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cappelli, A.; Cini, E. Challenges and opportunities in wheat flour, pasta, bread, and bakery product production chains: A systematic review of innovations and improvement strategies to increase sustainability, productivity, and product quality. Sustainability 2021, 13, 2608. [Google Scholar] [CrossRef]
- Mitelut, A.C.; Popa, E.E.; Popescu, P.A.; Popa, M.E. Trends of innovation in bread and bakery production. In Trends in Wheat and Bread Making, 1st ed.; Galanakis, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 199–226. [Google Scholar] [CrossRef]
- Baba, M.D.; Manga, T.A.; Daniel, C.; Danrangi, J. Sensory evaluation of toasted bread fortified with banana flour: A preliminary study. AJFSN 2015, 2, 9–12. [Google Scholar]
- Chen, Y.; Zhao, L.; He, T.; Ou, Z.; Hu, Z.; Wang, K. Effects of mango peel powder on starch digestion and quality characteristics of bread. Int. J. Biol. Macromol. 2019, 140, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Irigoytia, M.B.; Irigoytia, K.; Sosa, N.; de Escalada Pla, M.; Genevois, C. Blueberry by-product as a novel food ingredient: Physicochemical characterization and study of its application in a bakery product. JSFA 2022, 102, 4551–4560. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.; McHugh, T.H. Recent advances on edible films based on fruits and vegetables—A review. CRFSFS 2017, 16, 1151–1169. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.S.; Siddiqui, M.W. Factors affecting postharvest quality of fresh fruits. In Postharvest Quality Assurance of Fruits, 1st ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 7–32. [Google Scholar]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: A review. Environ. Chem. Lett. 2021, 19, 1715–1735. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.M.; Mayorga, E.Y.; Moreno, F.L. Mathematical modelling of convective drying of fruits: A review. J. Food Eng. 2018, 223, 152–167. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Abbasi, S.; Azari, S. Novel microwave–freeze drying of onion slices. Int. J. Food Sci. 2009, 44, 974–979. [Google Scholar] [CrossRef]
- Wankhade, P.K.; Sapkal, R.S.; Sapkal, V.S. Drying characteristics of okra slices using different drying methods by comparative evaluation. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 24–26 October 2012; Volume 2, pp. 24–26. [Google Scholar]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Food industry by-products used as functional ingredients of bakery products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020, 308, 125522. [Google Scholar] [CrossRef] [PubMed]
- Mildner-Szkudlarz, S.; Bajerska, J.; Zawirska-Wojtasiak.; Górecka, D. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. JSFA 2013, 93, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, K.Y.; Joung, K.Y.; Shin, S.Y.; Kim, Y.S. Quality characteristics of steamed bread containing pomegranate (Punica granatum L.) peel powder. KJFCS 2017, 33, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Zhang, J.; Cao, X. Effects of orange peel powder on rheological properties of wheat dough and bread aging. Nutr. Food Sci. 2021, 9, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Valková, V.; Ďúranová, H.; Havrlentová, M.; Ivanišová, E.; Mezey, J.; Tóthová, Z.; Gabríny, L.; Kačániová, M. Selected physico-chemical, nutritional, antioxidant and sensory properties of wheat bread supplemented with apple pomace powder as a by-product from juice production. Plants 2022, 11, 1256. [Google Scholar] [CrossRef] [PubMed]
- Švec, I.; Kapačinskaité, R.; Hrušková, M. Wheat dough fermentation and bread trial results under the effect of quinoa and canahua wholemeal additions. Czech J. Food Sci. 2020, 38, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Mondal, A.; Datta, A.K. Bread baking—A review. J. Food Eng. 2008, 86, 465–474. [Google Scholar] [CrossRef]
- De Biaggi, M.; Donno, D.; Mellano, M.G.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. Cornus mas (L.) fruit as a potential source of natural health-promoting compounds: Physico-chemical characterisation of bioactive components. Plant Foods Hum. Nutr. 2018, 73, 89–94. [Google Scholar] [CrossRef]
- Milenković-Anđelković, A.S.; Anđelković, M.Z.; Radovanović, A.N.; Radovanović, B.C.; Nikolić, V. Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Hem. Ind. 2015, 69, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Sozański, T.; Kucharska, A.Z.; Rapak, A.; Szumny, D.; Trocha, M.; Merwid-Ląd, A.; Szeląg, A. Iridoid–loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): Common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis 2016, 254, 151–160. [Google Scholar] [CrossRef]
- Dinda, B.; Kyriakopoulos, A.M.; Dinda, S.; Zoumpourlis, V.; Thomaidis, N.S.; Velegraki, A.; Dinda, M. Cornus mas L (cornelian cherry), an important European and Asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J. Ethnopharmacol. 2016, 193, 670–690. [Google Scholar] [CrossRef]
- Hassanpour, H.; Yousef, H.; Jafar, H.; Mohammad, A. Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci. Hortic. 2011, 129, 459–463. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; Camangi, F.; Braca, A. Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chem. 2010, 119, 1257–1261. [Google Scholar] [CrossRef] [Green Version]
- Kazimierski, M.; Reguła, J.; Molska, M. Cornelian cherry (Cornus mas L.)–characteristics, nutritional and pro-health properties. Acta Sci. Pol. Technol. Aliment. 2019, 18, 5–12. [Google Scholar] [CrossRef]
- Topdaş, E.F.; Çakmakçi, S.; Akiroğlu, K. The antioxidant activity, vitamin c contents, physical, chemical and sensory properties of ice cream supplemented with cornelian cherry (Cornus mas L.) paste. Kafkas Univ. Vet. Fak. Derg. 2017, 23, 691–697. [Google Scholar] [CrossRef]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z. Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chem. 2020, 312, 125968. [Google Scholar] [CrossRef]
- Karademir, E.; Yalçın, E. Effect of fermentation on some quality properties of cornelian cherry tarhana produced from different cereal/pseudocereal flours. Qual. Assur. Saf. 2019, 11, 127–135. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Piórecki, N. Bioactive compounds in cornelian cherry vinegars. Molecules 2018, 23, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salejda, A.M.; Kucharska, A.Z.; Krasnowska, G. Effect of Cornelian cherry (Cornus mas L.) juice on selected quality properties of beef burgers. J. Food Qual. 2018, 2018, 1563651. [Google Scholar] [CrossRef] [Green Version]
- İlyasoğlu, H.; Arslan Burnaz, N.; Arpa Zemzemoğlu, T.E. Flaxseed and Cornelian cherry: Development of a functional cookie using response surface methodology. J. Food Process. Preserv. 2022, 46, e16954. [Google Scholar] [CrossRef]
- Arraibi, A.A.; Liberal, Â.; Dias, M.I.; Alves, M.J.; Ferreira, I.C.; Barros, L.; Barreira, J.C. Chemical and bioactive characterization of Spanish and Belgian apple pomace for its potential use as a novel dermocosmetic formulation. Foods 2021, 10, 1949. [Google Scholar] [CrossRef] [PubMed]
- Ivanišová, E.; Grygorieva, O.; Abrahamova, V.; Schubertova, Z.; Terentjeva, M.; Brindza, J. Characterization of morphological parameters and biological activity of jujube fruit (Ziziphus jujuba Mill.). J. Berry Res. 2017, 7, 249–260. [Google Scholar] [CrossRef]
- García-Gómez, B.; Fernández-Canto, N.; Vázquez-Odériz, M.L.; Quiroga-García, M.; Muñoz-Ferreiro, N.; Romero-Rodríguez, M.Á. Sensory descriptive analysis and hedonic consumer test for Galician type breads. Food Control 2022, 134, 108765. [Google Scholar] [CrossRef]
- Ocheme, O.B.; Adedeji, O.E.; Chinma, C.E.; Yakubu, C.M.; Ajibo, U.H. Proximate composition, functional, and pasting properties of wheat and groundnut protein concentrate flour blends. Food Sci. Nutr. 2018, 6, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.G.M.D.; LI, M.J.; Khan, S.H.; Kashif, M. Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. J. Integr. Agric. 2019, 18, 2483–2491. [Google Scholar] [CrossRef]
- Braun, H.J.; Atlin, G.; Payne, T. Multi-location testing as a tool to identify plant response to global climate change. Clim. Chang. Crop Prod. 2010, 1, 115–138. [Google Scholar]
- Mahloko, L.M.; Silungwe, H.; Mashau, M.E.; Kgatla, T.E. Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon 2019, 5, e02479. [Google Scholar] [CrossRef] [Green Version]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207–213. [Google Scholar] [CrossRef]
- Tešević, V.; Nikićević, N.; Milosavljević, S.; Bajic, D.; Vajs, V.; Vučković, I.; Vujisić, L.; Đorđević, I.; Stanković, M.; Velickovic, M. Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of cornelian cherry. J. Serb. Chem. Soc. 2009, 74, 117–128. [Google Scholar] [CrossRef]
- Cakmakci, S.; Tosun, M. Characteristics of mulberry pekmez with cornelian cherry. Int. J. Food Prop. 2010, 13, 713–722. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Content of bioactive compounds and antioxidant capacity of pumpkin puree enriched with Japanese quince, cornelian cherry, strawberry and apples. Acta Sci. Pol. Technol. Aliment. 2011, 10, 51–60. [Google Scholar] [PubMed]
- Cerit, İ.; Şenkaya, S.; Tulukoğlu, B.; Kurtuluş, M.; Seçilmişoğlu, Ü.R.; Demirkol, O. Enrichment of functional properties of white chocolates with cornelian cherry, spinach and pollen powders. Gida/J. Food 2016, 41, 311–316. [Google Scholar] [CrossRef]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z.; Piórecki, N. Characteristics of biologically active compounds in Cornelian cherry meads. Molecules 2018, 23, 2024. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, M.; Petkova, N.; Balabanova, T.; Ognyanov, M.; Vlaseva, R. Food design of dairy desserts with encapsulated Cornelian cherry, Chokeberry and Blackberry juices. Ann. Univ. Dunarea Jos Galati. Fascicle VI—Food Technol. 2018, 42, 137–146. [Google Scholar]
- Mantzourani, I.; Nouska, C.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Panayiotidis, M.I.; Galanis, A.; Plessas, S. Production of a novel functional fruit beverage consisting of cornelian cherry juice and probiotic bacteria. Antioxidants 2018, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z.; Piórecki, N. Fruit low-alcoholic beverages with high contents of iridoids and phenolics from apple and Cornelian cherry (Cornus mas L.) fermented with Saccharomyces bayanus. Pol. J. Food Nutr. Sci. 2019, 69, 307–317. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Prorok, P.; Piórecki, N. Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chem. 2019, 281, 147–153. [Google Scholar] [CrossRef]
- Haghani, S.; Hadidi, M.; Pouramin, S.; Adinepour, F.; Hasiri, Z.; Moreno, A.; Munekata, P.E.S.; Lorenzo, J.M. Application of Cornelian cherry (Cornus mas L.) peel in probiotic ice cream: Functionality and viability during storage. Antioxidants 2021, 10, 1777. [Google Scholar] [CrossRef]
- Szczepaniak, O.; Jokiel, M.; Stuper-Szablewska, K.; Szymanowska, D.; Dziedziński, M.; Kobus-Cisowska, J. Can cornelian cherry mask bitter taste of probiotic chocolate? Human TAS2R receptors and a sensory study with comprehensive characterisation of new functional product. PLoS ONE 2021, 16, e0243871. [Google Scholar] [CrossRef]
- Tontul, I.; Eroğlu, E.; Topuz, A. Convective and refractance window drying of cornelian cherry pulp: Effect on physicochemical properties. J. Food Process Eng. 2018, 41, e12917. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci. Technol. 2017, 63, 91–102. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Tang, J.; Villa-Rojas, R.; Sablani, S.; Carter, B.; Campbell, G. Influence of water activity on thermal resistance of microorganisms in low-moisture foods: A review. CRFSFS 2016, 15, 353–370. [Google Scholar] [CrossRef]
- Petkova, N.T.; Ognyanov, M.H. Phytochemical characteristics and in vitro antioxidant activity of fresh, dried and processed fruits of Cornelian cherries (Cornus mas L.). Bulg. Chem. Commun. 2018, 50, 302–307. [Google Scholar]
- Jaćimović, V.; Božović, D.; Ercisli, S.; Ognjanov, V.; Bosančić, B. Some fruit characteristics of selected cornelian cherries (Cornus mas L.) from Montenegro. Erwerbs-Obstbau 2015, 57, 119–124. [Google Scholar] [CrossRef]
- Bijelić, S.; Gološin, B.; Ninić Todorović, J.; Cerović, S.; Bogdanović, B. Promising cornelian cherry (Cornus mas L.) genotypes from natural population in Serbia. Agric. Conspec. Sci. 2012, 77, 5–10. [Google Scholar]
- Antoniewska-Krzeska, A.; Ivanišová, E.; Klymenko, S.; Bieniek, A.A.; Šramková, K.F.; Brindza, J. Nutrients content and composition in different morphological parts of Cornelian cherry (Cornus mas L.). Agrobiodivers. Improv. Nutr. Health Life Qual. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Demir, F.; Kalyoncu, I.H. Some nutritional, pomological and physical properties of cornelian cherry (Cornus mas L.). J. Food Eng. 2003, 60, 335–341. [Google Scholar] [CrossRef]
- Ercisli.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Cosmulescu, S.N.; Trandafir, I.; Cornescu, F. Antioxidant capacity, total phenols, total flavonoids and colour component of cornelian cherry (Cornus mas L.) wild genotypes. Not Bot Horti Agrobot Cluj Napoca 2019, 47, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Szczepaniak, O.M.; Kobus-Cisowska, J.; Kusek, W.; Przeor, M. Functional properties of Cornelian cherry (Cornus mas L.): A comprehensive review. Eur. Food Res. Technol. 2019, 245, 2071–2087. [Google Scholar] [CrossRef] [Green Version]
- Klymenko, S.; Kucharska, A.Z.; Sokół-Łętowska, A.; Piórecki, N.; Przybylska, D.; Grygorieva, O. Iridoids, Flavonoids, and Antioxidant capacity of Cornus mas, C. officinalis, and C. mas× C. officinalis fruits. Biomolecules 2021, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Dupak, R.; Ivanisova, E.; Grygorieva, O.; Capcarova, M. Antioxidant and biochemical characterisation of Cornelian cherry (Cornus mas L.). In International scientific days 2022: Efficient, Sustainable and Resilient Agriculture and Food Systems—The Interface of Science, Politics and Practice; Slovak University of Agriculture in Nitra: Nitra, Slovakia, 2022; pp. 659–665. [Google Scholar] [CrossRef]
- Szczepaniak, O.M.; Ligaj, M.; Kobus-Cisowska, J.; Maciejewska, P.; Tichoniuk, M.; Szulc, P. Application for novel electrochemical screening of antioxidant potential and phytochemicals in Cornus mas extracts. CyTA-J. Food 2019, 17, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Popović, B.M.; Štajner, D.; Slavko, K.; Sandra, B. Antioxidant capacity of cornelian cherry (Cornus mas L.)–Comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chem. 2012, 134, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, K.; Saracoglu, O.; Özgen, M.; Serce, S. Antioxidant, physical and chemical characteristics of cornelian cherry fruits (Cornus mas L.) at different stages of ripeness. Acta Sci. Pol. Hortorum Cultus 2013, 12, 59–66. [Google Scholar]
- Julkunen-Tiitto, R.; Nenadis, N.; Neugart, S.; Robson, M.; Agati, G.; Vepsäläinen, J.; Jansen, M.A. Assessing the response of plant flavonoids to UV radiation: An overview of appropriate techniques. Phytochem. Rev. 2015, 14, 273–297. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Valková, V.; Ďúranová, H.; Falcimaigne-Cordin, A.; Rossi, C.; Nadaud, F.; Nesterenko, A.; Moncada, M.; Orel, M.; Ivanišová, E.; Chlebová, Z.; et al. Impact of freeze-and spray-drying microencapsulation techniques on β-glucan powder biological activity: A comparative study. Foods 2022, 11, 2267. [Google Scholar] [CrossRef]
- Hager, A.S.; Arendt, E.K. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocoll. 2013, 32, 195–203. [Google Scholar] [CrossRef]
- Pancerz, M.; Ptaszek, A.; Sofińska, K.; Barbasz, J.; Szlachcic, P.; Kucharek, M.; Łukasiewicz, M. Colligative and hydrodynamic properties of aqueous solutions of pectin from cornelian cherry and commercial apple pectin. Food Hydrocoll. 2019, 89, 406–415. [Google Scholar] [CrossRef]
- Rosell, C.M.; Rojas, J.A.; De Barber, C.B. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocoll. 2001, 15, 75–81. [Google Scholar] [CrossRef]
- Collar, C.; Andreu, P.; Martınez, J.C.; Armero, E. Optimization of hydrocolloid addition to improve wheat bread dough functionality: A response surface methodology study. Food Hydrocoll. 1999, 13, 467–475. [Google Scholar] [CrossRef]
- Das, L.; Raychaudhuri, U.; Chakraborty, R. Role of hydrocolloids in improving the physical and textural characteristics of fennel bread. Int. Food Res. J. 2013, 20, 2253–2259. [Google Scholar]
- Kang, N.; Reddy, C.K.; Park, E.Y.; Choi, H.D.; Lim, S.T. Antistaling effects of hydrocolloids and modified starch on bread during cold storage. LWT 2018, 96, 13–18. [Google Scholar] [CrossRef]
- Zhao, F.; Li, Y.; Li, C.; Ban, X.; Cheng, L.; Hong, Y.; Li, Z. Co-supported hydrocolloids improve the structure and texture quality of gluten-free bread. LWT 2021, 152, 112248. [Google Scholar] [CrossRef]
- Wahyono, A.; Tifania, A.Z.; Kurniawati, E.; Kang, W.W.; Chung, S.K. Physical properties and cellular structure of bread enriched with pumpkin flour. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 207, p. 012054. [Google Scholar] [CrossRef]
- Jagelaviciute, J.; Cizeikiene, D. The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT 2021, 137, 110457. [Google Scholar] [CrossRef]
- Ivanišová, E.; Drevková, B.; Tokár, M.; Terentjeva, M.; Krajčovič, T.; Kačániová, M. Physicochemical and sensory evaluation of biscuits enriched with chicory fiber. Food Sci. Technol. Int. 2020, 26, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory attributes of edible insects and insect-based foods–Future outlooks for enhancing consumer appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Przybylska, D.; Kucharska, A.Z.; Sozański, T. A review on bioactive iridoids in edible fruits–from garden to food and pharmaceutical products. Food Rev. Int. 2022, 38, 1–31. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; West, B.J.; Jensen, C.J. UPLC-TOF-MS characterization and identification of bioactive iridoids in Cornus mas fruit. J. Anal. Chem. 2013, 2013, 710972. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, D.A.; Ashouri, A.; George, T.W.; Lovegrove, J.A.; Methven, L. The consumer acceptance of novel vegetable-enriched bread products as a potential vehicle to increase vegetable consumption. Food Res. Int. 2014, 58, 15–22. [Google Scholar] [CrossRef]
- Frutos, M.J.; Guilabert-Antón, L.; Tomás-Bellido, A.; Hernández-Herrero, J.A. Effect of artichoke (Cynara scolymus L.) fiber on textural and sensory qualities of wheat bread. FSTI 2008, 14 (Suppl. 5), 49–55. [Google Scholar] [CrossRef]
Parameters | CCP |
---|---|
Fat (%) | 0.20 ± 0.03 |
Carbohydrate (%) | 86.88 ± 0.93 |
Protein (%) | 0.78 ± 0.05 |
Ash (%) | 5.47 ± 0.10 |
Energetic value (kcal/100 g) | 352.44 ± 3.67 |
Moisture (%) | 6.67 ± 0.85 |
AA (mg TEAC/g) | 8.75 ± 0.01 |
TPC (mg GAE/g) | 9.08 ± 0.54 |
TPAC (mg CAE/g) | 2.62 ± 0.15 |
FC (mg QE/g) | 3.62 ± 0.30 |
Parameters | Incorporation Ratio of CCP (% w/w) 1 | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 5 | 10 | |
Fat (%) | 6.57 ± 0.05 a | 6.26 ± 0.06 b | 6.00 ± 0.04 c | 5.52 ± 0.06 c | 5.05 ± 0.08 d |
Carbohydrate (%) | 69.58 ± 0.19 d | 70.05 ± 0.12 c | 70.68 ± 0.15 b | 71.65 ± 0.44 a | 72.45 ± 0.40 a |
Protein (%) | 13.90 ± 0.08 a | 13.61 ± 0.06 b | 13.12 ± 0.03 c | 12.60 ± 0.08 d | 12.06 ± 0.06 e |
Ash (%) | 0.62 ± 0.03 e | 0.70 ± 0.02 d | 0.75 ± 0.02 c | 0.87 ± 0.04 b | 0.99 ± 0.03 a |
Moisture (%) | 9.32 ± 0.20 | 9.38 ± 0.16 | 9.46 ± 0.09 | 9.35 ± 0.46 | 9.45 ± 0.41 |
Energetic value (kcal/100 g) | 393.08 ± 0.94 a | 391.01 ± 0.93 b | 389.16 ± 0.34 c | 386.71 ± 1.75 d | 383.47 ± 1.53 d |
Parameters | Incorporation Ratio of CCP (% w/w) 1 | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 5 | 10 | |
AA (mg TEAC/g) | 0.60 ± 0.01 d | 0.61 ± 0.04 d | 0.69 ± 0.03 c | 0.76 ± 0.02 b | 1.22 ± 0.02 a |
TPC (mg GAE/g) | 3.82 ± 0.11 d | 3.98 ± 0.09 d | 4.59 ± 0.19 c | 4.90 ± 0.03 b | 5.12 ± 0.02 a |
TPAC (mg CAE/g) | 0.49 ± 0.09 d | 0.55 ± 0.03 d | 0.68 ± 0.05 c | 0.77 ± 0.02 b | 1.18 ± 0.05 a |
FC (mg QE/g) | ND | ND | ND | ND | ND |
Incorporation Ratio of CCP (% w/w) 1 | Volume (mL) | Specific Volume (cm3/g) |
---|---|---|
0 | 576.99 ± 2.97 d | 2.55 ± 0.002 d |
1 | 604.38 ± 8.48 c | 2.69 ± 0.05 c |
2 | 668.17 ± 6.56 a | 2.97 ± 0.04 a |
5 | 642.63 ± 7.24 b | 2.83 ± 0.02 b |
10 | 443.63 ± 1.22 e | 1.94 ± 0.02 e |
Parameters | Incorporation Ratio of CCP (% w/w) 1 | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 5 | 10 | |
Crust color | 4.00 ± 0.00 b | 5.48 ± 1.00 cd | 7.03 ± 2.10 ad | 9.16 ± 2.34 a | 8.77 ± 2.73 ac |
Crumb color | 2.50 ± 0.00 d | 5.98 ± 1.73 ce | 7.44 ± 1.67 be | 9.02 ± 1.76 ae | 11.52 ± 1.47 a |
Pore uniformity | 8.00 ± 0.00 a | 8.48 ± 1.59 a | 7.85 ± 2.09 a | 8.38 ± 1.54 a | 9.79 ± 2.33 a |
Aroma | 4.00 ± 0.00 b | 4.50 ± 0.65 ab | 5.69 ± 1.48 a | 6.14 ± 2.45 ab | 7.89 ± 3.44 a |
Crumb springiness | 13.00 ± 0.00 a | 12.50 ± 1.36 a | 13.17 ± 2.02 a | 10.70 ± 3.09 ac | 7.92 ± 2.63 bc |
Chewiness | 6.00 ± 0.00 bc | 6.17 ± 0.80 bc | 5.97 ± 1.09 bc | 6.64 ± 1.87 ac | 8.45 ± 1.37 a |
Sweet taste | 3.00 ± 0.00 a | 3.50 ± 0.86 a | 3.68 ± 0.83 a | 3.65 ± 1.43 a | 4.04 ± 2.07 a |
Bitter taste | 1.00 ± 0.00 bc | 1.21 ± 0.30 ac | 1.43 ± 0.80 ac | 2.47 ± 1.49 ac | 2.72 ± 1.70 a |
Sour taste | 1.00 ± 0.00 c | 1.65 ± 0.85 bc | 1.44 ± 0.41 b | 2.56 ± 1.07 b | 6.62 ± 2.93 a |
Aftertaste | 3.00 ± 0.00 b | 4.11 ± 0.96 a | 4.63 ± 1.36 a | 5.99 ± 1.81 a | 7.92 ± 2.88 a |
Overall impression | 11.00 ± 0.00 bcde | 11.58 ± 1.37 ae | 12.12 ± 1.04 a | 10.38 ± 2.40 ac | 8.54 ± 2.69 ad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimora, V.; Ďúranová, H.; Brindza, J.; Moncada, M.; Ivanišová, E.; Joanidis, P.; Straka, D.; Gabríny, L.; Kačániová, M. Cornelian Cherry (Cornus mas) Powder as a Functional Ingredient for the Formulation of Bread Loaves: Physical Properties, Nutritional Value, Phytochemical Composition, and Sensory Attributes. Foods 2023, 12, 593. https://doi.org/10.3390/foods12030593
Šimora V, Ďúranová H, Brindza J, Moncada M, Ivanišová E, Joanidis P, Straka D, Gabríny L, Kačániová M. Cornelian Cherry (Cornus mas) Powder as a Functional Ingredient for the Formulation of Bread Loaves: Physical Properties, Nutritional Value, Phytochemical Composition, and Sensory Attributes. Foods. 2023; 12(3):593. https://doi.org/10.3390/foods12030593
Chicago/Turabian StyleŠimora, Veronika, Hana Ďúranová, Ján Brindza, Marvin Moncada, Eva Ivanišová, Patrícia Joanidis, Dušan Straka, Lucia Gabríny, and Miroslava Kačániová. 2023. "Cornelian Cherry (Cornus mas) Powder as a Functional Ingredient for the Formulation of Bread Loaves: Physical Properties, Nutritional Value, Phytochemical Composition, and Sensory Attributes" Foods 12, no. 3: 593. https://doi.org/10.3390/foods12030593
APA StyleŠimora, V., Ďúranová, H., Brindza, J., Moncada, M., Ivanišová, E., Joanidis, P., Straka, D., Gabríny, L., & Kačániová, M. (2023). Cornelian Cherry (Cornus mas) Powder as a Functional Ingredient for the Formulation of Bread Loaves: Physical Properties, Nutritional Value, Phytochemical Composition, and Sensory Attributes. Foods, 12(3), 593. https://doi.org/10.3390/foods12030593