Development, Characterization and Sensory Evaluation of an Extruded Snack Using Fig Molasses By-Product and Corn Semolina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation of the Mixture Formulation
2.3. Extrusion
2.4. Analysis of Flour Samples
2.5. Analysis of Total Dietary Fiber
2.6. Analyzing the Attributes of a Product
2.6.1. Diametric Expansion Ratio
2.6.2. Bulk Density (g/cm3)
2.6.3. Water Absorption Index (WAI) and Water Solubility Index (WSI, %)
2.6.4. Colour Parameters
2.6.5. Hardness
2.6.6. Microstructural Characteristics
2.6.7. Pasting Properties
2.6.8. Sensory Characteristics
2.6.9. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Diametric Expansion Ratio (ER)
3.2. Bulk Density
3.3. Colour Parameters
3.4. Hardness
3.5. Pasting Properties
3.6. Water Absorption Index (WAI)
3.7. Water Solubility Index (WSI)
3.8. Total Dietary Fibre Content
3.9. Microstructural Characteristics
3.10. Sensory Characteristics
3.11. Optimal Extrusion Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Selani, M.M.; Brazaca, S.G.C.; Dos Santos Dias, C.T.; Ratnayake, W.S.; Flores, R.A.; Bianchini, A. Characterisation and Potential Application of Pineapple Pomace in an Extruded Product for Fibre Enhancement. Food Chem. 2014, 163, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawirska, A.; Kwaśniewska, M. Dietary Fibre Fractions from Fruit and Vegetable Processing Waste. Food Chem. 2005, 91, 221–225. [Google Scholar] [CrossRef]
- Yazıcıoglu, T.; Gökçen, J. TY66-120.Pdf; Marmara Bilimsel ve Endüstriyel Araştırma Entitüsü Beslenme ve Gıda Teknolojisi Ünitesi: Gebze, Türkiye, 1976; p. 25. [Google Scholar]
- Karababa, E.; Işıklı, N.D. Pekmez: A traditional concentrated fruit pekmez. Food Rev. Int. 2005, 21, 357–366. [Google Scholar] [CrossRef]
- Simsek, A.; Artik, N. Studies of composition of concentrates from different fruit. Gida 2002, 27, 459–467. [Google Scholar]
- Karakaya, S.; Kavas, A. Antimutagenic activities of some foods. J. Sci. Food Agric. 1999, 79, 237–242. [Google Scholar] [CrossRef]
- Kendall, C.W.C.; Esfahani, A.; Jenkins, D.J.A. The link between dietary fibre and human health. Food Hydrocoll. 2010, 24, 42–48. [Google Scholar] [CrossRef]
- Babić, J.; Jašić, M.; Valek Lendić, K.; Ačkar, Đ.; Šubarić, D.; Miličević, B.; Jozinović, A. Food Industry By-Products as Raw Materials in Functional Food Production. Hrana Zdr. IBoles. Znan.-Stručni Časopis Nutr. Dijetetiku 2014, 3, 22–30. [Google Scholar]
- Serena, A.; Bach-Knudsen, K.E. Chemical and physicochemical characterisation of co-products from vegetable food and agro industries. Anim. Feed Sci. Technol. 2007, 139, 109–124. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; Ibanoǧlu, E.; Ibanoǧlu, Ş. Cauliflower By-Products as a New Source of Dietary Fibre, Antioxidants and Proteins in Cereal Based Ready-to-Eat Expanded Snacks. J. Food Eng. 2008, 87, 554–563. [Google Scholar] [CrossRef]
- Singha, P.; Muthukumarappan, K. Single Screw Extrusion of Apple Pomace-Enriched Blends: Extrudate Characteristics and Determination of Optimum Processing Conditions. Food Sci. Technol. Int. 2018, 24, 447–462. [Google Scholar] [CrossRef]
- Altan, A.; McCarthy, K.L.; Maskan, M. Evaluation of Snack Foods from Barley-Tomato Pomace Blends by Extrusion Processing. J. Food Eng. 2008, 84, 231–242. [Google Scholar] [CrossRef]
- Grasso, S. Extruded Snacks from Industrial By-Products: A Review. Trends Food Sci. Technol. 2020, 99, 284–294. [Google Scholar] [CrossRef]
- Anderson, R.A.; Conway, H.F.; Peplinski, A.J. Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. Starch-Stärke 1970, 22, 130–135. [Google Scholar] [CrossRef]
- Koocheki, A.; Taherian, A.R.; Razavi, S.M.A.; Bostan, A. Response Surface Methodology for Optimization of Extraction Yield, Viscosity, Hue and Emulsion Stability of Mucilage Extracted from Lepidium Perfoliatum Seeds. Food Hydrocoll. 2009, 23, 2369–2379. [Google Scholar] [CrossRef]
- Asare, E.K.; Sefa-Dedeh, S.; Sakyi-Dawson, E.; Afoakwa, E.O. Application of Response Surface Methodology for Studying the Product Characteristics of Extruded Rice-Cowpea-Groundnut Blends. Int. J. Food Sci. Nutr. 2004, 55, 431–439. [Google Scholar] [CrossRef]
- Chang, C.N. Reproduced with Permission of the Copyright Owner. Further Reproduction Prohibited Without; Rutgers The State University of New Jersey: New Brunswick-Piscataway, NJ, USA, 1992. [Google Scholar]
- Yao, N.; Jannink, J.-L.; Alavi, S.; White, P.J. Physical and Sensory Characteristics of Extruded Products Made from Two Oat Lines with Different β-Glucan Concentrations. Cereal Chem. 2006, 83, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hsieh, F.; Heymann, H.; Huff, H.E. Effect of Process Conditions on the Physical and Sensory Properties of Extruded Oat-Corn Puff. J. Food Sci. 2000, 65, 1253–1259. [Google Scholar] [CrossRef]
- Caltinoglu, C.; Tonyali, B.; Sensoy, I. Effects of Tomato Pulp Addition on the Extrudate Quality Parameters and Effects of Extrusion on the Functional Parameters of the Extrudates. Int. J. Food Sci. Technol. 2014, 49, 587–594. [Google Scholar] [CrossRef]
- Silva Alves, P.L.; Berrios Jose, J.D.J.; Pan, J.; Ramirez Ascheri, J.L. Passion Fruit Shell Flour and Rice Blends Processed into Fiber-Rich Expanded Extrudates. CYTA-J. Food 2018, 16, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Vadukapuram, N.; Hall, C.; Tulbek, M.; Niehaus, M. Physicochemical Properties of Flaxseed Fortified Extruded Bean Snack. Int. J. Food Sci. 2014, 2014, 478018. [Google Scholar] [CrossRef] [Green Version]
- Lotfi Shirazi, S.; Koocheki, A.; Milani, E.; Mohebbi, M. Production of High Fiber Ready-to-Eat Expanded Snack from Barley Flour and Carrot Pomace Using Extrusion Cooking Technology. J. Food Sci. Technol. 2020, 57, 2169–2181. [Google Scholar] [CrossRef] [PubMed]
- Navarro Cortez, R.O.; Gómez-Aldapa, C.A.; Aguilar-Palazuelos, E.; Delgado-Licon, E.; Castro Rosas, J.; Hernández-Ávila, J. Blue corn (Zea mays L.) with added orange (Citrus sinensis) fruit bagasse: Novel ingredients for extruded snacks. CyTA-J. Food 2016, 14, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Preethi, P.; Mangalassery, S.; Shradha, K.; Pandiselvam, R.; Manikantan, M.R.; Reddy, S.V.R.; Devi, S.R.; Nayak, M.G. Cashew apple pomace powder enriched the proximate, mineral, functional and structural properties of cereal based extrudates. LWT-Food Sci. Technol. 2021, 139, 110539. [Google Scholar] [CrossRef]
- Korkerd, S.; Wanlapa, S.; Puttanlek, C.; Uttapap, D.; Rungsardthong, V. Expansion and Functional Properties of Extruded Snacks Enriched with Nutrition Sources from Food Processing By-Products. J. Food Sci. Technol. 2016, 53, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.B.; Ainsworth, P.; Tucker, G.; Marson, H. The Effect of Extrusion Conditions on the Physicochemical Properties and Sensory Characteristics of Rice-Based Expanded Snacks. J. Food Eng. 2005, 66, 283–289. [Google Scholar] [CrossRef]
- Mendonça, S.; Grossmann, M.V.E.; Verhé, R. Corn Bran as a Fibre Source in Expanded Snacks. LWT 2000, 33, 2–8. [Google Scholar] [CrossRef]
- Liang, M.; Hsieh, F.; Huff, H.E.; Hu, L. Barrel-Valve Assembly Affects Twin-Screw Extrusion Cooking of Corn Meal. J. Food Sci. 1994, 59, 890–894. [Google Scholar] [CrossRef]
- Thakur, S.; Singh, N.; Kaur, A.; Singh, B. Effect of Extrusion on Physicochemical Properties, Digestibility, and Phenolic Profiles of Grit Fractions Obtained from Dry Milling of Normal and Waxy Corn. J. Food Sci. 2017, 82, 1101–1109. [Google Scholar] [CrossRef]
- Oke, M.O.; Awonorin, S.O.; Sanni, L.O.; Asiedu, R.; Aiyedun, P.O. Effect of Extrusion Variables on Extrudates Properties of Water Yam Flour—A Response Surface Analysis. J. Food Process. Preserv. 2013, 37, 456–473. [Google Scholar] [CrossRef]
- Prabhakar, H.; Ranote, P.S.; Singh, B.; Sharma, S. Concoct Citrus Waste Based Extruded Snacks: Optimizing Process Conditions Using Response Surface Methodology (RSM) and Delving Extrudate Attributes. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 189–204. [Google Scholar] [CrossRef]
- Hsieh, F.; Mulvaney, S.J.; Huff, H.E.; Lue, S.; Brent, J., Jr. Effect of dietary fiber and screw speed on some extrusion processing and product variables. Lebensm.-Wiss. Technol. Food Sci. Technol. 1989, 22, 204–207. [Google Scholar]
- Seth, D.; Badwaik, L.S.; Ganapathy, V. Effect of Feed Composition, Moisture Content and Extrusion Temperature on Extrudate Characteristics of Yam-Corn-Rice Based Snack Food. J. Food Sci. Technol. 2015, 52, 1830–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Sarkar, B.C.; Sharma, H.K. Development and Characterization of Extruded Product Using Carrot Pomace and Rice Flour. Int. J. Food Eng. 2010, 6, 1–24. [Google Scholar] [CrossRef]
- Brown, M.L. A Comparative Study of the Effects of Non-Starch Polysaccharide Gums on Physical Properties of Single-Screw Extruded Aquafeed. J. Food Process. Technol. 2015, 6, 457–465. [Google Scholar] [CrossRef]
- Kantrong, H.; Charunuch, C.; Limsangouan, N.; Pengpinit, W. Influence of Process Parameters on Physical Properties and Specific Mechanical Energy of Healthy Mushroom-Rice Snacks and Optimization of Extrusion Process Parameters Using Response Surface Methodology. J. Food Sci. Technol. 2018, 55, 3462–3472. [Google Scholar] [CrossRef] [PubMed]
- Omwamba, M.; Mahungu, S.M. Development of a Protein-Rich Ready-to-Eat Extruded Snack from a Composite Blend of Rice, Sorghum and Soybean Flour. Food Nutr. Sci. 2014, 5, 1309–1317. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.B.; Ainsworth, P.; Plunkett, A.; Tucker, G.; Marson, H. The Effect of Extrusion Conditions on the Functional and Physical Properties of Wheat-Based Expanded Snacks. J. Food Eng. 2006, 73, 142–148. [Google Scholar] [CrossRef]
- Kothakota, A. A Study on Evaluation and Characterization of Extruded Product by Using Various By-Products. Afr. J. Food Sci. 2013, 7, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Yaǧci, S.; Göǧüş, F. Response Surface Methodology for Evaluation of Physical and Functional Properties of Extruded Snack Foods Developed from Food-by-Products. J. Food Eng. 2008, 86, 122–132. [Google Scholar] [CrossRef]
- Kaisangsri, N.; Kowalski, R.J.; Wijesekara, I.; Kerdchoechuen, O.; Laohakunjit, N.; Ganjyal, G.M. Carrot Pomace Enhances the Expansion and Nutritional Quality of Corn Starch Extrudates. LWT 2016, 68, 391–399. [Google Scholar] [CrossRef]
- Singha, P.; Singh, S.K.; Muthukumarappan, K.; Krishnan, P. Physicochemical and Nutritional Properties of Extrudates from Food Grade Distiller’s Dried Grains, Garbanzo Flour, and Corn Grits. Food Sci. Nutr. 2018, 6, 1914–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Y.; Ryu, G.H. Physicochemical and Antioxidant Properties of Extruded Corn Grits with Corn Fiber by CO2 Injection Extrusion Process. J. Cereal Sci. 2013, 58, 110–116. [Google Scholar] [CrossRef]
- Yu, L.; Ramaswamy, H.S.; Boye, J. Twin-Screw Extrusion of Corn Flour and Soy Protein Isolate (SPI) Blends: A Response Surface Analysis. Food Bioprocess Technol. 2012, 5, 485–497. [Google Scholar] [CrossRef]
- Brennan, M.A.; Menard, C.; Roudaut, G.; Brennan, C.S. Amaranth, Millet and Buckwheat Flours Affect the Physical Properties of Extruded Breakfast Cereals and Modulates Their Potential Glycaemic Impact. Starch/Staerke 2012, 64, 392–398. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Alencar, N.M.M.; Steel, C.J. Improvement of Sensorial and Technological Characteristics of Extruded Breakfast Cereals Enriched with Whole Grain Wheat Flour and Jabuticaba (Myrciaria cauliflora) Peel. LWT 2018, 90, 207–214. [Google Scholar] [CrossRef]
- Ferreira, R.E.; Steel, C.J. Influence of Wheat Bran Addition and of Thermoplastic Extrusion Process Parameters on Physical Properties of Corn-Based Expanded Extruded Snacks. Aliment. E Nutr. 2011, 22, 507–520. [Google Scholar]
- Riaz, M.N. Food Extruders. In Handbook of Farm, Dairy and Food Machinery Engineering; Academic Press: Cambridge, MA, USA, 2019; pp. 483–497. [Google Scholar] [CrossRef]
- Pardhi, S.D.; Singh, B.; Nayik, G.A.; Dar, B.N. Evaluation of Functional Properties of Extruded Snacks Developed from Brown Rice Grits by Using Response Surface Methodology. J. Saudi Soc. Agric. Sci. 2019, 18, 7–16. [Google Scholar] [CrossRef]
- Saeleaw, M.; Dürrschmid, K.; Schleining, G. The Effect of Extrusion Conditions on Mechanical-Sound and Sensory Evaluation of Rye Expanded Snack. J. Food Eng. 2012, 110, 532–540. [Google Scholar] [CrossRef]
- Gat, Y.; Ananthanarayan, L. Effect of Extrusion Process Parameters and Pregelatinized Rice Flour on Physicochemical Properties of Ready-to-Eat Expanded Snacks. J. Food Sci. Technol. 2015, 52, 2634–2645. [Google Scholar] [CrossRef] [Green Version]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of Extrusion Technology in Plant Food Processing Byproducts: An Overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Shevkani, K.; Kaur, A.; Singh, G.; Singh, B.; Singh, N. Composition, Rheological and Extrusion Behaviour of Fractions Produced by Three Successive Reduction Dry Milling of Corn. Food Bioprocess Technol. 2014, 7, 1414–1423. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Singh, B.; Singh, N.; Singh, B. Physicochemical Evaluation of Corn Extrudates Containing Varying Buckwheat Flour Levels Prepared at Various Extrusion Temperatures. J. Food Sci. Technol. 2019, 56, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Mira, I.; Eliasson, A.C.; Persson, K. Effect of Surfactant Structure on the Pasting Properties of Wheat Flour and Starch Suspensions. Cereal Chem. 2005, 82, 44–52. [Google Scholar] [CrossRef]
- Sharma, C.; Singh, B.; Hussain, S.Z.; Sharma, S. Investigation of Process and Product Parameters for Physicochemical Properties of Rice and Mung Bean (Vigna Radiata) Flour Based Extruded Snacks. J. Food Sci. Technol. 2017, 54, 1711–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.P.; Heldman, D.R. Extrusion Processes for Foods. In Introduction to Food Engineering; Gulf Professional Publishing: Houston, TX, USA, 2014; pp. 743–766. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Singh, N.; Malhi, N.S. Some Properties of Corn Grains and Their Flours I: Physicochemical, Functional and Chapati-Making Properties of Flours. Food Chem. 2007, 101, 938–946. [Google Scholar] [CrossRef]
- Tacer-caba, Z.; Nilufer-erdil, D.; Boyacioglu, M.H.; Ng, P.K.W. Evaluating the Effects of Amylose and Concord Grape Extract Powder Substitution on Physicochemical Properties of Wheat Flour Extrudates Produced at Different Temperatures. Food Chem. 2014, 157, 476–484. [Google Scholar] [CrossRef]
- Baek, J.; Kim, Y.; Lee, S. Functional Characterization of Extruded Rice Noodles with Corn Bran: Xanthophyll Content and Rheology. J. Cereal Sci. 2014, 60, 311–316. [Google Scholar] [CrossRef]
- Gomez, M.H.; Aguilera, J.M. Changes in the Starch Fraction During Extrusion-cooking of Corn. J. Food Sci. 1983, 48, 378–381. [Google Scholar] [CrossRef]
- Qian, J.; Rayas-Duarte, P.; Grant, L. Partial Characterization of Buckwheat (Fagopyrum esculentum) Starch. Cereal Chem. 1998, 75, 365–373. [Google Scholar] [CrossRef]
- Singh, B.; Sekhon, K.S.; Singh, N. Effects of Moisture, Temperature and Level of Pea Grits on Extrusion Behaviour and Product Characteristics of Rice. Food Chem. 2007, 100, 198–202. [Google Scholar] [CrossRef]
- Guha, M.; Ali, S.Z.; Bhattacharya, S. Twin-Screw Extrusion of Rice Flour without a Die: Effect of Barrel Temperature and Screw Speed on Extrusion and Extrudate Characteristics. J. Food Eng. 1997, 32, 251–267. [Google Scholar] [CrossRef]
- Gutkoski, L.C.; El-Dash, A.A. Effect of Extrusion Process Variables on Physical and Chemical Properties of Extruded Oat Products. Plant Foods Hum. Nutr. 1999, 54, 315–325. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 1047/2012 of 8 November 2012 amending Regulation (EC) No 1924/2006 with regard to the list of nutrition claims Text with EEA relevance. Off. J. Eur. Union 2012, 310, 36–37.
- Jozinović, A.; Šubarić, D.; Ačkar, Đ.; Babić, J.; Orkić, V.; Guberac, S.; Miličević, B. Food Industry By-Products as Raw Materials in the Production of Value-Added Corn Snack Products. Foods 2021, 10, 946. [Google Scholar] [CrossRef]
- Norajit, K.; Gu, B.J.; Ryu, G.H. Effects of the Addition of Hemp Powder on the Physicochemical Properties and Energy Bar Qualities of Extruded Rice. Food Chem. 2011, 129, 1919–1925. [Google Scholar] [CrossRef]
- Hashemi, N.; Mortazavi, S.A.; Milani, E.; Tabatabai Yazdi, F. Microstructural and Textural Properties of Puffed Snack Prepared from Partially Deffated Almond Powder and Corn Flour. J. Food Process. Preserv. 2017, 41, e13210. [Google Scholar] [CrossRef]
- Karthika, D.B.; Kuriakose, S.P.; Krishnan, A.V.C.; Choudhary, P.; Rawson, A. Utilization of By-Product from Tomato Processing Industry for the Development of New Product. J. Food Process. Technol. 2016, 7, 608. [Google Scholar] [CrossRef]
- Jyothi, A.N.; Sheriff, J.T.; Sajeev, M.S. Physical and Functional Properties of Arrowroot Starch Extrudates. J. Food Sci. 2009, 74, E97–E104. [Google Scholar] [CrossRef] [PubMed]
- Susan Arntfield, H.M. Extrusion Processing and Evaluation of an Expanded, Puffed Pea Snack Product. J. Nutr. Food Sci. 2015, 5, 4. [Google Scholar] [CrossRef]
Component | FMP | Corn Semolina |
---|---|---|
Moisture (%) | 5.19 | 11.49 |
Ash (%) | 4.90 | 0.2–0.6 |
Protein (%) | 13.50 | 5–9 |
Total dietary fiber (%) | 53.01 | <0.7 |
Total fat (%) | 19.65 | <1 |
Numerical Variables | Symbol | Coded Variable Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Temperature (°C) | A | 140 | 160 | 180 |
Fig molasses by-product powder level (%) | B | 0 | 7 | 14 |
Moisture content (wb%) | C | 14 | 17 | 20 |
Coded Variables | Actual Variables | |||||
---|---|---|---|---|---|---|
Run | A | B | C | A (°C) | B (wb%) | C (%) |
1 | −1 | 0 | 1 | 140.00 | 7.00 | 20.00 |
2 | 0 | −1 | 1 | 160.00 | 0.00 | 20.00 |
3 | −1 | 1 | 0 | 140.00 | 14.00 | 17.00 |
4 | 1 | 1 | 0 | 180.00 | 0.00 | 17.00 |
5 | 0 | 1 | −1 | 160.00 | 0.00 | 14.00 |
6 | 0 | 1 | −1 | 160.00 | 14.00 | 14.00 |
7 | −1 | 0 | −1 | 140.00 | 7.00 | 14.00 |
8 | 0 | 1 | 1 | 160.00 | 14.00 | 20.00 |
9 | −1 | −1 | 0 | 140.00 | 0.00 | 17.00 |
10 | 0 | 0 | 0 | 160.00 | 7.00 | 17.00 |
11 | 0 | 0 | 0 | 160.00 | 7.00 | 17.00 |
12 | 1 | 0 | −1 | 180.00 | 7.00 | 14.00 |
13 | 0 | 0 | 1 | 160.00 | 7.00 | 17.00 |
14 | 0 | 0 | 0 | 160.00 | 7.00 | 17.00 |
15 | 1 | 1 | 0 | 180.00 | 14.00 | 17.00 |
16 | 1 | 0 | 1 | 180.00 | 7.00 | 20.00 |
17 | 0 | 0 | 0 | 160.00 | 7.00 | 17.00 |
ER | WSI (%) | WAI | L | OA | Hardness (kg) | BD (g/cm3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | Sum of Squares | p-Value | Sum of Squares | p-Value | Sum of Squares | p-Value | Sum of Squares | p-Value | Sum of Squares | p-Value | Sum of Squares | p-Value | Sum of Squares | p-Value |
Model | 6.676566 | <0.0001 ** | 938.02 | 0.0007 ** | 3.41 | 0.0034 * | 224.2575 | <0.0001 ** | 0.97 | 0.0003 * | 966.66 | <0.0001 ** | 0.011 | <0.0001 ** |
A-Temperature | 0.91 | <0.0001 ** | 478.80 | 0.0012 * | 0.016 | 0.7484 ns | 0.034716 | 0.8586 ns | 0.039 | 0.0716 ns | 85.87 | 0.0083 * | 3.164 × 10−3 | 0.0001 ** |
B-Fig molasses by-product powder level | 3.9214 | <0.0001 ** | 9.53 | 0.5713 ns | 2.30 | 0.0017 * | 221.425 | <0.0001 ** | 0.16 | 0.0027 ns | 200.30 | 0.0004 * | 1.065 × 10−3 | 0.0049 * |
C-Moisture content | 0.894453 | <0.0001 ** | 449.70 | 0.0015 * | 1.09 | 0.0177 * | 2.797795 | 0.1268 ns | 0.016 | 0.2219 ns | 547.47 | <0.0001 ** | 3.898 × 10−3 | <0.0001 ** |
AB | 0.12 | 0.0143 * | ||||||||||||
AC | 0.2 | 0.0030 * | 365.5744 | 0.6599 ns | 1.914 × 10−3 | 0.0007 ** | ||||||||
BC | 0.004761 | 0.5694 ns | 0.12 | 0.0062 * | 4303.885 | 0.1556 ns | ||||||||
A2 | 0.13 | 0.0127 * | 0.27 | 0.005 * | 9571.715 | 0.0576 ns | 5.336 × 10−4 | 0.0292 * | ||||||
B2 | 0.31 | 0.0011 * | 0.15 | 0.0033 * | 6933.302 | 0.0818 ns | 0.1297 ns | |||||||
C2 | 0.21 | 0.0034 * | 0.24 | 0.0007 * | 133.02 | 0.0020 * | 6.721 × 10−4 | 0.0171 * | ||||||
Residual | 0.098 | 367.19 | 1.93 | 13.66618 | 0.085 | 103.52 | 8.245 × 10−4 | |||||||
Lack of Fit | 0.072 | 0.1774 ns | 298.09 | 0.2773 ns | 0.91 | 0.8554 ns | 11.16295 | 0.2660 ns | 0.036 | 0.7062 ns | 88.94 | 0.1481 ns | 5.997 × 10−4 | 0.3003 ns |
Pure Error | 0.02639 | 69.10 | 0.96 | 2.503231 | 0.048 | 14.57 | 2.247 × 10−4 | |||||||
Cor Total | 6.77 | 1305.21 | 5.34 | 237.9237 | 1.06 | 1070.18 | 0.012 | |||||||
C.V. % | 2.87 | 12.79 | 9.05 | 1.445052 | 1.55 | 13.47 | 9.00 | |||||||
R-Squared | 0.985 | 0.7187 | 0.6389 | 0.942561 | 0.920 | 0.9033 | 0.9321 | |||||||
Adj R-Squared | 0.971 | 0.6538 | 0.5556 | 0.929305 | 0.857 | 0.8710 | 0.8914 |
Mixture Rate | PT (°C) | PV (cP) | FV (cP) | BV (cP) | SB (cP) |
---|---|---|---|---|---|
0 | 71.00 ± 0.52 a | 1193.99 ± 1.39 a | 5665.06 ± 125 a | 69.64 ± 5.2 a | 4540.71 ± 12 a |
7 | 73.88 ± 0.23 b | 480.26 ± 13 b | 1005.95 ± 16.91 b | 147.70 ± 3.7 b | 673.39 ± 7.5 b |
14 | 72.10 ± 0.89 a | 366.46 ± 14 c | 744.08 ± 27.21 c | 125.23 ± 2.81 c | 502.84 ± 15 b |
Responses | Actual Data | Predicted Data |
---|---|---|
ER | 4.40 ± 0.17 a | 4.15 a |
BD (g/cm3) | 0.071 ± 0.00 b | 0.081 b |
Overall acceptance | 6.42 ± 0.44 c | 6.29 c |
Hardness (kg) | 15.46 ± 0.62 d | 16.86 d |
WSI (%) | 47.61 ± 0.75 ab | 45.53 ac |
WAI | 4.48 ± 0.12 bc | 3.98 bd |
L* | 71.02 ± 0.93 ab | 70.48 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boluk, I.; Kumcuoglu, S.; Tavman, S. Development, Characterization and Sensory Evaluation of an Extruded Snack Using Fig Molasses By-Product and Corn Semolina. Foods 2023, 12, 1029. https://doi.org/10.3390/foods12051029
Boluk I, Kumcuoglu S, Tavman S. Development, Characterization and Sensory Evaluation of an Extruded Snack Using Fig Molasses By-Product and Corn Semolina. Foods. 2023; 12(5):1029. https://doi.org/10.3390/foods12051029
Chicago/Turabian StyleBoluk, Ismail, Seher Kumcuoglu, and Sebnem Tavman. 2023. "Development, Characterization and Sensory Evaluation of an Extruded Snack Using Fig Molasses By-Product and Corn Semolina" Foods 12, no. 5: 1029. https://doi.org/10.3390/foods12051029
APA StyleBoluk, I., Kumcuoglu, S., & Tavman, S. (2023). Development, Characterization and Sensory Evaluation of an Extruded Snack Using Fig Molasses By-Product and Corn Semolina. Foods, 12(5), 1029. https://doi.org/10.3390/foods12051029