Pork Fat and Meat: A Balance between Consumer Expectations and Nutrient Composition of Four Pig Breeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Marketing Research
2.2. Animals and Sample Preparation
2.3. Proximal Analysis
2.4. Chromatography of Fatty Acids
2.5. Histological Analysis
2.6. Raman Spectroscopy
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- OECD-FAO Agricultural Outlook 2022–2031. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook_19991142 (accessed on 1 November 2022).
- Estimated Pork Consumption around the World for 2021 and 2022. Available online: https://www.pig333.com/latest_swine_news/estimated-pork-consumption-around-the-world-for-2021-and-2022_18160/ (accessed on 1 November 2022).
- Pork Consumption Peaks in Recent Russian History. Available online: https://www.agroberichtenbuitenland.nl/actueel/nieuws/2021/06/16/pork-consumption-peaks-in-recent-russian-history (accessed on 1 November 2022).
- Borrisser-Pairó, F.; Kallas, Z.; Panella-Riera, N.; Avena, M.; Ibáñez, M.; Olivares, A.; Gil, J.M.; Oliver, M.A. Towards entire male pigs in Europe: A perspective from the Spanish supply chain. Res. Vet. Sci. 2016, 107, 20–29. [Google Scholar] [CrossRef]
- Sanchez-Sabate, R.; Sabaté, J. Consumer Attitudes towards Environmental Concerns of Meat Consumption: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1220. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Rochetti, G.; Pateiro, M.; Lucini, L.; Dominguez, R.; Lorenzo, J.M. The addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Lin-Schilstra, L.; Backus, G.; Snoek, H.; Mörlein, D. Consumers’ view on pork: Consumption motives and production preferences in ten European Union and four non-European Union countries. Meat Sci. 2022, 187, 108736. [Google Scholar] [CrossRef]
- Ueland, Ø.; Rødbotten, R.; Varela, P. Meat consumption and consumer attitudes—A Norwegian perspective. Meat Sci. 2022, 192, 108920. [Google Scholar] [CrossRef] [PubMed]
- Smed, S. Information and consumer perception of the “organic” attribute in fresh fruits and vegetables. Agric. Econ. 2012, 43, 33–48. [Google Scholar] [CrossRef]
- Verbeke, W.; Liu, R. The impacts of information about the risks and benefits of pork consumption on Chinese consumer perceptions towards, and intention to eat, pork. Meat Sci. 2014, 98, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, R. Functional or constructive attitudes: Which type drives consumers’ evaluation of meat products? Meat Sci. 2016, 117, 97–107. Available online: https://www.sciencedirect.com/science/article/pii/S0309174016300559 (accessed on 1 November 2022). [CrossRef]
- Duong, C.; Sung, B.; Lee, S.; Easton, J. Assessing Australian consumer preferences for fresh pork meat attributes: A best-worst approach on 46 attributes. Meat Sci. 2022, 193, 108954. [Google Scholar] [CrossRef] [PubMed]
- Poklukar, K.; Čandek-Potokar, M.; Batorek Lukač, N.; Tomažin, U.; Škrlep, M. Lipid Deposition and Metabolism in Local and Modern Pig Breeds: A Review. Animals 2020, 10, 424. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Wang, Y.; Thakali, K.; Morse, P.; Shelby, S.; Chen, J.; Apple, J.; Huang, Y. Comparison of Growth Performance and Meat Quality Traits of Commercial Cross-Bred Pigs versus the Large Black Pig Breed. Animals 2021, 11, 200. [Google Scholar] [CrossRef]
- Malhotra, N.K. Chapter 14. Sampling: Design and procedures. In Marketing Research: An Applied Orientation, 7th ed.; Pearson: New York, NY, USA, 2019; pp. 404–427. [Google Scholar]
- Biryukova, T.V. Organic products: Prospects for the development of consumer preferences. Educ. Law 2020, 4, 409–411. [Google Scholar]
- Isayenko, V.V. Pork through the eyes of buyers: A sociological study. Our Agric. 2022, 12, 62–67. [Google Scholar]
- Consumer Behavior in the Pork Market. Available online: https://meat-expert.ru/articles/579-potrebitelskoe-povedenie-na-rynke-svininy (accessed on 1 November 2022).
- Bykov, A.A. Marketing research of consumer preferences in the meat market of the Siberian federal district. Econ. Rev. 2020, 6, 7–12. [Google Scholar]
- Martyshenko, N.S. Marketing analysis of the consumer market of meat products in Primorsky Krai. API Econ. Manag. 2017, 1, 119–122. [Google Scholar]
- Xharavina, N.; Kapoulas, A.; Miaoulis, G. Netnography as a marketing research tool in the fashion industry in Southeast Europe. Int. J. Mark. Res. 2020, 62, 499–515. [Google Scholar] [CrossRef]
- Kopaničová, J.; Klepochová, D.; Francová, Z. Use of Netnography in Contemporary Marketing Research. CEBR 2022, 11, 111–131. [Google Scholar] [CrossRef]
- The Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists (AOAC): Gaithersburg, MD, USA, 2005. [Google Scholar]
- Ivankin, A.N.; Oliferenko, G.L.; Kulikovskii, A.V.; Chernukha, I.M.; Semenova, A.; Spiridonov, K.I.; Nasonova, V. Determination of unsaturated fatty acids with a migrating double bond in complex biological matrices by gas chromatography with flame ionization and mass spectrometry detection. J. Anal. Chem. 2016, 71, 1131–1137. [Google Scholar] [CrossRef]
- Romeis, B. Mikroskopische Technik, 17th ed.; Urban und Schwarzenberg: Munchen, Germany; Wien, Austria; Baltimore, MD, USA, 1989; p. 286. [Google Scholar]
- Velotto, S.; Claudia, V.; Crasto, A. Muscle fibre types, fat deposition and fatty acid profile of Casertana versus Large White pig. Anim. Sci. Pap. Rep. 2012, 30, 35–44. [Google Scholar]
- Lee, J.Y.; Park, J.H.; Mun, H.; Shim, W.B.; Lim, S.H.; Kim, M.G. Quantitative analysis of lard in animal fat mixture using visible Raman spectroscopy. Food Chem. 2018, 254, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Weathington, B.L.; Cunningham, C.J.L.; Pittenger, D.J. Understanding Business Research, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, UAS, 2012; pp. 435–483. [Google Scholar] [CrossRef]
- Results of a 2018 Sample Dietary Survey of the Population. Available online: https://rosstat.gov.ru/storage/mediabank/Racion.pdf (accessed on 1 November 2022). (In Russian)
- Macroeconomic Review: On Food Security and Consumption of Staple Foods in Russia. Institute for Comprehensive Strategic Studies. Available online: https://icss.ru/otrasli-i-ryinki/agropromyishlennyij-sektor/o-prodovolstvennoy-bezopasnosti-i-potreblenii-osnovnykh-produktov-pitaniya-v-rossii (accessed on 1 November 2022). (In Russian).
- Consumption of Pork: Rosselkhozbank Industry Expertise Centre. Available online: https://www.rbc.ru/business/22/04/2021/608017429a794728f12a12d3 (accessed on 1 November 2022). (In Russian).
- Sasaki, K.; Motoyama, M.; Watanabe, G.; Nakajima, I. Meat consumption and consumer attitudes in Japan: An overview. Meat Sci. 2022, 192, 108879. [Google Scholar] [CrossRef] [PubMed]
- Font-i-Furnols, M.; Guerrero, L. Spanish perspective on meat consumption and consumer attitudes. Meat Sci. 2022, 191, 108874. [Google Scholar] [CrossRef]
- de Araújo, P.D.; Araújo, W.M.C.; Patarata, L.; Fraqueza, M.J. Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products. Meat Sci. 2022, 193, 108952. [Google Scholar] [CrossRef]
- Razmaitė, V.; Šveistienė, R.; Jatkauskienė, V.; Šiukščius, A. Pork Consumption Frequencies, Attitudes and Sensory Acceptance of Traditional Products in Lithuania. Foods 2022, 11, 3292. [Google Scholar] [CrossRef]
- Zucoloto, F.S. Evolution of the human feeding behavior. Psychol. Neurosci. 2011, 4, 131–141. [Google Scholar] [CrossRef]
- Basson, A.R.; Cominelli, F.; Rodriguez-Palacios, A. ‘Statistical Irreproducibility’ Does Not Improve with Larger Sample Size: How to Quantify and Address Disease Data Multimodality in Human and Animal Research. J. Pers. Med. 2021, 23, 234. [Google Scholar] [CrossRef]
- Nakajima, I.; Oe, M.; Ojima, K.; Muroya, S.; Shibata, M.; Chikuni, K. Cellularity of developing subcutaneous adipose tissue in Landrace and Meishan pigs: Adipocyte size differences between two breeds. Anim. Sci. J. 2011, 82, 44–149. [Google Scholar] [CrossRef]
- Malodobra-Mazur, M.; Cierzniak, A.; Dobosz, T. Oleic acid influences the adipogenesis of 3T3-L1 cells via DNA Methylation and may predispose to obesity and obesity-related disorders. Lipids Health Dis. 2019, 18, 230. [Google Scholar] [CrossRef] [PubMed]
- Mantilla-Mora, G.; Ángel-Martín, A.; Moreno-Castellanos, N. Effects of oleic (18: 1n-9) and palmitic (16: 0) fatty acids on the metabolic state of adipocytes. Rev. De La Univ. Ind. De Santander 2021, 53, e310. [Google Scholar] [CrossRef]
- Griffin, B.A. How relevant is the ratio of dietary n-6 to n-3 polyunsaturated fatty acids to cardiovascular disease risk? Evidence from the OPTILIP study. Curr. Opin. Lipidol. 2008, 19, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Alfaia, C.M.; Lopes, P.A.; Madeira, M.S.; Pestana, J.M.; Coelho, D.; Toldrá, F.; Prates, J.A.M. Chapter Two—Current feeding strategies to improve pork intramuscular fat content and its nutritional quality. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2019; Volume 89, pp. 53–94. [Google Scholar] [CrossRef]
- Saleem, M.; Amin, A.; Irfan, M. Raman spectroscopy based characterization of cow, goat and buffalo fats. J. Food Sci. Technol. 2021, 58, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Berhe, D.T.; Eskildsen, C.E.; Lametsch, R.; Hviid, M.S.; van den Berg, F.; Engelsen, S.B. The prediction of total fatty acid parameters and individual fatty acids in pork backbone fat using Raman spectroscopy and chemometrics: Understanding the cage of covariance between highly correlated fat parameters. Meat Sci. 2016, 111, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Bain, W.E.; Craigie, C.; Hicks, T.M.; Loeffen, M.; Fraser-Miller, S.J.; Gordon, K.C. Fusion of three spectroscopic techniques for prediction of fatty acid in processed lamb. Meat Sci. 2023, 195, 109005. [Google Scholar] [CrossRef]
Items (%) | Pig Breed | |||
---|---|---|---|---|
Livny | Duroc | Altai | Mangalitsa | |
Moisture | 62.9 ±5.0 a | 71.88 ± 1.01 b | 70.22 ± 0.76 b | 63.45 ± 0.65 a |
Protein | 18.23 ± 2.71 a | 22.72 ± 0.14 b | 22.10 ± 0.52 b | 18.91 ± 1.13 a |
Fat | 17.92 ± 1.40 a | 4.32 ± 0.13 b | 6.40 ± 0.38 b | 16.64 ± 2.12 a |
Ash | 0.95 ± 0.13 | 0.96 ± 0.05 | 1.12 ± 0.05 | 0.95 ± 0.09 |
Parameters | Duroc | Livny | Altai | Mangalitsa |
---|---|---|---|---|
C8:0 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.01 ± 0.01 b |
C10:0 | 0.06 ± 0.03 | 0.06 ± 0.01 a | 0.07 ± 0.01 | 0.09 ± 0.00 b |
C12:0 | 0.07 ± 0.01 a | 0.09 ± 0.02 b | 0.08 ± 0.01 a | 0.10 ± 0.01 b |
C14:0 | 1.21 ± 0.18 a | 1.67 ± 0.23 b | 1.28 ± 0.06 a | 1.63 ± 0.13 b |
C15:0 | 0.04 ± 0.03 a | 0.09 ± 0.02 b | 0.07 ± 0.01 b | 0.06 ± 0.02 |
C16:0 | 24.16 ± 1.32 a | 24.11 ± 2.01 a | 21.76 ± 0.35 b | 25.00 ± 1.01a |
C17:0 | 0.70 ± 0.09 a | 1.07 ± 0.20 b | 0.86 ± 0.11a | 0.72 ± 0.02 a |
C18:0 | 17.31 ± 2.59 a | 12.39 ± 1.90 b | 12.81 ± 1.47 b | 12.58 ± 1.07 b |
C20:0 | 0.29 ± 0.05 a | 0.18 ± 0.02 b | 0.21 ± 0.04 b | 0.14 ± 0.12 b |
C21:0 | 0.10 ± 0.03 | 0.11 ± 0.12 | 0.04 ± 0.01 | 0.09 ± 0.05 |
C22:0 | 0.01 ± 0.02 a | 0.05 ± 0.01 b | 0.02 ± 0.02 a | 0.01 ± 0.01 a |
ΣSFA | 43.93 ± 2.93 a | 39.82 ± 3.91 | 37.18 ± 1.68 b | 40.42 ± 1.79 |
C14:1 | 0.00 ± 0.00 a,c | 0.03 ± 0.01 b | 0.00 ± 0.00 a,c | 0.02 ± 0.01 a,d |
C16:1 | 2.03 ± 0.63 a | 3.15 ± 0.47 b | 1.90 ± 0.31 a | 3.11 ± 0.42 b |
C17:1 | 0.26 ± 0.06 a | 0.49 ± 0.11 b | 0.23 ± 0.15 a | 0.26 ± 0.02 a |
C18:1 | 39.50 ± 1.61 a | 44.37 ± 1.87 b,c | 31.55 ± 2.23 b,d,e | 36.15 ± 1.82 b,d,f |
C20:1 n–9 | 1.13 ± 0.25 a | 1.15 ± 0.23 a | 0.68 ± 0.03 b | 1.16 ± 0.02 a |
C22:1 n–9 | 0.01 ± 0.02 | 0.02 ± 0.02 | 0.02 ± 0.03 | 0.02 ± 0.03 |
ΣMUFA | 42.91 ± 1.68 a,c | 49.20 ± 2.15 b | 34.37 ± 2.57 a,d | 41.04 ± 1.91 a,c |
C18:2 n−6 | 11.44 ± 2.39 a,c | 9.39 ± 2.08 a,c | 25.65 ± 1.35 b | 15.64 ± 0.43 a,d |
C18:2 n−6 | 0.00 ± 0.00 a | 0.03 ± 0.02 b | 0.00 ± 0.00 a | 0.04 ± 0.04 b |
C18:3 n−3 | 0.60 ± 0.32 a,c | 0.60 ± 0.15 a,c | 1.01 ± 0.07 b | 1.42 ± 0.21 a,d |
C20:4 n−6 | 0.21 ± 0.06 a | 0.23 ± 0.09 a | 0.39 ± 0.06 b | 0.22 ± 0.05 a |
C20:5 n−3 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.01 ± 0.02 b |
C20:3 n−6 | 0.09 ± 0.02 a | 0.10 ± 0.03 a | 0.17 ± 0.02 b | 0.09 ± 0.05 a |
C20:2 n−6 | 0.75 ± 0.15 a,c | 0.53 ± 0.21 b | 1.10 ± 0.07 a,d | 0.80 ± 0.02 a,c |
C20:3 n−3 | 0.07 ± 0.05 a | 0.10 ± 0.05 a | 0.13 ± 0.01 a | 0.24 ± 0.05 b |
C22:6 n−3 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.07 ± 0.06 b |
ΣPUFA | 13.16 ± 2.82 a,c | 10.97 ± 2.55 a,c | 28.45 ± 1.47 b | 18.54 ± 0.49 a,d |
ΣUFA | 56.07 ± 2.93 a | 60.18 ± 3.91 | 62.82 ± 1.68 b | 59.58 ± 1.78 |
ΣPUFA/ΣSFA | 0.30 ± 0.08 a,c | 0.28 ± 0.096 a,c | 0.77 ± 0.04 b | 0.46 ± 0.02 a,d |
Σn−3 PUFA | 0.67 ± 0.36 a,c | 0.70 ± 0.19 a,c | 1.13 ± 0.08 b | 1.74 ± 0.20 a,d |
Σn−6 PUFA | 12.49 ± 2.55 a,c | 10.27 ± 2.37 a,c | 27.31 ± 1.41 b | 16.81 ± 0.30 a,d |
Σn−3 PUFA/Σn−6 PUFA | 0.05 ± 0.02 a | 0.07 ± 0.01 a,c | 0.04 ± 0.00 a,d | 0.10 ± 0.01 b |
C18:2/C14 | 9.53 ± 1.82 a,c | 5.89 ± 2.28 b | 20.04 ± 1.31 a,d | 9.62 ± 0.55 a,c |
C18:1/C14 | 33.37 ± 4.91 a | 27.14 ± 4.88 b | 24.65 ± 1.97 b | 22.48 ± 2.87 b |
ΣFAshort (from C4 to C10) | 0.062 ± 0.032 a | 0.059 ± 0.009 a | 0.067 ± 0.011 | 0.093 ± 0.010 b |
ΣFAmedium (from C11 to C16) | 27.49 ± 1.81 a | 29.14 ± 2.40 a | 25.09 ± 0.12 b | 29.91 ± 1.30 a |
ΣFAlong ( > C17) | 72.45 ± 1.83 | 70.80 ± 2.41 a | 74.85 ± 0.13 b | 70.00 ± 1.29 a |
ΣC4-C16/ΣC17-C24 | 0.380 ± 0.03 | 0.414 ± 0.047 a | 0.336 ± 0.002 b | 0.429 ± 0.026 a |
IA | 0.520 ± 0.047 a | 0.517 ± 0.078 a | 0.430 ± 0.015 b | 0.532 ± 0.039 a |
IT | 1.44 ± 0.19 a | 1.21 ± 0.21 b | 1.05 ± 0.08 b | 1.15 ± 0.08 b |
IA/IT | 0.362 ± 0.031 a | 0.430 ± 0.017 b,c | 0.411 ± 0.017 b,c | 0.464 ± 0.023 b,d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernukha, I.; Kotenkova, E.; Pchelkina, V.; Ilyin, N.; Utyanov, D.; Kasimova, T.; Surzhik, A.; Fedulova, L. Pork Fat and Meat: A Balance between Consumer Expectations and Nutrient Composition of Four Pig Breeds. Foods 2023, 12, 690. https://doi.org/10.3390/foods12040690
Chernukha I, Kotenkova E, Pchelkina V, Ilyin N, Utyanov D, Kasimova T, Surzhik A, Fedulova L. Pork Fat and Meat: A Balance between Consumer Expectations and Nutrient Composition of Four Pig Breeds. Foods. 2023; 12(4):690. https://doi.org/10.3390/foods12040690
Chicago/Turabian StyleChernukha, Irina, Elena Kotenkova, Viktoriya Pchelkina, Nikolay Ilyin, Dmitry Utyanov, Tatyana Kasimova, Aleksandra Surzhik, and Lilia Fedulova. 2023. "Pork Fat and Meat: A Balance between Consumer Expectations and Nutrient Composition of Four Pig Breeds" Foods 12, no. 4: 690. https://doi.org/10.3390/foods12040690
APA StyleChernukha, I., Kotenkova, E., Pchelkina, V., Ilyin, N., Utyanov, D., Kasimova, T., Surzhik, A., & Fedulova, L. (2023). Pork Fat and Meat: A Balance between Consumer Expectations and Nutrient Composition of Four Pig Breeds. Foods, 12(4), 690. https://doi.org/10.3390/foods12040690