The Effect of Ultrasound Treatment in Winemaking on the Volatile Compounds of Aglianico, Nero di Troia, and Primitivo Red Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Winemaking Process
2.3. VOC Analysis
2.3.1. VOC Extraction
2.3.2. Chromatographic Conditions
2.4. Statistical Analysis
3. Results and Discussion
3.1. Optimization of VOC Extraction Procedure
3.2. Effect of US Treatment on the VOC Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochemistry 2021, 70, 105293. [Google Scholar] [CrossRef]
- Gavahian, M.; Manyatsi, T.S.; Morata, A.; Tiwari, B.K. Ultrasound-assisted production of alcoholic beverages: From fermentation and sterilization to extraction and aging. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5243–5271. [Google Scholar] [CrossRef]
- Taha, A.; Mehany, T.; Pandiselvam, R.; Anusha Siddiqui, S.; Mir, N.A.; Malik, M.A.; Sujayasree, O.J.; Alamuru, K.C.; Khanashyam, A.C.; Casanova, F.; et al. Sonoprocessing: Mechanisms and recent applications of power ultrasound in food. Crit. Rev. Food Sci. Nutr. 2023, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Li, C.; Zhang, Y.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends Food Sci. Technol. 2021, 109, 374–385. [Google Scholar] [CrossRef]
- Khaire, R.A.; Thorat, B.N.; Gogate, P.R. Applications of ultrasound for food preservation and disinfection: A critical review. J. Food Process. Preserv. 2022, 46, e16091. [Google Scholar] [CrossRef]
- Santos, M.C.; Nunes, C.; Saraiva, J.A.; Coimbra, M.A. Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations. Eur. Food Res. Technol. 2012, 234, 1–12. [Google Scholar] [CrossRef]
- Gracin, L.; Jambrak, A.R.; Juretić, H.; Dobrović, S.; Barukčić, I.; Grozdanović, M.; Smoljanić, G. Influence of high power ultrasound on Brettanomyces and lactic acid bacteria in wine in continuous flow treatment. Appl. Acoust. 2016, 103, 143–147. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Vejarano, R.; González, C.; Callejo, M.J.; Suárez-Lepe, J.A. Emerging preservation technologies in grapes for winemaking. Trends Food Sci. Technol. 2017, 67, 36–43. [Google Scholar] [CrossRef]
- Cacciola, V.; Batllò, I.F.; Ferraretto, P.; Vincenzi, S.; Celotti, E. Study of the ultrasound effects on yeast lees lysis in winemaking. Eur. Food Res. Technol. 2013, 236, 311–317. [Google Scholar] [CrossRef]
- Kulkarni, P.; Loira, I.; Morata, A.; Tesfaye, W.; González, M.C.; Suárez-Lepe, J.A. Use of non-Saccharomyces yeast strains coupled with ultrasound treatment as a novel technique to accelerate ageing on lees of red wines and its repercussion in sensorial parameters. LWT Food Sci. Technol. 2015, 64, 1255–1262. [Google Scholar] [CrossRef]
- del Fresno, J.M.; Loira, I.; Morata, A.; González, C.; Suárez-Lepe, J.A.; Cuerda, R. Application of ultrasound to improve lees ageing processes in red wines. Food Chem. 2018, 261, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Osete-Alcaraz, A.; Bautista-Ortín, A.B.; Pérez-Porras, P.; Gómez-Plaza, E. The Application of Ultrasound and Enzymes Could Be Promising Tools for Recovering Polyphenols during the Aging on Lees Process in Red Winemaking. Foods 2021, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Wang, J.; Wang, H.; Zhao, Q.; Zhang, F.; Ge, Q.; Li, C.; Gamboa, G.G.; Fang, Y.; Sun, X. Wine aging and artificial simulated wine aging: Technologies, applications, challenges, and perspectives. Food Res. Int. 2022, 153, 110953. [Google Scholar] [CrossRef] [PubMed]
- OIV-OENO 616-2019; Tretament of Crushed Grapes with Ultrasound to Promote the Extraction of Their Compounds Resolution. OIV: Geneva, Switzerland, 2019; pp. 1–2.
- Bautista-Ortín, A.B.; Jiménez-Martínez, M.D.; Jurado, R.; Iniesta, J.A.; Terrades, S.; Andrés, A.; Gómez-Plaza, E. Application of high-power ultrasounds during red wine vinification. Int. J. Food Sci. Technol. 2017, 52, 1314–1323. [Google Scholar] [CrossRef]
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Using high-power ultrasounds in red winemaking: Effect of operating conditions on wine physico-chemical and chromatic characteristics. LWT Food Sci. Technol. 2021, 138, 110645. [Google Scholar] [CrossRef]
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Combining high-power ultrasound and enological enzymes during winemaking to improve the chromatic characteristics of red wine. LWT Food Sci. Technol. 2022, 156, 113032. [Google Scholar] [CrossRef]
- Roman, T.; Tonidandel, L.; Nicolini, G.; Bellantuono, E.; Barp, L.; Larcher, R.; Celotti, E. Evidence of the Possible Interaction between Ultrasound and Thiol Precursors. Foods 2020, 9, 104. [Google Scholar] [CrossRef]
- Aragón-García, F.; Ruíz-Rodríguez, A.; Palma, M. Changes in the Aromatic Compounds Content in the Muscat Wines as a Result of the Application of Ultrasound during Pre-Fermentative Maceration. Foods 2021, 10, 1462. [Google Scholar] [CrossRef]
- Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E.; Pérez-Coello, M.S. Effect of Power Ultrasound Treatment on Free and Glycosidically-Bound Volatile Compounds and the Sensorial Profile of Red Wines. Molecules 2021, 26, 1193. [Google Scholar] [CrossRef]
- Labrador Fernández, L.; Díaz-Maroto, M.C.; Pérez Porras, P.; Bautista-Ortín, A.B.; Alañón, M.E.; Gómez-Plaza, E.; Pérez-Coello, M.S. Power ultrasound treatment of Viognier grapes as a tool to increase the aromatic potential of wines. J. Sci. Food Agric. 2022. [Google Scholar] [CrossRef]
- Gambacorta, G.; Trani, A.; Punzi, R.; Fasciano, C.; Leo, R.; Fracchiolla, G.; Faccia, M. Impact of ultrasounds on the extraction of polyphenols during winemaking of red grapes cultivars from southern Italy. Innov. Food Sci. Emerg. Technol. 2017, 43, 54–59. [Google Scholar] [CrossRef]
- Pérez-Porras, P.; Gómez-Plaza, E.; Osete-Álcaraz, A.; Martínez-Pérez, P.; Jurado, R.; Bautista-Ortín, A.B. The effect of ultrasound on Syrah wine composition as affected by the ripening or sanitary status of the grapes. Eur. Food Res. Technol. 2022, 1–11. [Google Scholar] [CrossRef]
- Moreno-Olivares, J.D.; Paladines-Quezada, D.; Fernández-Fernández, J.I.; Bleda-Sánchez, J.A.; Martínez-Moreno, A.; Gil-Muñoz, R. Study of aromatic profile of different crosses of Monastrell white wines. J. Sci. Food Agric. 2020, 100, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.-L.; Li, A.-H.; Su, J.; Wang, X.-C.; Chen, C.-Q.; Tao, Y.-S. Flavor modification of dry red wine from Chinese spine grape by mixed fermentation with Pichia fermentans and S. cerevisiae. LWT Food Sci. Technol. 2019, 109, 83–92. [Google Scholar] [CrossRef]
- Tat, L.; Comuzzo, P.; Stolfo, I.; Battistutta, F. Optimization of wine headspace analysis by solid-phase microextraction capillary gas chromatography with mass spectrometric and flame ionization detection. Food Chem. 2005, 93, 361–369. [Google Scholar] [CrossRef]
- Torrens, J.; Riu-Aumatell, M.; Lopez-Tamames, E.; Buxaderas, S. Volatile Compounds of Red and White Wines by Headspace-Solid-Phase Microextraction Using Different Fibers. J. Chromatogr. Sci. 2004, 42, 310–316. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Li, S.; Zhang, A.; Zhang, Y.; Liu, S. Characterization of the Key Aroma Compounds in Proso Millet Wine Using Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Molecules 2018, 23, 462. [Google Scholar] [CrossRef]
- Tavares, A.; Mafra, G.; Carasek, E.; Micke, G.A.; Vitali, L. Determination of five 3-alkyl-2-methoxypyrazines employing HS-SPME-GC-NPD: Application in evaluation of off-flavor of South American wines. J. Food Compos. Anal. 2022, 105, 104237. [Google Scholar] [CrossRef]
- Sagratini, G.; Maggi, F.; Caprioli, G.; Cristalli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S. Comparative study of aroma profile and phenolic content of Montepulciano monovarietal red wines from the Marches and Abruzzo regions of Italy using HS-SPME–GC–MS and HPLC–MS. Food Chem. 2012, 132, 1592–1599. [Google Scholar] [CrossRef]
- Perestrelo, R.; Barros, A.S.; Rocha, S.M.; Câmara, J.S. Optimisation of solid-phase microextraction combined with gas chromatography–mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Talanta 2011, 85, 1483–1493. [Google Scholar] [CrossRef]
- Câmara, J.S.; Alves, M.A.; Marques, J.C. Development of headspace solid-phase microextraction-gas chromatography–mass spectrometry methodology for analysis of terpenoids in Madeira wines. Anal. Chim. Acta 2006, 555, 191–200. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Muñoz-González, C.; Andújar-Ortiz, I.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayón, M.Á. Assessment of the effect of the non-volatile wine matrix on the volatility of typical wine aroma compounds by headspace solid phase microextraction/gas chromatography analysis. J. Sci. Food Agric. 2011, 91, 2484–2494. [Google Scholar] [CrossRef] [PubMed]
- Gambacorta, G.; Faccia, M.; Natrella, G.; Noviello, M.; Masi, G.; Tarricone, L. Early Basal Leaf Removal at Different Sides of the Canopy Improves the Quality of Aglianico Wine. Foods 2022, 11, 3140. [Google Scholar] [CrossRef] [PubMed]
- Toci, A.T.; Crupi, P.; Gambacorta, G.; Dipalmo, T.; Antonacci, D.; Coletta, A. Free and bound aroma compounds characterization by GC-MS of Negroamaro wine as affected by soil management. J. Mass Spectrom. 2012, 47, 1104–1112. [Google Scholar] [CrossRef]
- Alba, V.; Natrella, G.; Gambacorta, G.; Crupi, P.; Coletta, A. Effect of over crop and reduced yield by cluster thinning on phenolic and volatile compounds of grapes and wines of ‘Sangiovese’ trained to Tendone. J. Sci. Food Agric. 2022, 102, 7155–7163. [Google Scholar] [CrossRef]
- Rebière, L.; Clark, A.C.; Schmidtke, L.M.; Prenzler, P.D.; Scollary, G.R. A robust method for quantification of volatile compounds within and between vintages using headspace-solid-phase micro-extraction coupled with GC–MS—Application on Semillon wines. Anal. Chim. Acta 2010, 660, 149–157. [Google Scholar] [CrossRef]
- Ferreira, V.; Ortín, N.; Escudero, A.; López, R.; Cacho, J. Chemical Characterization of the Aroma of Grenache Rosé Wines: Aroma Extract Dilution Analysis, Quantitative Determination, and Sensory Reconstitution Studies. J. Agric. Food Chem. 2002, 50, 4048–4054. [Google Scholar] [CrossRef]
- Lee, K.Y.M.; Paterson, A.; Piggott, J.R.; Richardson, G.D. Measurement of Thresholds for Reference Compounds for Sensory Profiling of Scotch Whisky. J. Inst. Brew. 2000, 106, 287–294. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Delgado, J.A.; Ferrer, M.A.; Viñas, M.A.G. The aroma of La Mancha Chelva wines: Chemical and sensory characterization. Food Res. Int. 2019, 119, 135–142. [Google Scholar] [CrossRef]
- Pino, J.A.; Tolle, S.; Gök, R.; Winterhalter, P. Characterisation of odour-active compounds in aged rum. Food Chem. 2012, 132, 1436–1441. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, Y.S.; Wen, Y.; Wang, H. Aroma Evaluation of Young Chinese Merlot Wines with Denomination of Origin. South Afr. J. Enol. Vitic. 2016, 34, 46–53. [Google Scholar] [CrossRef]
- Capone, S.; Tufariello, M.; Siciliano, P. Analytical characterisation of Negroamaro red wines by “Aroma Wheels”. Food Chem. 2013, 141, 2906–2915. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, G.R.; Flath, R.A.; Mon, T.R.; Teranishi, R.; Guentert, M. Volatile constituents of apricot (Prunus armeniaca). J. Agric. Food Chem. 1990, 38, 471–477. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, P.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, R. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC–MS, GC–O, odor threshold and sensory analysis: An insight at the molecular level. Food Chem. 2019, 275, 143–153. [Google Scholar] [CrossRef]
- Dong, L.; Hou, Y.; Li, F.; Piao, Y.; Zhang, X.; Zhang, X.; Li, C.; Zhao, C. Characterization of volatile aroma compounds in different brewing barley cultivars. J. Sci. Food Agric. 2015, 95, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Silva, C.; Câmara, J.S. Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules 2019, 24, 3028. [Google Scholar] [CrossRef]
- Buttery, R.G.; Teranishi, R.; Ling, L.C.; Turnbaugh, J.G. Quantitative and sensory studies on tomato paste volatiles. J. Agric. Food Chem. 1990, 38, 336–340. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z. Volatile Compounds of Young Wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay Varieties Grown in the Loess Plateau Region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef]
- Ferreira, V.; Lòpez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Odor & Flavor Detection Thresholds in Water (In Parts per Billion). Available online: http://www.leffingwell.com/odorthre.htm (accessed on 23 January 2023).
- Gambacorta, G.; Trani, A.; Fasciano, C.; Paradiso, V.M.; Faccia, M. Effects of prefermentative cold soak on polyphenols and volatiles of Aglianico, Primitivo and Nero di Troia red wines. Food Sci. Nutr. 2019, 7, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Meng, J.-F.; Xu, T.-F.; Song, C.-Z.; Yu, Y.; Hu, F.; Zhang, L.; Zhang, Z.-W.; Xi, Z.-M. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chem. 2015, 185, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Diez-Ozaeta, I.; Lavilla, M.; Amárita, F. Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: Selection of potential malolactic starters. Int. J. Food Microbiol. 2021, 356, 109324. [Google Scholar] [CrossRef]
- Wu, Y.; Duan, S.; Zhao, L.; Gao, Z.; Luo, M.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, S. Aroma characterization based on aromatic series analysis in table grapes. Sci. Rep. 2016, 6, 31116. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, A.; Carrera, C.; Palma Lovillo, M.; García Barroso, C. Ultrasonic treatments during the alcoholic fermentation of red wines: Effects on “Syrah” wines. VITIS J. Grapevine Res. 2019, 58, 83–88. [Google Scholar] [CrossRef]
- Chang, A.C.; Chen, F.C. The application of 20 kHz ultrasonic waves to accelerate the aging of different wines. Food Chem. 2002, 79, 501–506. [Google Scholar] [CrossRef]
NAME | RT (min) | Qt | Qi | Odor Threshold (mg L−1) | Odor Descriptor |
---|---|---|---|---|---|
ethyl acetate | 1.68 | 61 | 73 | 12.26 [38] | Pineapple, Fruity, Solvent, Balsamic |
hexanal | 2.77 | 56 | 57 | 0.1 [39] | Grassy, Green |
2-methyl-1-propanol | 2.86 | 42 | 74 | 40 [40] | Alcohol, Solvent |
3-methyl-1-butyl acetate | 3.07 | 43 | 70 | 0.002 [41] | Banana, Fruity, Sweet |
1-butanol | 3.28 | 56 | 41 | 150 [42] | Medicinal |
2+3-methyl butanol | 3.83 | 55 | 57 | 30 [43] | Alcohol, Sweet, Fruity |
(E)-2-hexenal | 3.99 | 69 | 83 | 0.017 [44] | Green, Fresh, Fruity |
ethyl hexanoate | 4.08 | 88 | 99 | 0.004 [45] | Fruity, Green, Apple, Banana, Brandy |
1-pentanol | 4.24 | 42 | 55 | 4 [46] | Almond, Synthetic, Balsamic |
hexyl acetate | 4.46 | 56 | 69 | 0.01 [47] | Green, Floral |
1-hexanol | 5.24 | 56 | 55 | 2.5 [44] | Herbaceous, Grassy, Woody |
cis-3-hexen-1-ol | 5.58 | 67 | 41 | 0.07 [48] | Plant, Flower |
ethyl octanoate | 6.06 | 88 | 101 | 0.0016 [45] | Sweet, Fruity, Banana, Pear, Brandy |
1-heptanol | 6.25 | 70 | 55 | 1 [49] | Oily |
acetic acid | 6.3 | 43 | 60 | 200 [50] | Vinegar |
linalool | 7.13 | 71 | 93 | 0.006 [51] | Citrus, Floral, Sweet |
isobutyric acid | 7.42 | 43 | 73 | 8.1 [52] | Fatty, Rancid |
butyric acid | 7.98 | 60 | 73 | 0.24 [52] | Fatty–Rancid, Sweat, Cheese |
ethyl decanoate | 7.99 | 88 | 101 | 0.2 [45] | Brandy, Fruity, Grape |
isovaleric acid | 8.34 | 60 | 73 | 0.12 [52] | Fatty–Rancid, Cheese |
diethyl succinate | 8.35 | 101 | 129 | 200 [53] | Fruity, Melon |
3-methylthio-1-propanol | 8.76 | 61 | 106 | 0.5 [54] | Cooked vegetable, Baked cabbage |
geranyl acetate | 9.05 | 69 | 93 | 0.06 [55] | Floral |
β -citronellol | 9.13 | 69 | 95 | 0.1 [55] | Green, Lemon |
geraniol | 9.33 | 69 | 123 | 0.03 [55] | Citric, Floral |
nerol | 9.44 | 69 | 41 | 0.5 [55] | Rose |
phenyl ethyl acetate | 9.61 | 105 | 43 | 0.25 [55] | Pleasant, Floral |
β-damascenone | 9.68 | 69 | 105 | 0.00005 [55] | Sweet, Fruity |
hexanoic acid | 9.85 | 60 | 73 | 0.42 [56] | Cheese, Fatty |
ethyl isopentyl succinate | 10.27 | 101 | 129 | ||
2-phenyl ethanol | 10.41 | 91 | 122 | 1.1 [57] | Rose, Honey |
β-ionone | 10.62 | 177 | 91 | 0.0035 [58] | Balsamic, Rose, Violet |
octanoic acid | 11.46 | 60 | 73 | 0.5 [59] | Fatty, Rancid |
monoethyl succinate | 13.59 | 101 | 73 | Chocolate |
Cultivar | OAV | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aglianico | Nero di Troia | Primitivo | Aglianico | Nero di Troia | Primitivo | |||||||
Ctr | US | Ctr | US | Ctr | US | Ctr | US | Ctr | US | Ctr | US | |
ethyl acetate | † 34.51 ± 0.81 b | 44.71 ± 1.05 a | 32.64 ± 0.76 | 31.39 ± 0.74 | 49.23 ± 1.16 | 52.68 ± 1.24 | 2.8 | 3.6 | 2.7 | 2.6 | 4.0 | 4.3 |
hexanal | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
2-methyl-1-propanol | 14.10 ± 0.28 b | 23.95 ± 0.48 a | 15.89 ± 0.37 b | 18.73 ± 0.37 a | 16.83 ± 0.34 b | 24.45 ± 0.49 a | 0.4 | 0.6 | 0.4 | 0.5 | 0.4 | 0.6 |
3-methyl-1-butyl acetate * | 0.17 ± 0.01 | 0.20 ± 0.02 | 0.11 ± 0.01 b | 0.28 ± 0.01 a | 0.15 ± 0.01 | 0.18 ± 0.02 | 85 | 100 | 55 | 140 | 75 | 90 |
1-butanol | 0.75 ± 0.02 b | 0.95 ± 0.03 a | 0.62 ± 0.02 a | 0.48 ± 0.02 b | 0.79 ± 0.02 a | 0.68 ± 0.02 b | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2+3-methyl butanol | 79.43 ± 1.79 b | 83.48 ± 1.88 a | 71.74 ± 1.62 a | 66.37 ± 1.50 b | 79.05 ± 1.78 a | 73.27 ± 1.65 b | 2.6 | 2.8 | 2.4 | 2.2 | 2.6 | 2.4 |
(E)-2-hexenal | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.96 ± 0.05 a | 0.04 ± 0.01 b | 0.03 ± 0.01 | 0.05 ± 0.01 | 3.5 | 2.4 | 56.5 | 2.4 | 1.8 | 2.9 |
ethyl hexanoate * | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.06 ± 0.01 | 0.08 ± 0.01 | 17.5 | 17.5 | 20 | 20 | 15 | 20.3 |
1-pentanol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
hexyl acetate | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
1-hexanol | 0.51 ± 0.01 | 0.52 ± 0.01 | 0.57 ± 0.01 a | 0.49 ± 0.01 b | 0.40 ± 0.01 | 0.40 ± 0.01 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
cis-3-hexen-1-ol | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.4 | 0.4 | 0.9 | 0.7 | 0.3 | 0.3 |
ethyl octanoate | 0.28 ± 0.01 | 0.27 ± 0.01 | 0.16 ± 0.01 b | 0.34 ± 0.01 a | 0.28 ± 0.01 b | 0.34 ± 0.01 a | 175 | 169 | 100 | 212.5 | 175 | 212.5 |
1-heptanol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
acetic acid * | 3.59 ± 0.04 b | 3.99 ± 0.05 a | 6.32 ± 0.01 a | 2.59 ± 0.03 b | 6.71 ± 0.08 a | 5.49 ± 0.07 b | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
linalool | 0.03 ± 0.01 | 0.06 ± 0.02 | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 5.0 | 10 | 6.7 | 8.3 | 8.3 | 8.3 |
isobutyric acid | 3.39 ± 0.13 b | 4.47 ± 0.17 a | 3.50 ± 0.13 b | 4.18 ± 0.16 a | 6.34 ± 0.24 | 6.34 ± 0.24 | 0.4 | 0.6 | 0.4 | 0.5 | 0.8 | 0.8 |
butyric acid | 7.98 ± 0.24 b | 10.39 ± 0.33 a | 6.96 ± 0.21 | 6.99 ± 0.21 | 7.41 ± 0.23 | 7.90 ± 0.28 | 33.3 | 43.3 | 29.0 | 29.1 | 30.9 | 32.9 |
ethyl decanoate * | 0.14 ± 0.02 | 0.18 ± 0.02 | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.7 | 0.9 | 0.6 | 0.7 | 0.6 | 0.7 |
isovaleric acid | 1.16 ± 0.03 b | 1.41 ± 0.03 a | 0.84 ± 0.03 a | 0.61 ± 0.02 b | 1.65 ± 0.04 b | 2.11 ± 0.05 a | 4.8 | 5.9 | 3.5 | 2.5 | 6.9 | 8.8 |
diethyl succinate * | 0.67 ± 0.03 b | 0.93 ± 0.04 a | 0.19 ± 0.01 b | 0.45 ± 0.02 a | 1.29 ± 0.05 b | 2.50 ± 0.11 a | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3-methylthio-1-propanol * | 1.91 ± 0.04 b | 2.17 ± 0.04 a | 1.52 ± 0.03 a | 1.08 ± 0.03 b | 1.76 ± 0.04 a | 1.61 ± 0.03 b | 3.8 | 4.3 | 3.0 | 2.2 | 3.5 | 3.2 |
geranyl acetate | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
β-citronellol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
geraniol * | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
nerol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
phenyl ethyl acetate | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
β-damascenone | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
hexanoic acid | 1.34 ± 0.02 b | 1.41 ± 0.01 a | 1.41 ± 0.02 a | 0.85 ± 0.02 b | 1.16 ± 0.02 b | 1.68 ± 0.02 a | 3.2 | 3.4 | 3.4 | 2.0 | 2.8 | 4.0 |
ethyl isopentyl succinate * | 0.08 ± 0.01 | 0.11 ± 0.02 | 0.47 ± 0.15 a | 0.05 ± 0.01 b | 0.12 ± 0.01 | 0.15 ± 0.02 | ||||||
2-phenyl ethanol | 53.71 ± 1.92 b | 68.36 ± 2.44 a | 47.61 ± 1.70 a | 38.09 ± 1.36 b | 53.43 ± 1.91 | 55.59 ± 1.99 | 48.8 | 62.1 | 43.3 | 34.6 | 48.6 | 50.5 |
β-ionone | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
octanoic acid * | 4.52 ± 0.05 a | 3.44 ± 0.04 b | 4.28 ± 0.05 a | 3.01 ± 0.04 b | 3.91 ± 0.05 b | 5.39 ± 0.06 a | 9.0 | 6.9 | 8.6 | 6.0 | 7.8 | 10.8 |
monoethyl succinate * | 0.16 ± 0.01 | 0.17 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.01 | 0.14 ± 0.01 b | 0.30 ± 0.01 a | ||||||
Total | 208.59 ± 8.41 b | 251.31 ± 9.01 a | 196.12 ± 5.28 a | 176.39 ± 9.64 b | 230.93 ± 10.04 | 241.39 ± 9.07 |
Cultivar | OAV | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aglianico | Nero di Troia | Primitivo | Aglianico | Nero di Troia | Primitivo | |||||||
Ctr | US | Ctr | US | Ctr | US | Ctr | US | Ctr | US | Ctr | US | |
ethyl acetate | † 65.10 ± 1.53 b | 114.42 ± 2.69 a | 95.94 ± 2.26 b | 108.16 ± 2.54 a | 118.87 ± 2.80 a | 101.85 ± 2.40 b | 5.3 | 9.3 | 7.8 | 8.8 | 9.7 | 8.3 |
hexanal | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
2-methyl-1-propanol | 28.28 ± 0.57 | 28.41 ± 0.58 | 26.04 ± 0.53 | 22.92 ± 0.47 | 41.39 ± 0.84 a | 38.93 ± 0.78 b | 0.7 | 0.7 | 0.7 | 0.6 | 1.0 | 1.0 |
3-methyl-1-butyl acetate * | 0.19 ± 0.01 | 0.20 ± 0.01 | 0.18 ± 0.01 | 0.23 ± 0.01 | 0.20 ± 0.14 | 0.18 ± 0.01 | 95 | 100 | 90 | 115 | 100 | 90 |
1-butanol | 1.12 ± 0.04 | 1.32 ± 0.05 | 1.09 ± 0.04 | 0.84 ± 0.06 | 1.40 ± 0.05 | 1.18 ± 0.03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2+3 methyl butanol | 106.07 ± 2.39 b | 134.21 ± 3.03 a | 103.29 ± 2.33 b | 125.87 ± 2.84 a | 122.85 ± 2.77 a | 104.44 ± 2.36 b | 3.5 | 4.5 | 3.4 | 4.2 | 4.1 | 3.5 |
(E)-2-hexenal | 0.06 ± 0.01 b | 0.98 ± 0.05 a | 0.87 ± 0.04 b | 1.78 ± 0.08 a | 0.06 ± 0.01 b | 0.09 ± 0.01 a | 3.5 | 57.6 | 51.2 | 104.7 | 3.5 | 5.3 |
ethyl hexanoate * | 0.10 ± 0.01 | 0.10 ± 0.01 | 0.13 ± 0.01 | 0.12 ± 0.01 | 0.10 ± 0.01 | 0.10 ± 0.01 | 25 | 25 | 32.5 | 30 | 25 | 25 |
1-pentanol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
hexyl acetate | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
1-hexanol | 0.92 ± 0.02 b | 1.12 ± 0.02 a | 1.04 ± 0.02 b | 1.10 ± 0.02 a | 0.71 ± 0.02 | 0.72 ± 0.01 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 |
cis-3-hexen-1-ol | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.10 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.00 | 0.7 | 0.9 | 1.1 | 1.4 | 0.3 | 0.4 |
ethyl octanoate | 0.38 ± 0.02 | 0.42 ± 0.02 | 0.54 ± 0.03 a | 0.30 ± 0.02 b | 0.41 ± 0.02 | 0.41 ± 0.02 | 237.5 | 262.5 | 337.5 | 187.5 | 256.3 | 256.3 |
1-heptanol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
acetic acid * | 3.84 ± 0.05 b | 11.48 ± 0.14 a | 7.17 ± 0.09 b | 10.87 ± 0.13 a | 6.60 ± 0.08 b | 9.07 ± 0.11 a | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 |
linalool | 0.012 ± 0.001 | 0.018 ± 0.001 | 0.007 ± 0.001 | 0.012 ± 0.001 | 0.009 ± 0.001 | 0.012 ± 0.001 | 2.0 | 3.0 | 1.2 | 2.0 | 1.5 | 2.0 |
isobutyric acid | 10.10 ± 0.50 b | 13.95 ± 0.53 a | 11.49 ± 0.44 b | 13.00 ± 0.49 a | 13.76 ± 0.53 a | 12.13 ± 0.46 b | 1.2 | 1.7 | 1.4 | 1.6 | 1.7 | 1.5 |
butyric acid | 8.88 ± 0.30 b | 12.47 ± 0.40 a | 10.61 ± 0.34 b | 13.58 ± 0.43 a | 7.58 ± 0.26 b | 8.63 ± 0.27 a | 37 | 52 | 44.2 | 56.6 | 31.6 | 36 |
ethyl decanoate * | 0.14 ± 0.02 b | 0.20 ± 0.01 a | 0.16 ± 0.01 b | 0.21 ± 0.01 a | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.7 | 1.0 | 0.8 | 1.1 | 0.6 | 0.7 |
isovaleric acid | <LOQ | 3.38 ± 0.08 | 2.00 ± 0.05 b | 2.76 ± 0.07 a | 3.01 ± 0.08 | 3.24 ± 0.08 | 0.0 | 28.2 | 16.7 | 23 | 25.1 | 27 |
diethyl succinate * | 1.45 ± 0.06 b | 2.24 ± 0.09 a | 1.28 ± 0.05 b | 2.09 ± 0.09 a | 2.70 ± 0.11 b | 3.22 ± 0.14 a | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3-methylthio-1-propanol * | 3.02 ± 0.05 b | 4.37 ± 0.09 a | 2.53 ± 0.05 b | 3.52 ± 0.07 a | 2.85 ± 0.06 a | 2.39 ± 0.05 b | 6.0 | 8.7 | 5.1 | 7.0 | 5.7 | 4.8 |
geranyl acetate | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
β -citronellol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
geraniol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
nerol | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
phenyl ethyl acetate | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
β -damascenone | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
hexanoic acid | 2.14 ± 0.03 | 2.01 ± 0.04 | 2.77 ± 0.04 b | 3.31 ± 0.04 a | 1.95 ± 0.03 b | 2.35 ± 0.03 a | 5.1 | 4.8 | 6.6 | 7.9 | 4.6 | 5.6 |
ethyl isopentyl succinate * | 0.09 ± 0.01 b | 0.15 ± 0.01 a | 0.06 ± 0.02 b | 0.13 ± 0.14 a | 0.14 ± 0.03 | 0.14 ± 0.01 | ||||||
2-phenyl ethanol * | 65.94 ± 2.36 b | 108.11 ± 3.86 a | 66.26 ± 2.37 b | 104.52 ± 3.74 a | 69.37 ± 2.48 a | 64.85 ± 2.32 b | 59.9 | 98.3 | 60.2 | 95 | 63.1 | 59 |
β-ionone | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | ||||||
octanoic acid | 5.52 ± 0.07 b | 9.97 ± 0.12 a | 5.43 ± 0.21 b | 7.23 ± 0.10 a | 8.99 ± 0.11 a | 7.24 ± 0.09 b | 11 | 19.9 | 11 | 14.5 | 18.0 | 14.5 |
monoethyl succinate * | 0.20 ± 0.01 b | 0.35 ± 0.02 a | 0.20 ± 0.08 | 0.26 ± 0.02 | 0.32 ± 0.02 a | 0.26 ± 0.01 b | ||||||
Total | 303.60 ± 12.01 b | 449.94 ± 15.20 a | 339.17 ± 17.08 b | 422.91 ± 10.51 a | 393.41 ± 21.00 a | 361.59 ± 18.63 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natrella, G.; Noviello, M.; Trani, A.; Faccia, M.; Gambacorta, G. The Effect of Ultrasound Treatment in Winemaking on the Volatile Compounds of Aglianico, Nero di Troia, and Primitivo Red Wines. Foods 2023, 12, 648. https://doi.org/10.3390/foods12030648
Natrella G, Noviello M, Trani A, Faccia M, Gambacorta G. The Effect of Ultrasound Treatment in Winemaking on the Volatile Compounds of Aglianico, Nero di Troia, and Primitivo Red Wines. Foods. 2023; 12(3):648. https://doi.org/10.3390/foods12030648
Chicago/Turabian StyleNatrella, Giuseppe, Mirella Noviello, Antonio Trani, Michele Faccia, and Giuseppe Gambacorta. 2023. "The Effect of Ultrasound Treatment in Winemaking on the Volatile Compounds of Aglianico, Nero di Troia, and Primitivo Red Wines" Foods 12, no. 3: 648. https://doi.org/10.3390/foods12030648
APA StyleNatrella, G., Noviello, M., Trani, A., Faccia, M., & Gambacorta, G. (2023). The Effect of Ultrasound Treatment in Winemaking on the Volatile Compounds of Aglianico, Nero di Troia, and Primitivo Red Wines. Foods, 12(3), 648. https://doi.org/10.3390/foods12030648