Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods
Abstract
:1. Introduction
2. A Broken Global Food System. What Way Out?
3. The Mediterranean Diet Is Simultaneously Healthy, Sustainable, and Rooted in Biodiversity
4. Role of Aromatic Plants in the MD Cuisine
5. Phenolic Compounds
5.1. Categorizing Phenolic Compounds from Plant Foods
5.1.1. Simple Phenols and Derivatives
5.1.2. Chalcones and Derivatives
5.1.3. Coumarins
6. Phenolic Compounds in Mediterranean Aromatic Plants
Common Name/Species | Culinary and Folk Medicine Uses | Reported Phenolic Compounds | Evidence-Based Health Outcomes | References |
---|---|---|---|---|
Coriander/Coriandrum sativum | Both, the fresh leaves, and seeds can be used as a seasoning, with fresh leaves generally conveying a more intense aroma to rice dishes, salads, stews and more; | The flavonol quercetin 1, is reported along with gallic, protocatecuic and ferulic acids; | Antioxidant, anti-cancer, anti-microbial, anti-thrombogenic, and neuroprotective; | [45,62,66] |
Oregano/Origanum vulgare L. | Very popular seasoning for salads and pizza; in folk medicine, it is believed to act as an appetiser, diuretic and anti-flatulence; | Wide range of simple phenols and phenolic acids such as thymol, carvacrol, rosmarinic acid, as well as flavonoids as naringenin, apigenin 1, luteolin 1, quercetin 1 and tannins; | Antioxidant, antimicrobial, immunomodulatory, anticancer; | [45,66,67,68] |
Thyme/Thymus vulgaris | Almost mandatory in pesto (a well-known Italian sauce); folk medicine prescribes it to tackle infection and inflammation of the respiratory tract; | Besides the flagship compound, thymol, thyme is rich in flavonoids such as apigenin 1 and luteolin 1; other simple phenols as carvacrol, phenolic acids as rosmaniric and caffeic acids, have also been reported; | Antioxidant, anti-bacterial and anti-fungic activities, prevent atherosclerosis and seems to have some anti-neoplastic action; | [45,66] |
Rosemary/Rosmarinus officinalis (syn. Salvia rosmarinus) | Widely used in the Mediterranean and other cuisines to season roasted meats, appetizers, and more; it has been used as food preservative; | Besides the flagship compound, rosmaniric acid, also reported are caffeic and carnosic acids, carnosol and rosmanol, in addition to the flavonoids naringin and apigenin 1; | Antioxidant, neuroprotective and anti-neoplastic activities; it is also referred to lower blood lipid’s level; | [45,62,69,70,71] |
Peppermint (Mentha piperita) | The mint group comprises more than 60 species of different aromas, and all rich in phenolic compounds. They are popular kitchen garden herbs with many curative properties, according to folk medicine; | Menthol, catechin 2, cathechin-3-O-Gallate 2; epigallocatechin 2; | Antioxidant, antimicrobial, anti-inflammatory and local analgesic actions; | [62,72,73,74] |
Basil (Ocimum basilicum) | The biodiversity within the “basil” group has been economically valorised by marketing varieties with different colours and aromas. Basil is widely used in pasta and salads; | Eugenol and a wide range of other phenolic compounds not identified and/or typical of certain cvs; | Antioxidant, anti-microbial, and anti-neoplastic activities; | [75,76] |
Phennel (Foeniculum vulgare) | The whole plant can be used in culinary preparations, with meats, in stews, deserts or liquors; | Besides the flagship compound, p-Anisic acid, other reported phenolic acids are hydroxybenzoic, ferrulic and o- and p-coumaric acids, as well as the flavonoids isorhamnetin (related to quercetin), quercetin 1, myricetin 1, kaempferol 1, and luteolin 1; | Antioxidant, anti-inflammatory, and anti-diabetic properties; | [62,77,78] |
Chilli-pepper (Capsicum annuum) | The fruits are used directly or smashed for a hot seasoning; Capsaicin is the pungent compound and the main bioactive molecule. | (Capsaicin); luteolin 1 and quercetin 1. | Antioxidant, analgesic, anti-cancer and anti-inflammatory properties. | [62,79,80] |
7. Wild Mediterranean Aromatic Plants and Conservation Concerns
8. Concluding Remarks and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delgado, A.; Cruz, A.L.; Coelho, N.; Romano, A. The Mediterranean Diet: Fostering a Common Vision through a Multidisciplinary Approach; Universidade do Algarve: Faro, Portugal, 2022; ISBN 978-989-9023-89-5. [Google Scholar]
- Summary for Policymakers—Special Report on Climate Change and Land. Available online: https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/ (accessed on 19 December 2022).
- Mediterranean Biodiversity Threatened by Climate Change. Available online: https://wwf.panda.org/wwf_news/?324652/Mediterranean-biodiversity-threatened-by-climate-change (accessed on 19 December 2022).
- Food and Agriculture Organization of the United Nations. Food Systems. Available online: https://www.fao.org/food-systems/en/ (accessed on 13 December 2022).
- Neetu, C. Food Systems and Nutrition Patterns; UNRISD: Geneva, Switzerland, 2021. Available online: http://213.219.61.110/80256B3C005BCCF9/(LookupAllDocumentsByUNID)/9380D80CCBC2F7BC802586E300269272?OpenDocument (accessed on 6 December 2022).
- Independent Dialogue in Support of the 2021 Food Systems Summit: “Different Routes, Similar Goals”; Food Systems Summit Dialogues: Moskva, Russia, 2021.
- Double Pyramid. Available online: https://www.fondazionebarilla.com/en/double-pyramid/ (accessed on 13 December 2022).
- The Mediterranean Diet. UNESCO Intangible Cultural Heritage. Available online: https://mediterraneandietunesco.org/ (accessed on 3 January 2023).
- Barros, V.C.; Delgado, A.M. Mediterranean Diet, a Sustainable Cultural Asset. Encyclopedia 2022, 2, 761–777. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; Ngo de la Cruz, J.; Bach-Faig, A.; Donini, L.M.; Medina, F.-X.; Belahsen, R.; et al. Updating the Mediterranean Diet Pyramid towards Sustainability: Focus on Environmental Concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef] [PubMed]
- Green Deal: Key to a Climate-Neutral and Sustainable EU. News European Parliament, 23 June 2022. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20200618STO81513/green-deal-key-to-a-climate-neutral-and-sustainable-eu (accessed on 13 December 2022).
- United Nations Sustainable Development. Take Action for the Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 13 December 2022).
- Recio-Román, A.; Recio-Menéndez, M.; Román-González, M.V. Food Reward and Food Choice. An Inquiry through the Liking and Wanting Model. Nutrients 2020, 12, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.-J.; Antonelli, M. Conceptual Models of Food Choice: Influential Factors Related to Foods, Individual Differences, and Society. Foods 2020, 9, 1898. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.B.; Simons, J. Good Attitudes Are Not Good Enough: An Ethnographical Approach to Investigate Attitude-Behavior Inconsistencies in Sustainable Choice. Foods 2021, 10, 1317. [Google Scholar] [CrossRef]
- Boswell, R.G.; Sun, W.; Suzuki, S.; Kober, H. Training in Cognitive Strategies Reduces Eating and Improves Food Choice. Proc. Natl. Acad. Sci. USA 2018, 115, E11238–E11247. [Google Scholar] [CrossRef] [Green Version]
- Simões, C.; Caeiro, I.; Carreira, L.; e Silva, F.C.; Lamy, E. How Different Snacks Produce a Distinct Effect in Salivary Protein Composition. Molecules 2021, 26, 2403. [Google Scholar] [CrossRef]
- Torregrossa, A.-M.; Nikonova, L.; Bales, M.B.; Leal, M.V.; Smith, J.C.; Contreras, R.J.; Eckel, L.A. Induction of Salivary Proteins Modifies Measures of Both Orosensory and Postingestive Feedback during Exposure to a Tannic Acid Diet. PLoS ONE 2014, 9, e105232. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.; Issaoui, M.; Vieira, M.C.; Saraiva de Carvalho, I.; Fardet, A. Food Composition Databases: Does It Matter to Human Health? Nutrients 2021, 13, 2816. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. Chronic Diseases Are First Associated with the Degradation and Artificialization of Food Matrices Rather than with Food Composition: Calorie Quality Matters More than Calorie Quantity. Eur. J. Nutr. 2022, 61, 2239–2253. [Google Scholar] [CrossRef]
- What Is Agrobiodiversity? Available online: https://www.fao.org/3/y5609e/y5609e02.htm (accessed on 13 December 2022).
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; Schutter, O.D.; Devarajan, R.; et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission Report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef] [PubMed]
- Mc Carthy, C.M.; de Vries, R.; Mackenbach, J.D. The Influence of Unhealthy Food and Beverage Marketing through Social Media and Advergaming on Diet-Related Outcomes in Children—A Systematic Review. Obes. Rev. 2022, 23, e13441. [Google Scholar] [CrossRef] [PubMed]
- Potvin Kent, M.; Hatoum, F.; Wu, D.; Remedios, L.; Bagnato, M. Benchmarking Unhealthy Food Marketing to Children and Adolescents in Canada: A Scoping Review. Health Promot. Chronic Dis. Prev. Can. 2022, 42, 307–318. [Google Scholar] [CrossRef]
- Sadeghirad, B.; Duhaney, T.; Motaghipisheh, S.; Campbell, N.R.C.; Johnston, B.C. Influence of Unhealthy Food and Beverage Marketing on Children’s Dietary Intake and Preference: A Systematic Review and Meta-Analysis of Randomized Trials. Obes. Rev. 2016, 17, 945–959. [Google Scholar] [CrossRef]
- Coates, A.E.; Hardman, C.A.; Halford, J.C.G.; Christiansen, P.; Boyland, E.J. Social Media Influencer Marketing and Children’s Food Intake: A Randomized Trial. Pediatrics 2019, 143, e20182554. [Google Scholar] [CrossRef] [Green Version]
- Quarta, S.; Massaro, M.; Chervenkov, M.; Ivanova, T.; Dimitrova, D.; Jorge, R.; Andrade, V.; Philippou, E.; Zisimou, C.; Maksimova, V.; et al. Persistent Moderate-to-Weak Mediterranean Diet Adherence and Low Scoring for Plant-Based Foods across Several Southern European Countries: Are We Overlooking the Mediterranean Diet Recommendations? Nutrients 2021, 13, 1432. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Mantzorou, M.; Serdari, A.; Bonotis, K.; Vasios, G.; Pavlidou, E.; Trifonos, C.; Vadikolias, K.; Petridis, D.; Giaginis, C. Evaluating Mediterranean Diet Adherence in University Student Populations: Does This Dietary Pattern Affect Students’ Academic Performance and Mental Health? Int. J. Health Plan. Manag. 2020, 35, 5–21. [Google Scholar] [CrossRef]
- Fiore, M.; Ledda, C.; Rapisarda, V.; Sentina, E.; Mauceri, C.; D’Agati, P.; Oliveri Conti, G.; Serra-Majem, L.; Ferrante, M. Medical School Fails to Improve Mediterranean Diet Adherence among Medical Students. Eur. J. Public Health 2015, 25, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Graça, P. Como Comem Os Portugueses; Os portugueses; Fundação Francisco Manuel dos Santos: Lisboa, Portugal, 2020; ISBN 978-989-9004-45-0. [Google Scholar]
- Agnoli, C.; Sieri, S.; Ricceri, F.; Giraudo, M.T.; Masala, G.; Assedi, M.; Panico, S.; Mattiello, A.; Tumino, R.; Giurdanella, M.C.; et al. Adherence to a Mediterranean Diet and Long-Term Changes in Weight and Waist Circumference in the EPIC-Italy Cohort. Nutr. Diabetes 2018, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; Gialluisi, A.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Mediterranean Diet and Mortality in the Elderly: A Prospective Cohort Study and a Meta-Analysis. Br. J. Nutr. 2018, 120, 841–854. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barquero, S.; Tresserra-Rimbau, A.; Vitelli-Storelli, F.; Doménech, M.; Salas-Salvadó, J.; Martín-Sánchez, V.; Rubín-García, M.; Buil-Cosiales, P.; Corella, D.; Fitó, M.; et al. Dietary Polyphenol Intake Is Associated with HDL-Cholesterol and a Better Profile of Other Components of the Metabolic Syndrome: A PREDIMED-Plus Sub-Study. Nutrients 2020, 12, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomeras-Vilches, A.; Viñals-Mayolas, E.; Bou-Mias, C.; Jordà-Castro, M.; Agüero-Martínez, M.; Busquets-Barceló, M.; Pujol-Busquets, G.; Carrion, C.; Bosque-Prous, M.; Serra-Majem, L.; et al. Adherence to the Mediterranean Diet and Bone Fracture Risk in Middle-Aged Women: A Case Control Study. Nutrients 2019, 11, 2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, J.L.; Fanzo, J.C.; Cogill, B. Understanding Sustainable Diets: A Descriptive Analysis of the Determinants and Processes That Influence Diets and Their Impact on Health, Food Security, and Environmental Sustainability. Adv. Nutr. 2014, 5, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Dernini, S.; Berry, E.M.; Serra-Majem, L.; Vecchia, C.L.; Capone, R.; Medina, F.X.; Aranceta-Bartrina, J.; Belahsen, R.; Burlingame, B.; Calabrese, G.; et al. Med Diet 4.0: The Mediterranean Diet with Four Sustainable Benefits. Public Health Nutr. 2017, 20, 1322–1330. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M. Global Diets Link Environmental Sustainability and Human Health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Attwood, S.; Park, S.; Marshall, P.; Fanshawe, J.; Gaisberger, H. Integrating Wild and Agricultural Biodiversity Conservation—Why We Need Both. Available online: https://alliancebioversityciat.org/stories/integrating-wild-and-agricultural-biodiversity-conservation-why-we-need-both (accessed on 7 December 2022).
- Burlingame, B.; Dernini, S. Sustainable Diets and Biodiversity, Directions and Solutions for Policy. In Proceedings of the Research and Action, Rome, Italy, 13–14 May 2010. [Google Scholar]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean Diet Pyramid Today. Science and Cultural Updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [Green Version]
- Berry, E.M. Sustainable Food Systems and the Mediterranean Diet. Nutrients 2019, 11, 2229. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, R.; Gerber, M. The Mediterranean Diet: Health and Science; Wiley: Hoboken, NJ, USA, 2013; Available online: https://www.wiley.com/en-sg/The+Mediterranean+Diet%3A+Health+and+Science-p-9781444330021 (accessed on 15 December 2022).
- Bianchi, A. The Mediterranean Aromatic Plants and Their Culinary Use. Nat. Prod. Res. 2015, 29, 201–206. [Google Scholar] [CrossRef]
- Bilušić, T.; Drvenica, I.; Kalušević, A.; Marijanović, Z.; Jerković, I.; Mužek, M.N.; Bratanić, A.; Skroza, D.; Zorić, Z.; Pedisić, S.; et al. Influences of Freeze- and Spray-Drying vs. Encapsulation with Soy and Whey Proteins on Gastrointestinal Stability and Antioxidant Activity of Mediterranean Aromatic Herbs. Int. J. Food Sci. Technol. 2021, 56, 1582–1596. [Google Scholar] [CrossRef]
- Publication of an Application Pursuant to Article 6(2) of Council Regulation (EC) No 510/2006 on the Protection of Geographical Indications and Designations of Origin for Agricultural Products and Foodstuffs. Off. J. Eur. Union 2006, C128, 15–17.
- Bhattacharya, T.; Dutta, S.; Akter, R.; Rahman, M.H.; Karthika, C.; Nagaswarupa, H.P.; Murthy, H.C.A.; Fratila, O.; Brata, R.; Bungau, S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021, 11, 1176. [Google Scholar] [CrossRef] [PubMed]
- Arora, I.; Sharma, M.; Tollefsbol, T.O. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int. J. Mol. Sci. 2019, 20, 4567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Zhang, H.; White, J.C.; Chen, X.; Li, H.; Qu, X.; Ji, R. Metabolomics Reveals That Engineered Nanomaterial Exposure in Soil Alters Both Soil Rhizosphere Metabolite Profiles and Maize Metabolic Pathways. Environ. Sci. Nano 2019, 6, 1716–1727. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Mengesha, N.M.; Liu, P.-F. Identify the Interactions between Phytochemicals and Proteins in the Complicated Food Matrix. Food Chem. 2021, 356, 129641. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espín, J.C. Effect of Food Structure and Processing on (Poly)Phenol-Gut Microbiota Interactions and the Effects on Human Health. Annu. Rev. Food Sci. Technol. 2019, 10, 221–238. [Google Scholar] [CrossRef]
- Koss-Mikołajczyk, I.; Kusznierewicz, B.; Bartoszek, A. The Relationship between Phytochemical Composition and Biological Activities of Differently Pigmented Varieties of Berry Fruits; Comparison between Embedded in Food Matrix and Isolated Anthocyanins. Foods 2019, 8, 646. [Google Scholar] [CrossRef] [Green Version]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.M.; Issaoui, M.; Chammem, N. Analysis of Main and Healthy Phenolic Compounds in Foods. J. AOAC Int. 2019, 102, 1356–1364. [Google Scholar] [CrossRef]
- Shahidi, F.; Ho, C.-T. (Eds.) Phenolics in Food and Natural Health Products; ACS Symposium Series; Oxford University Press: Oxford, NY, USA, 2005; ISBN 978-0-8412-3891-6. [Google Scholar]
- De Lourdes Reis Giada, M. Food Phenolic Compounds: Main Classes, Sources and Their Antioxidant Power. In Food Phenolic Compounds: Main Classes, Sources and Their Antioxidant Power; IntechOpen: London, UK, 2013; ISBN 978-953-51-1123-8. [Google Scholar]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 7 December 2022).
- Billingsley, H.E.; Carbone, S. The Antioxidant Potential of the Mediterranean Diet in Patients at High Cardiovascular Risk: An in-Depth Review of the PREDIMED. Nutr. Diabetes 2018, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issaoui, M.; Delgado, A.M.; Caruso, G.; Micali, M.; Barbera, M.; Atrous, H.; Ouslati, A.; Chammem, N. Phenols, Flavors, and the Mediterranean Diet. J. AOAC Int. 2020, 103, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Issaoui, M.; Delgado, A.M.; Iommi, C.; Chammem, N. Polyphenols and the Mediterranean Diet; SpringerBriefs in Molecular Science; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-41133-6. [Google Scholar]
- Phenol-Explorer. Database on Polyphenol Content in Foods. Available online: http://phenol-explorer.eu/ (accessed on 13 December 2022).
- Bitzer, Z.T.; Glisan, S.L.; Dorenkott, M.R.; Goodrich, K.M.; Ye, L.; O’Keefe, S.F.; Lambert, J.D.; Neilson, A.P. Cocoa Procyanidins with Different Degrees of Polymerization Possess Distinct Activities in Models of Colonic Inflammation. J. Nutr. Biochem. 2015, 26, 827–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of Health Claims Related to Polyphenols in Olive and Protection of LDL Particles from Oxidative Damage (ID 1333, 1638, 1639, 1696, 2865), Maintenance of Normal Blood HDL Cholesterol Concentrations (ID 1639), Maintenance of Normal Blood Pressure (ID 3781), “Anti-Inflammatory Properties” (ID 1882), “Contributes to the Upper Respiratory Tract Health” (ID 3468), “Can Help to Maintain a Normal Function of Gastrointestinal Tract” (3779), and “Contributes to Body Defences against External Agents” (ID 3467) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2033. [Google Scholar] [CrossRef]
- Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between Phenolics and Gut Microbiota: Role in Human Health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef]
- Bota, V.; Sumalan, R.M.; Obistioiu, D.; Negrea, M.; Cocan, I.; Popescu, I.; Alexa, E. Study on the Sustainability Potential of Thyme, Oregano, and Coriander Essential Oils Used as Vapours for Antifungal Protection of Wheat and Wheat Products. Sustainability 2022, 14, 4298. [Google Scholar] [CrossRef]
- Jafari Khorsand, G.; Morshedloo, M.R.; Mumivand, H.; Emami Bistgani, Z.; Maggi, F.; Khademi, A. Natural Diversity in Phenolic Components and Antioxidant Properties of Oregano (Origanum vulgare L.) Accessions, Grown under the Same Conditions. Sci. Rep. 2022, 12, 5813. [Google Scholar] [CrossRef]
- Lombrea, A.; Antal, D.; Ardelean, F.; Avram, S.; Pavel, I.Z.; Vlaia, L.; Mut, A.-M.; Diaconeasa, Z.; Dehelean, C.A.; Soica, C.; et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. Int. J. Mol. Sci. 2020, 21, 9653. [Google Scholar] [CrossRef]
- Afonso, M.S.; de O Silva, A.M.; Carvalho, E.B.; Rivelli, D.P.; Barros, S.B.; Rogero, M.M.; Lottenberg, A.M.; Torres, R.P.; Mancini-Filho, J. Phenolic Compounds from Rosemary (Rosmarinus officinalis L.) Attenuate Oxidative Stress and Reduce Blood Cholesterol Concentrations in Diet-Induced Hypercholesterolemic Rats. Nutr. Metab. 2013, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Nazem, F.; Farhangi, N.; Neshat-Gharamaleki, M. Beneficial Effects of Endurance Exercise with Rosmarinus Officinalis Labiatae Leaves Extract on Blood Antioxidant Enzyme Activities and Lipid Peroxidation in Streptozotocin-Induced Diabetic Rats. Can. J. Diabetes 2015, 39, 229–234. [Google Scholar] [CrossRef]
- De Macedo, L.M.; dos Santos, É.M.; Ataide, J.A.; de Souza e Silva, G.T.; de Oliveira Guarnieri, J.P.; Lancellotti, M.; Jozala, A.F.; Rosa, P.C.P.; Mazzola, P.G. Development and Evaluation of an Antimicrobial Formulation Containing Rosmarinus officinalis. Molecules 2022, 27, 5049. [Google Scholar] [CrossRef] [PubMed]
- Weerts, Z.Z.R.M.; Masclee, A.A.M.; Witteman, B.J.M.; Clemens, C.H.M.; Winkens, B.; Brouwers, J.R.B.J.; Frijlink, H.W.; Muris, J.W.M.; De Wit, N.J.; Essers, B.A.B.; et al. Efficacy and Safety of Peppermint Oil in a Randomized, Double-Blind Trial of Patients With Irritable Bowel Syndrome. Gastroenterology 2020, 158, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Alammar, N.; Wang, L.; Saberi, B.; Nanavati, J.; Holtmann, G.; Shinohara, R.T.; Mullin, G.E. The Impact of Peppermint Oil on the Irritable Bowel Syndrome: A Meta-Analysis of the Pooled Clinical Data. BMC Complement. Altern. Med. 2019, 19, 21. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A Review of the Bioactivity and Potential Health Benefits of Peppermint Tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, H.S.; Papadopoulou, C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017, 27, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Dolghi, A.; Buzatu, R.; Dobrescu, A.; Olaru, F.; Popescu, G.A.; Marcovici, I.; Pinzaru, I.; Navolan, D.; Cretu, O.M.; Popescu, I.; et al. Phytochemical Analysis and In Vitro Cytotoxic Activity against Colorectal Adenocarcinoma Cells of Hippophae rhamnodies L., Cymbopogon citratus (D.C.) Stapf, and Ocimum basilicum L. Essential Oils. Plants 2021, 10, 2752. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Bonfrate, L.; Scribano, M.; Kohn, A.; Caporaso, N.; Festi, D.; Campanale, M.C.; Rienzo, T.D.; Guarino, M.; Taddia, M.; et al. Curcumin and Fennel Essential Oil Improve Symptoms and Quality of Life in Patients with Irritable Bowel Syndrome. J. Gastroin. Liver Dis. 2016, 25, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Bower, A.; Marquez, S.; de Mejia, E.G. The Health Benefits of Selected Culinary Herbs and Spices Found in the Traditional Mediterranean Diet. Crit. Rev. Food Sci. Nutr. 2016, 56, 2728–2746. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; Zaragoza-Bastida, A.; et al. Biological Properties, Bioactive Constituents, and Pharmacokinetics of Some Capsicum spp. and Capsaicinoids. Int. J. Mol. Sci. 2020, 21, 5179. [Google Scholar] [CrossRef]
- Cárdenas-Castro, A.P.; Alvarez-Parrilla, E.; Montalvo-González, E.; Sánchez-Burgos, J.A.; Venema, K.; Sáyago-Ayerdi, S.G. Stability and Anti-Topoisomerase Activity of Phenolic Compounds of Capsicum annuum “Serrano” after Gastrointestinal Digestion and in vitro Colonic Fermentation. Int. J. Food Sci. Nutr. 2020, 71, 826–838. [Google Scholar] [CrossRef]
- Fifi, A.C.; Axelrod, C.H.; Chakraborty, P.; Saps, M. Herbs and Spices in the Treatment of Functional Gastrointestinal Disorders: A Review of Clinical Trials. Nutrients 2018, 10, 1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, C.T.; Rodionov, D.A.; Iablokov, S.N.; Pung, M.A.; Chopra, D.; Mills, P.J.; Peterson, S.N. Prebiotic Potential of Culinary Spices Used to Support Digestion and Bioabsorption. Evid.-Based Complement. Altern. Med. 2019, 2019, e8973704. [Google Scholar] [CrossRef] [Green Version]
- Vita, A.A.; McClure, R.; Farris, Y.; Danczak, R.; Gundersen, A.; Zwickey, H.; Bradley, R. Associations between Frequency of Culinary Herb Use and Gut Microbiota. Nutrients 2022, 14, 1981. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.S.; Anderson, S.; Chen See, J.R.; Leister, J.; Kris-Etherton, P.M.; Lamendella, R. Herbs and Spices Modulate Gut Bacterial Composition in Adults at Risk for CVD: Results of a Prespecified Exploratory Analysis from a Randomized, Crossover, Controlled-Feeding Study. J. Nutr. 2022, 152, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Kougioumoutzis, K.; Kokkoris, I.P.; Panitsa, M.; Trigas, P.; Strid, A.; Dimopoulos, P. Plant Diversity Patterns and Conservation Implications under Climate-Change Scenarios in the Mediterranean: The Case of Crete (Aegean, Greece). Diversity 2020, 12, 270. [Google Scholar] [CrossRef]
- Stefanaki, A.; Kokkini, S. Sideritis sipylea Boiss.-Endangered. In The Red Data Book of Rare and Threatened Plants of Greece; Hellenic Botanical Society: Athens, Greece, 2009; Volume 2, pp. 310–312. [Google Scholar]
- Kokkini, S.; Karousou, R. Sideritis euboea Heldr. In The Red Data Book of Rare and Threatened Plants of Greece; Hellenic Botanical Society: Athens, Greece, 2009; Volume 2, pp. 305–306. [Google Scholar]
- Tomou, E.-M.; Skaltsa, H.; Economou, G.; Trichopoulou, A. Sustainable Diets & Medicinal Aromatic Plants in Greece: Perspectives towards Climate Change. Food Chem. 2022, 374, 131767. [Google Scholar] [CrossRef] [PubMed]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for Drought Assessment in the Mediterranean Region under Future Climate Scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Duarte, H.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A. Response of Thymus lotocephalus in vitro Cultures to Drought Stress and Role of Green Extracts in Cosmetics. Antioxidants 2022, 11, 1475. [Google Scholar] [CrossRef]
- Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A. Impact of Temperature on Phenolic and Osmolyte Contents in in vitro Cultures and Micropropagated Plants of Two Mediterranean Plant Species, Lavandula viridis and Thymus lotocephalus. Plants 2022, 11, 3516. [Google Scholar] [CrossRef]
Genus/Species | IUCN Red List Category | Geographic Range |
---|---|---|
Mentha | ||
M. cervine | Near Threatened | Algeria; France (mainland); Morocco; Portugal (mainland); Spain (mainland) Possibly Extinct in Italy (mainland) |
M. gattefossei | Vulnerable | Morocco |
Origanum | ||
O. cordifolium | Vulnerable | Cyprus |
O. dictamnus | Near Threatened | Greece (Kriti) |
O. ehrenbergii | Vulnerable | Lebanon |
O. libanoticum | Vulnerable | Lebanon |
Salvia | ||
S. granatensis (formerly Rosmarinus tomentosus) | Endangered | Spain (mainland) |
S. herbanica | Critically Endangered | Spain (Canary Is.) |
S. peyronii | Critically Endangered | Lebanon |
S. taraxacifolia | Endangered | Morocco |
Sideritis | ||
S. cypria | Vulnerable | Cyprus |
S. cystosiphon | Critically Endangered | Spain (Canary Is.) |
S. discolor | Critically Endangered | Spain (Canary Is.) |
S. gulendamii | Endangered | Turkey |
S. infernalis | Vulnerable | Spain (Canary Is.) |
S. javalambrensis | Vulnerable | Spain (mainland) |
S. marmorea | Critically Endangered | Spain (Canary Is.) |
S. scardica | Near Threatened | Albania; Bulgaria; Greece (mainland); North Macedonia; Serbia; Turkey (Turkey-in-Europe) |
S. serrata | Critically Endangered | Spain (mainland) |
S. reverchonii | Endangered | Spain (mainland) |
S. veneris | Critically Endangered | Cyprus |
Thymus | ||
T. albicans | Vulnerable | Portugal (mainland); Spain (mainland) |
T. camphoratus | Near Threatened | Portugal (mainland) |
T. capitellatus | Near Threatened | Portugal (mainland) |
T. carnosus | Near Threatened | Portugal (mainland); Spain (mainland) |
T. lotocephalus | Near Threatened | Portugal (mainland) |
T. saturejoides | Vulnerable | Algeria; Morocco |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, A.; Gonçalves, S.; Romano, A. Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods. Foods 2023, 12, 840. https://doi.org/10.3390/foods12040840
Delgado A, Gonçalves S, Romano A. Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods. Foods. 2023; 12(4):840. https://doi.org/10.3390/foods12040840
Chicago/Turabian StyleDelgado, Amélia, Sandra Gonçalves, and Anabela Romano. 2023. "Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods" Foods 12, no. 4: 840. https://doi.org/10.3390/foods12040840
APA StyleDelgado, A., Gonçalves, S., & Romano, A. (2023). Mediterranean Diet: The Role of Phenolic Compounds from Aromatic Plant Foods. Foods, 12(4), 840. https://doi.org/10.3390/foods12040840