Screening and Evaluation of Active Compounds in Polyphenol Mixtures by a Novel AAPH Offline HPLC Method and Its Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Plants
2.2. Preparation of Single Standard, Mixed Standards and L. meyenii Extract
2.3. Optimization of AAPH Radical Generation Condition
2.4. HPLC Analysis
2.5. Screening Antioxidants from Mixed Standards and Extract Using AAPH Offline HPLC
2.6. Screening Antioxidants from Mixed Standards and Extract Using ABTS Offline HPLC
2.7. Screening Antioxidants from Mixed Standards and Extract Using DPPH Offline HPLC
2.8. The Trolox Equivalent Antioxidant Capacity (TEAC) Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimization of AAPH Radical Generation Condition
3.2. Screening Antioxidations from Mixed Polyphenols Using AAPH, DPPH and ABTS Offline HPLC
3.3. Screening Antioxidations from L. meyenii Extract Using AAPH, DPPH, and ABTS Offline HPLC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bloom, D.E.; Chen, S.M.; Kuhn, M.; McGovern, M.E.; Oxley, L.; Prettner, K. The economic burden of chronic diseases: Estimates and projections for China, Japan, and South Korea. J. Econ. Ageing 2020, 17, 100163. [Google Scholar] [CrossRef] [Green Version]
- Forman, H.J.; Zhang, H.Q. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Tovar, E.; Muriel, P. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver. Antioxidants 2020, 9, 1279. [Google Scholar] [CrossRef]
- Ramana, K.V.; Srivastava, S.; Singhal, S.S. Lipid peroxidation products in human health and disease. Oxid Med. Cell Longev. 2013, 2013, 583438. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Yang, J.H.; Yoon, S.J.; Lee, J.H.; Yang, E.S.; Park, J.W. Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells. Biochimie 2003, 84, 1198–1204. [Google Scholar] [CrossRef]
- Socrier, L.; Rosselin, M.; Giraldo, A.M.; Chantemargue, B.; Meo, F.D.; Trouillas, P.; Durand, G.; Morandat, S. Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects. Biochim. Biophys. Acta (BBA)-Biomembr. 2019, 1861, 1489–1501. [Google Scholar] [CrossRef] [PubMed]
- Czaplicki, S. Chromatography in Bioactivity Analysis of Compounds; Column Chromatography: London, UK, 2013; Available online: https://www.intechopen.com/chapters/44034 (accessed on 20 November 2022).
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Gianluca, G.; Gabriele, R.; Luigi, L. Interactions between phenolic compounds, amylolytic enzymes and starch: An updated overview. Curr. Opin. Food Sci. 2020, 31, 102–113. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Wu, Z.Y.; Zuo, G.L.; Lim, S.S.; Yan, H.Y. Defatted seeds of Oenothera biennis as a potential functional food ingredient for diabetes. Foods 2021, 10, 538. [Google Scholar] [CrossRef]
- Ji, Y.; Li, B.Z.; Qiao, M.; Li, J.M.; Xu, H.; Zhang, L.H.; Zhang, X. Advances on the in vivo and in vitro glycosylations of flavonoids. Appl. Microbiol. Biotechnol. 2020, 104, 6587–6600. [Google Scholar] [CrossRef]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Plants of the World Online. Lepechinia Meyenii (Walp.) Epling. Available online: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:449276-1 (accessed on 20 November 2022).
- Zuo, G.L.; Je, K.H.; Guillen Quispe, Y.N.; Shin, K.O.; Kim, H.Y.; Kim, K.H.; Arce, P.H.G.; Lim, S.S. Separation and identification of antioxidants and aldose reductase inhibitors in Lepechinia meyenii (Walp.) Epling. Plants 2021, 10, 2773. [Google Scholar] [CrossRef]
- Zuo, G.L.; Kim, H.Y.; Guillen Quispe, Y.N.; Wang, Z.Q.; Hwang, S.H.; Shin, K.O.; Lim, S.S. Efficient separation of phytochemicals from Muehlenbeckia volcanica (Benth.) Endl. by polarity-stepwise elution Counter-Current Chromatography and their antioxidant, antiglycation, and aldose reductase inhibition potentials. Molecules 2021, 26, 224. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.L.; Kim, H.Y.; Guillen Quispe, Y.N.; Wang, Z.Q.; Kim, K.H.; Gonzales Arce, P.H.; Lim, S.S. Valeriana rigida Ruiz & Pav. root extract: A new source of caffeoylquinic acids with antioxidant and aldose reductase inhibitory activities. Foods 2021, 10, 1079. [Google Scholar] [CrossRef]
- Santos, C.M.M.; Silva, A.M.S. The antioxidant activity of prenylflavonoids. Molecules 2020, 25, 696. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M.; Yamaguchi, T.; Takamura, H.; Atoba, T.M. Effects of thermal treatment on radical-scavenging activity of single and mixed polyphenolic compounds. J. Food Sci. 2004, 69, FCT7–FCT10. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Abramovic, H.; Grobin, B.; Poklar, N.U.; Cigic, B. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu. J. Chem. 2018, 2018, 4608405. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.; Abraham, T.E.; Zakaria, Z.A. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol. 2015, 52, 5790–5798. [Google Scholar] [CrossRef] [Green Version]
- Kongpichitchoke, T.; Hsu, J.L.; Huang, T.C. Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: In vitro and in silico studies. J. Agric. Food Chem. 2015, 63, 4580–4586. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Zhang, Y.X.; Yan, H.Y. In situ net fishing of α-glucosidase inhibitors from evening primrose (Oenothera biennis) defatted seeds by combination of LC-MS/MS, molecular networking, affinity-based ultrafiltration, and molecular docking. Food Funct. 2022, 13, 2545–2558. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.J.; Huang, L.X.; Zhang, C.H.; Zhang, Y.L. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. J. Funct. Foods 2015, 16, 460–471. [Google Scholar] [CrossRef]
- Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
- Chen, J.X.; Yang, J.; Ma, L.L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Żbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant activity of selected phenolic acids–ferric reducing antioxidant power assay and QSAR analysis of the structural features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef]
Classification | Standards (Retention Time, min) | 65 °C | 75 °C | 85 °C | |||
---|---|---|---|---|---|---|---|
Peak Area Reduction by Heating (%) | Peak Area Reduction by Radicals (%) | Peak Area Reduction by Heating (%) | Peak Area Reduction by Radicals (%) | Peak Area Reduction by Heating (%) | Peak Area Reduction by Radicals (%) | ||
Hydroxybenzoic acids and derivatives | Gallic acid (8.11) | 11.96 | 91.87 | 11.85 | 47.70 | 11.75 | 32.65 |
3,4-Dihydroxybenzoic acid (14.19) | 7.19 | - 1 | - | - | - | - | |
2,5-Dihydroxybenzoic acid (19.48) | 3.03 | - | 6.31 | 63.42 | 9.68 | 57.80 | |
4-Hydroxyphenylacetic acid (21.57) | - | 11.03 | - | 23.32 | - | 0.30 | |
Syringic acid (25.16) | 8.53 | - | 6.20 | 16.50 | 3.88 | 23.59 | |
Hydroxycinnamic acids and derivatives | 3,4-Dihydroxyhydrocinnamic acid (21.29) | 19.38 | 13.46 | - | 59.11 | 4.65 | - |
Caffeic acid (24.79) | 12.22 | 6.10 | 10.24 | 53.15 | 8.25 | 69.63 | |
2,4-Dihydroxycinnamic acid (26.63) | 10.47 | 8.84 | 17.18 | 31.20 | 15.75 | 38.07 | |
p-Coumaric acid (31.24) | 10.43 | 1.84 | 8.88 | 1.46 | 7.34 | 8.02 | |
Sinapic acid (33.89) | 11.94 | 44.30 | 4.32 | 10.63 | 16.91 | 38.16 | |
2-Hydroxycinnamic acid (38.28) | 7.46 | 8.95 | - | 19.70 | 4.49 | 14.64 | |
flavonoids | (+)-Catechin (20.57) | 3.85 | 58.74 | - | 60.99 | - | 86.50 |
Taxifolin (32.64) | 10.07 | 15.47 | 29.18 | 19.65 | - | 82.72 | |
Quercetin (47.41) | 23.92 | 98.21 | 31.56 | 98.48 | 39.20 | 99.01 | |
Apigenin (50.43) | 11.33 | 6.73 | 9.88 | 14.33 | 9.80 | 23.46 | |
Stilbenes | Resveratrol (39.93) | 11.59 | 10.91 | 9.19 | 26.98 | 6.86 | 35.24 |
Lignans | Rosmarinic acid (40.68) | 7.93 | 28.43 | 2.99 | 65.56 | 5.83 | 86.14 |
others | 3,4-Dihydroxy-L- phenylalanine (4.60) | 34.02 | 100.00 | 34.80 | 100.00 | 34.54 | 100.00 |
4,4′-Methylenediphenol (46.23) | - | - | - | 7.62 | - | - | |
Trolox (49.88) | - | 69.97 | - | 4.97 | - | 27.92 |
Classification | Standards (Retention Time, min) | Trolox Equivalents (TEAC, µmol) | AAPH | DPPH | ABTS |
---|---|---|---|---|---|
Peak Area Reduction by AAPH Radicals (%) | Peak Area Reduction by DPPH Radicals (%) | Peak Area Reduction by ABTS Radicals (%) | |||
Hydroxybenzoic acids and derivatives | Gallic acid (8.11) | 6.37 ± 1.33 | 47.70 | 35.84 | 8.39 |
3,4-Dihydroxybenzoic acid (14.19) | 1.08 ± 0.62 | - | 3.88 | 7.78 | |
2,5-Dihydroxybenzoic acid (19.48) | 2.33 ± 0.55 | 63.42 | 67.88 | 8.47 | |
4-Hydroxyphenylacetic acid (21.57) | 0.74± 0.01 | 23.32 | - | 7.86 | |
Syringic acid (25.16) | 2.57 ± 1.26 | 16.50 | 3.30 | 7.23 | |
Hydroxycinnamic acids and derivatives | 3,4-Dihydroxyhydrocinnamic acid (21.29) | 2.54 ± 0.60 1 | 59.11 | - 2 | 8.54 |
Caffeic acid (24.79) | 1.99 ± 0.26 | 53.15 | 100.00 | 6.87 | |
2,4-Dihydroxycinnamic acid (26.63) | 4.98 ± 1.03 | 31.20 | 1.07 | 7.32 | |
p-Coumaric acid (31.24) | 1.15 ± 0.56 | 1.46 | 1.69 | 6.78 | |
Sinapic acid (33.89) | 0.57 ± 0.27 | 10.63 | 34.30 | 8.68 | |
2-Hydroxycinnamic acid (38.28) | 2.59 ± 1.84 | 19.70 | 4.69 | 7.11 | |
flavonoids | (+)-Catechin (20.57) | 5.47 ± 1.46 | 60.99 | 11.12 | - |
Taxifolin (32.64) | 2.98 ± 2.16 | 19.65 | 7.41 | 7.13 | |
Quercetin (47.41) | 8.16 ± 0.91 | 98.48 | 45.40 | 12.37 | |
Apigenin (50.43) | 0.71 ± 0.56 | 14.33 | 7.25 | 8.70 | |
Stilbenes | Resveratrol (39.93) | 2.96 ± 1.07 | 26.98 | 10.33 | 7.94 |
Lignans | Rosmarinic acid (40.68) | 2.54 ± 1.24 | 65.56 | 4.81 | 6.74 |
others | 3,4-Dihydroxy-L-phenylalanine (4.60) | 1.15 ± 0.26 | 100.00 | 83.84 | - |
4,4′-Methylenediphenol (46.23) | 6.08 ± 0.87 | 7.62 | - | 14.87 | |
Trolox (49.88) | - | 69.97 | 4.97 | 27.92 |
Classification | Standards | Trolox Equivalents (TEAC, µmol) | AAPH | DPPH | ABTS |
---|---|---|---|---|---|
Peak Area Reduction (%) | Peak Area Reduction (%) | Peak Area Reduction (%) | |||
Hydroxycinnamic acids | Caffeic acid (1) | 1.37 ± 0.06 1 | 100 | 62.79 | 13.71 |
Flavonoids | Hesperidin (2) | 1.47 ± 0.25 | 72.23 | 61.67 | 13.77 |
Diosmin (4) | 1.87 ± 0.41 | 78.44 | 12.26 | 20.76 | |
Diosmetin (6) | 2.17 ± 0.29 | 42.59 | 100 | - 2 | |
Lignans | Rosmarinic acid (3) | 1.58 ± 0.04 | 100 | 97.48 | 1.59 |
Methyl rosmarinate (5) | 1.81 ± 0.37 | 17.56 | 100 | 4.68 | |
n-Butyl rosmarinate (7) | 2.14 ± 0.42 | 23.38 | 81.49 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Zuo, G.; Lee, S.-K.; Kang, S.-M.; Lee, S.-Y.; Noreen, S.; Lim, S.-S. Screening and Evaluation of Active Compounds in Polyphenol Mixtures by a Novel AAPH Offline HPLC Method and Its Application. Foods 2023, 12, 1258. https://doi.org/10.3390/foods12061258
Wu Z, Zuo G, Lee S-K, Kang S-M, Lee S-Y, Noreen S, Lim S-S. Screening and Evaluation of Active Compounds in Polyphenol Mixtures by a Novel AAPH Offline HPLC Method and Its Application. Foods. 2023; 12(6):1258. https://doi.org/10.3390/foods12061258
Chicago/Turabian StyleWu, Zhaoyang, Guanglei Zuo, Soo-Kyeong Lee, Sung-Mo Kang, Sang-Youn Lee, Saba Noreen, and Soon-Sung Lim. 2023. "Screening and Evaluation of Active Compounds in Polyphenol Mixtures by a Novel AAPH Offline HPLC Method and Its Application" Foods 12, no. 6: 1258. https://doi.org/10.3390/foods12061258
APA StyleWu, Z., Zuo, G., Lee, S. -K., Kang, S. -M., Lee, S. -Y., Noreen, S., & Lim, S. -S. (2023). Screening and Evaluation of Active Compounds in Polyphenol Mixtures by a Novel AAPH Offline HPLC Method and Its Application. Foods, 12(6), 1258. https://doi.org/10.3390/foods12061258