Effect of Rigor Stage and Pressurisation on Lipid Damage, Total Volatile Amine Formation and Autolysis Development in Palm Ruff Stored on Ice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Fish and Rigor Condition
2.2. HPP of Fish Samples
2.3. Storage on Ice and Sampling Procedure
2.4. Determination of Moisture and Lipid Values in Palm Ruff Muscle
2.5. Assessment of Lipid Damage Development
2.6. Assessment of the Total Volatile Base-Nitrogen (TVB-N) Content and the K Value (%)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Moisture and Lipid Contents in the Refrigerated Fish Muscle
3.2. Lipid Oxidation Development in the Refrigerated Fish Muscle
3.3. Lipid Hydrolysis Development in the Refrigerated Fish
3.4. TVB-N Content in the Refrigerated Fish
3.5. K Value (%) of the Fish Muscle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whittle, K.; Hardy, R.; Hobbs, G. Chilled fish and fishery products. In Chilled Foods: The State of the Art; Gormley, T., Ed.; Elsevier Applied Science: New York, NY, USA, 1990; pp. 87–116. [Google Scholar]
- Özoğul, Y. Methods for freshness quality and deterioration. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 189–214. [Google Scholar]
- Campus, M. High pressure processing of meat, meat products and seafood. Food Eng. Rev. 2010, 2, 256–273. [Google Scholar] [CrossRef]
- Truong, B.Q.; Buckow, R.; Stathopoulos, C.E.; Nguyen, M.H. Advances in high-pressure processing of fish muscles. Food Eng. Rev. 2015, 7, 109–129. [Google Scholar] [CrossRef]
- Aubourg, S.P. Impact of high-pressure processing on chemical constituents and nutritional properties in aquatic foods: A review. Int. J. Food Sci. Technol. 2018, 53, 873–891. [Google Scholar] [CrossRef]
- Tobianssen, T.; Akse, L.; Midling, K.; Aas, K.; Dahl, R.; Eilertsen, G. The effect of pre rigor processing of cod (Gadhus morhua L.) on quality and shelf life. In Seafood Research from Fish to Dish—Quality, Safety and Processing of Wild and Farmed Fish; Luten, J., Jacobsen, C., Bekaert, K., Sæbø, A., Oehlenschlager, J., Eds.; Wageningen Academic: Wageningen, The Netherlands, 2006; pp. 149–159. [Google Scholar]
- Kristoffersen, S.; Vang, B.; Larsen, R.; Olsen, R.L. Pre-rigor filleting and drip loss from fillets of farmed Atlantic cod (Gadus morhua L.). Aquac. Res. 2007, 38, 1721–1731. [Google Scholar] [CrossRef]
- Birkeland, S.; Akse, L. Study of the quality characteristics in cold-smoked salmon (Salmo salar) originating from pre- or post-rigor raw material. J. Food Sci. 2010, 75, E580–E587. [Google Scholar] [CrossRef]
- Gudjónsdóttir, M.; Traoré, A.; Jónsson, A.; Karlsdóttir, M.G.; Arason, S. Effects of catching method, rigor status at processing, and pre-salting methods on the water distribution and characteristics of heavily salted Atlantic cod (Gadus morhua) muscle: A multi-parametric magnetic resonance study. In Modern Magnetic Resonance; Webb, G.A., Ed.; Springer International Publishing AG, Royal Society of Chemistry: London, UK, 2018; pp. 1883–1900. [Google Scholar]
- Duran, A.; Erdemli, U.; Karakaya, M.; Yilmaz, M. Effect of slaughter methods on physical, biochemical and microbiological quality of rainbow trout Oncorhynchus mykiss and mirror carp Cyprinus carpio filleted in pre-, in- or post-rigor periods. Fish. Sci. 2008, 74, 1146–1155. [Google Scholar] [CrossRef]
- Aune, T.F.; Olsen, R.L.; Akse, L.; Ytterstad, E.; Esaiassen, M. Influence of different cold storage temperatures during the Rigor mortis phase on fillet contraction and longer-term quality changes of Atlantic cod fillets. LWT-Food Sci. Technol. 2014, 59, 583–586. [Google Scholar] [CrossRef]
- Zhang, B.; Pérez-Won, M.; Tabilo-Munizaga, G.; Aubourg, S.P. Inhibition of lipid damage in refrigerated salmon (Oncorhynchus kisutch) by a combined treatment of CO2 packaging and high-pressure processing. Int. J. Food Sci. Technol. 2021, 56, 5968–5976. [Google Scholar] [CrossRef]
- FAO Inform. Fishery and Aquaculture Statistics. Aquaculture production, Yearbook 2019; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; pp. 21–341. [Google Scholar]
- Argüello-Guevara, W.; Bohórquez-Cruz, M.; Silva, A. Effects of two temperatures on yield and increase in cranial skeletal abnormalities during early development of palm ruff, Seriolella violacea (Guichenot 1848). Aquac. Res. 2017, 48, 298–310. [Google Scholar] [CrossRef]
- González, A.; Silva, A.; Gajardo, G.; Martínez, C. Survival and growth improvement of palm ruff, Seriolella violacea, larvae fed Artemia nauplii enriched with an experimental emulsion. J. World Aquac. Soc. 2017, 48, 268–279. [Google Scholar] [CrossRef]
- Larrea-Wachtendorff, D.; Tabilo-Munizaga, G.; Moreno-Osorio, L.; Villalobos-Carvajal, R.; Pérez-Won, M. Protein changes caused by high hydrostatic pressure (HHP): A study using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Food Eng. Rev. 2015, 7, 222–230. [Google Scholar] [CrossRef]
- Guzmán-Meza, M.; Segura-Ponce, L.; Tabilo-Munizaga, G.; Perez-Won, M. Development of a mathematical protocol to graphically analyze irreversible changes induced by high pressure treatment in fish muscle proteins. J. Food Engin. 2017, 215, 134–146. [Google Scholar] [CrossRef]
- Roco, T.; Torres, M.J.; Briones-Labarca, V.; Reyes, J.E.; Tabilo-Munizaga, G.; Stucken, K.; Lemus-Mondaca, R.; Pérez-Won, M. Effect of high hydrostatic pressure treatment on physical parameters, ultrastructure and shelf life of pre- and post-rigor mortis palm ruff (Seriolella violacea) under chilled storage. Food Res. Int. 2018, 108, 192–202. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Deiva-Portilla, D.; Pérez-Won, M.; Tabilo-Munizaga, G.; Aubourg, S.P. Effects of high pressure treatment on physicochemical quality of pre- and post-rigor palm ruff (Seriolella violacea) fillets. J. Aquat. Food Prod. Technol. 2018, 27, 379–393. [Google Scholar] [CrossRef]
- AOAC. Official Methods for Analysis of the Association of Analytical Chemistry, 15th ed.; Association of Official Chemists, Inc.: Arlington, VA, USA, 1990; pp. 931–935. [Google Scholar]
- Bligh, E.; Dyer, W. A rapid method of total extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Herbes, S.E.; Allen, C.P. Lipid quantification of freshwater invertebrates: Method modification for microquantitation. Can. J. Fish. Aquat. Sci. 1983, 40, 1315–1317. [Google Scholar] [CrossRef]
- Kim, R.; Labella, F. Comparison of analytical methods for monitoring autoxidation profiles of authentic lipids. J. Lipid Res. 1987, 28, 1110–1117. [Google Scholar] [CrossRef]
- Chapman, R.; McKay, J. The estimation of peroxides in fats and oils by the ferric thiocyanate method. J. Am. Oil Chem. Soc. 1949, 26, 360–363. [Google Scholar] [CrossRef]
- Torres, J.A.; Vázquez, M.; Saraiva, J.A.; Gallardo, J.M.; Aubourg, S.P. Lipid damage inhibition by previous high pressure processing in white muscle of frozen horse mackerel. Eur. J. Lipid Sci. Technol. 2013, 115, 1454–1461. [Google Scholar] [CrossRef]
- Lowry, R.; Tinsley, I. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976, 53, 470–472. [Google Scholar] [CrossRef]
- Álvarez, V.; Feás, X.; Barros-Velázquez, J.; Aubourg, S.P. Quality changes of farmed blackspot seabream (Pagellus bogaraveo) subjected to slaughtering and storage under flow ice and ozonised flow ice. Int. J. Food Sci. Technol. 2009, 44, 1561–1571. [Google Scholar] [CrossRef]
- Ryder, J.M. Determination of adenosine triphosphate and its breakdown products in fish muscle by high performance liquid chromatography. J. Agric. Food Chem. 1985, 33, 678–680. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Piñeiro, C.; Gallardo, J.M.; Barros-Velázquez, J. Biochemical changes and quality loss during chilled storage of farmed turbot (Psetta maxima). Food Chem. 2005, 90, 445–452. [Google Scholar] [CrossRef]
- Piclet, G. Le poisson aliment. Composition-intérêt nutritionnel. Cah. Nutr. Diét. 1987, 22, 317–335. [Google Scholar]
- Carrera, M.; Fidalgo, L.; Vázquez, M.; Saraiva, J.A.; Aubourg, S.P. Comparative effect of a previous 150-MPa treatment on the quality loss of frozen hake stored at different temperatures. J. Sci. Food Agric. 2020, 100, 4245–4251. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Nguyen, H.T.; Pham, M.A. Rigor mortis development and effects of filleting conditions on the quality of Tra catfish (Pangasius hypophthalmus) fillets. J. Food Sci. Technol. 2020, 57, 1320–1330. [Google Scholar] [CrossRef]
- Bhat, T.H.; Chouksey, M.K.; Balange, A.K.; Nayak, B.B. Effect of severing skeletal muscle at different stage of rigor on the quality of pacific white shrimp (Litopenaeus vannamei). J. Food Process. Preserv. 2018, 42, e13363. [Google Scholar] [CrossRef]
- Jalalian, M.; Shabanpour, B.; Shabani, A.; Gorgin, S.; Khomeiri, M. Quality assessment of pre- and post-rigor frozen silver carp (Hypophthalmichthys molitrix), during refrigerated storage (4 ± 1 °C). Iran. J. Food Sci. Technol. 2012, Winter, 101–111. [Google Scholar]
- Bhat, T.H.; Chouksey, M.K.; Balange, A.K.; Nayak, B.B. Effect of heat treatment at different stages of rigor on the quality of Pacific white shrimp (Litopenaeus vannamei). J. Aquat. Food Prod. Technol. 2017, 26, 770–780. [Google Scholar] [CrossRef]
- Rustad, T. Lipid oxidation. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 87–95. [Google Scholar]
- Ramírez-Suárez, J.; Morrisey, M. Effect of high pressure processing (HPP) on shelf life of albacore tuna (Thunnus alalunga) minced muscle. Innov. Food Sci. Emerg. Technol. 2006, 7, 19–27. [Google Scholar] [CrossRef]
- Tironi, V.; Tomás, M.; Añón, M.C. Structural and functional changes in myofibrillar proteins of sea salmon (Pseudopercis semifasciata) by interaction with malondialdehyde (RI). J. Food Sci. 2002, 67, 930–935. [Google Scholar] [CrossRef]
- Maluenda, D.; Roco, T.; Tabilo-Munizaga, G.; Pérez-Won, M.; Aubourg, S.P. Effect of a previous high hydrostatic pressure treatment on lipid damage in chilled Chilean jack mackerel (Trachurus murphyi). Grasas Aceites 2013, 64, 472–481. [Google Scholar]
- Ohshima, T.; Nakagawa, T.; Koizumi, C. Effect of high hydrostatic pressure on the enzymatic degradation of phospholipids in fish muscle during storage. In Seafood Science and Technology; Bligh, E., Ed.; Fishing News Books: Oxford, UK, 1992; pp. 64–75. [Google Scholar]
- Aubourg, S.P.; Tabilo-Munizaga, G.; Reyes, J.E.; Rodríguez, A.; Pérez-Won, M. Effect of high-pressure treatment on microbial activity and lipid oxidation in chilled Coho salmon. Eur. J. Lipid Sci. Technol. 2010, 112, 362–372. [Google Scholar] [CrossRef]
- Vázquez, M.; Torres, J.A.; Gallardo, J.M.; Saraiva, J.A.; Aubourg, S.P. Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): Effect of a high hydrostatic pressure pre-treatment. Innov. Food Sci. Emerg. Technol. 2013, 18, 24–30. [Google Scholar] [CrossRef]
- Vázquez, M.; Fidalgo, L.G.; Saraiva, J.A.; Aubourg, S.P. Preservative effect of a previous high-pressure treatment on the chemical changes related to quality loss in frozen hake (Merluccius merluccius). Food Bioprocess Technol. 2018, 11, 293–304. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Barnaba, C.; Barbosa-Cánovas, G. Effects of high pressure processing on lipid oxidation: A review. Innov. Food Sci. Emerg. Technol. 2014, 22, 1–10. [Google Scholar] [CrossRef]
- Alves de Oliveira, F.; Neto, O.C.; dos Santos, L.M.R.; Ferreira, E.H.R.; Rosenthal, A. Effect of high pressure on fish meat quality. A review. Trends Food Sci. Technol. 2017, 66, 1–19. [Google Scholar] [CrossRef]
- Ortea, I.; Rodríguez, A.; Tabilo-Munizaga, G.; Pérez-Won, M.; Aubourg, S.P. Effect of hydrostatic high-pressure treatment on proteins, lipids and nucleotides in chilled farmed salmon (Oncorhynchus kisutch) muscle. Eur. Food Res. Technol. 2010, 230, 925–934. [Google Scholar] [CrossRef]
- Gou, J.; Lee, H.Y.; Ahn, J. Effect of high pressure processing on the quality of squid (Todarodes pacificus) during refrigerated storage. Food Chem. 2010, 119, 471–476. [Google Scholar] [CrossRef]
- Malinowska-Pańczyk, E.; Kołodziejska, I. The effect of high pressure on formation of volatile amines in minced meat of cod (Gadus morhua). Eur. Food Res. Technol. 2016, 242, 415–420. [Google Scholar] [CrossRef]
- Aristoy, M.C.; Mora, L.; Hernández-Cázares, A.S.; Toldrá, F. Nucleotides and nucleosides. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 57–68. [Google Scholar]
- Zampacavallo, G.; Parisi, G.; Mecatti, M.; Lupi, P.; Giorgi, G.; Poli, B.M. Evaluation of different methods of stunning/killing sea bass (Dicentrarchus labrax) by tissue stress/quality indicators. J. Food Sci. Technol. 2015, 52, 2585–2597. [Google Scholar] [CrossRef] [PubMed]
- Moriya, K.; Nakazawa, N.; Osako, K.; Okazaki, E. Effect of subzero temperature treatment at −2 °C before thawing on prevention of thaw rigor, biochemical changes and rate of ATP consumption in frozen chub mackerel (Scomber japonicus). LWT—Food Sci. Technol. 2019, 114, 108396. [Google Scholar] [CrossRef]
- Ko, W.C.; Hsu, K.C. Changes in K value and microorganisms of tilapia fillet during storage at high-pressure, normal temperature. J. Food Prot. 2001, 64, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Kamalakanth, C.; Ginson, J.; Bindu, J.; Venkateswarlu, R.; Das, S.; Chauhan, O.; Srinivasa Gopal, T. Effect of high pressure on K-value, microbial and sensory characteristics of yellowfin tuna (Thunnus albacares) chunks in EVOH films during chill storage. Innov. Food Sci. Emerg. Technol. 2011, 12, 451–455. [Google Scholar] [CrossRef]
- Ginson, J.; Kamalakanth, C.; Bindu, J.; Venkateswarlu, R.; Das, S.; Chauhan, O.; Srinivasa Gopal, T. Changes in K value, microbiological and sensory acceptability of high pressure processed Indian white prawn (Fenneropenaeus indicus). Food Bioprocess Technol. 2013, 6, 1175–1180. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Jin, Y.; Deng, Y.; Zhao, Y. Effects of high hydrostatic pressure processing on purine, taurine, cholesterol, antioxidant nutrients and antioxidant activity of squid (Todarodes pacificus) muscles. Food Cont. 2016, 60, 189–195. [Google Scholar] [CrossRef]
Chemical Constituent | Chilling Time (days) | Rigor Condition (pre/post) | Previous HPP (MPa) | ||
---|---|---|---|---|---|
0.1 (Control) | 450 | 550 | |||
Moisture content | Initial | Pre | 76.94 a (0.05) | ||
Post | 77.37 b (0.33) | ||||
10 | Pre | 77.48 bC (0.10) | 76.15 bA (0.08) | 76.69 aB (0.02) | |
Post | 75.60 aA (0.02) | 75.82 aA (0.15) | 76.62 aB (0.01) | ||
12 | Pre | 77.42 bB (0.08) | 77.34 bB (0.05) | 76.88 bA (0.09) | |
Post | 76.89 aC (0.03) | 76.32 aB (0.15) | 75.77 aA (0.05) | ||
Lipid content | Initial | Pre | 0.81 b (0.04) | ||
Post | 0.68 a (0.03) | ||||
10 | Pre | 5.3 aA (0.3) | 6.8 aB (0.8) | 5.0 aA (0.2) | |
Post | 6.2 aA (0.5) | 9.9 bB (0.7) | 9.1 bB (1.1) | ||
12 | Pre | 5.8 aA (0.5) | 8.7 aB (0.2) | 6.5 aA (0.1) | |
Post | 6.0 aA (0.3) | 10.5 bB (1.2) | 6.8 aA (0.1) |
Quality Index | Chilling Time (days) | Rigor Condition (pre/post) | Previous HPP (MPa) | ||
---|---|---|---|---|---|
0.1 (Control) | 450 | 550 | |||
Conjugated diene (CD) formation *** | Initial | Pre | 0.81 a (0.14) | ||
Post | 0.73 a (0.12) | ||||
10 | Pre | 0.81 aA (0.09) | 0.81 aA (0.20) | 0.83 aA (0.08) | |
Post | 0.59 aA (0.21) | 0.82 aAB (0.09) | 1.01 aB (0.09) | ||
12 | Pre | 0.74 aA (0.08) | 0.68 aA (0.21) | 0.72 aA (0.11) | |
Post | 0.79 aA (0.12) | 0.89 aA (0.09) | 1.07 aA (0.12) | ||
Peroxide value (PV) (meq. active oxygen·kg−1 lipids) | Initial | Pre | 2.81 b (0.94) | ||
Post | 0.96 a (0.55) | ||||
10 | Pre | 4.65 aA (0.62) | 5.16 aA (0.44) | 5.62 aA (1.34) | |
Post | 5.89 aB (0.38) | 4.81 aA (0.05) | 4.11 aA (0.44) | ||
12 | Pre | 5.58 bA (0.06) | 6.49 aAB (1.26) | 6.81 aB (0.40) | |
Post | 7.96 bA (0.41) | 8.31 bA (0.10) | 6.84 aA (1.96) |
Quality Index | Chilling Time (days) | Rigor Condition (pre/post) | Previous HPP (MPa) | ||
---|---|---|---|---|---|
0.1 (Control) | 450 | 550 | |||
FR | Initial | Pre | 0.42 a (0.26) | ||
Post | 0.89 a (0.11) | ||||
10 | Pre | 0.85 aC (0.03) | 0.40 aB (0.02) | 0.29 aA (0.03) | |
Post | 1.50 bC (0.19) | 0.61 bB (0.02) | 0.37 aA (0.03) | ||
12 | Pre | 1.11 aC (0.03) | 0.54 aB (0.08) | 0.40 aA (0.03) | |
Post | 1.90 bC (0.45) | 0.86 bB (0.04) | 0.53 aA (0.20) | ||
FFA content (g·kg−1 lipids) | Initial | Pre | 43.6 a (5.2) | ||
Post | 45.1 a (4.8) | ||||
10 | Pre | 58.9 aC (3.8) | 22.4 aB (0.6) | 15.1 aA (3.5) | |
Post | 118.4 bB (10.4) | 39.0 bA (2.8) | 33.8 bA (6.1) | ||
12 | Pre | 188.0 aB (6.3) | 35.2 aA (2.9) | 30.3 aA (6.3) | |
Post | 232.5 bB (2.3) | 50.6 bA (5.0) | 47.1 bA (4.8) |
Quality Index | Chilling Time (days) | Rigor Condition (pre/post) | Previous HPP (MPa) | ||
---|---|---|---|---|---|
0.1 (Control) | 450 | 550 | |||
TVB-N content (g·kg−1 muscle) | Initial | Pre | 161.3 a (11.6) | ||
Post | 162.7 a (7.4) | ||||
10 | Pre | 357.2 aB (5.4) | 219.5 aA (4.7) | 227.3 aA (6.9) | |
Post | 351.1 aB (37.5) | 218.3 aA (9.0) | 217.7 aA (5.3) | ||
12 | Pre | 387.6 aC (27.5) | 230.3 aB (4.5) | 216.3 aA (0.5) | |
Post | 412.2 aB (7.2) | 250.3 bA (13.3) | 243.0 bA (9.1) | ||
K value (%) | Initial | Pre | 14.4 ± 1.9 a | ||
Post | 15.01 ± 1.2 a | ||||
10 | Pre | 86.9 aC (2.5) | 65.3 aB (1.3) | 59.0 aA (1.2) | |
Post | 90.1 aB (1.3) | 71.1 bA (1.2) | 70.3 bA (1.2) | ||
12 | Pre | 92.1 aB (1.1) | 75.2 aA (1.4) | 73.7 aA (1.4) | |
Post | 96.3 bB (1.5) | 77.2 aA (1.1) | 76.1 aA (1.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malga, J.M.; Roco, T.; Silva, A.; Tabilo-Munizaga, G.; Pérez-Won, M.; Aubourg, S.P. Effect of Rigor Stage and Pressurisation on Lipid Damage, Total Volatile Amine Formation and Autolysis Development in Palm Ruff Stored on Ice. Foods 2023, 12, 799. https://doi.org/10.3390/foods12040799
Malga JM, Roco T, Silva A, Tabilo-Munizaga G, Pérez-Won M, Aubourg SP. Effect of Rigor Stage and Pressurisation on Lipid Damage, Total Volatile Amine Formation and Autolysis Development in Palm Ruff Stored on Ice. Foods. 2023; 12(4):799. https://doi.org/10.3390/foods12040799
Chicago/Turabian StyleMalga, José M., Teresa Roco, Alfonso Silva, Gipsy Tabilo-Munizaga, Mario Pérez-Won, and Santiago P. Aubourg. 2023. "Effect of Rigor Stage and Pressurisation on Lipid Damage, Total Volatile Amine Formation and Autolysis Development in Palm Ruff Stored on Ice" Foods 12, no. 4: 799. https://doi.org/10.3390/foods12040799
APA StyleMalga, J. M., Roco, T., Silva, A., Tabilo-Munizaga, G., Pérez-Won, M., & Aubourg, S. P. (2023). Effect of Rigor Stage and Pressurisation on Lipid Damage, Total Volatile Amine Formation and Autolysis Development in Palm Ruff Stored on Ice. Foods, 12(4), 799. https://doi.org/10.3390/foods12040799