1H NMR Reveals the Mechanism of Potassium Lactate on Proteolysis and Taste Metabolites of Rugao Ham
Abstract
:1. Introduction
2. Materials and Methods
2.1. Processing of Rugao Ham and Sample Preparation
2.2. Proteolysis Index (PI) Analysis
2.3. Cathepsin Activities Assays
2.4. Aminopeptidase Activities Assays
2.5. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) of Sarcoplasmic Proteins and Myofibrillar Proteins
2.6. Metabolites Extraction
2.7. 1H NMR Spectroscopy
2.8. Statistical Analysis
3. Results and Discussion
3.1. Changes of PI in Rugao Hams
3.2. Changes of Cathepsin Activities
3.3. Changes of Aminopeptidase Activities
3.4. SDS-PAGE Analysis
3.5. 1H NMR Spectra of Rugao Hams
3.6. Multivariate Statistical Analyses of Metabolites
3.7. Contribution of Metabolites to Tastes of Rugao Hams
3.8. Metabolic Pathway Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, F.; Xu, X.; Zhou, G.; Zhao, G.; Li, C.; Zhang, Y.; Chen, L.; Qi, J. Irradiated Chinese Rugao ham: Changes in volatile N-nitrosamine, biogenic amine and residual nitrite during ripening and post-ripening. Meat Sci. 2009, 81, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Costa-Corredor, A.; Serra, X.; Arnau, J.; Gou, P. Reduction of NaCl content in restructured dry-cured hams: Post-resting temperature and drying level effects on physicochemical and sensory parameters. Meat Sci. 2009, 83, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Gelabert, J.; Gou, P.; Guerrero, L.; Arnau, J. Effect of sodium chloride replacement on some characteristics of fermented sausages. Meat Sci. 2003, 65, 833–839. [Google Scholar] [CrossRef]
- Zhou, C.-Y.; Wang, C.; Tang, C.-B.; Dai, C.; Bai, Y.; Yu, X.-B.; Li, C.-B.; Xu, X.-L.; Zhou, G.-H.; Cao, J.-X. Label-free proteomics reveals the mechanism of bitterness and adhesiveness in Jinhua ham. Food Chem. 2019, 297, 125012. [Google Scholar] [CrossRef]
- Gou, P.; Guerrero, L.; Gelabert, J.; Arnau, J. Potassium chloride, potassium lactate and glycine as sodium chloride substitutes in fermented sausages and in dry-cured pork loin. Meat Sci. 1996, 42, 37–48. [Google Scholar] [CrossRef]
- Guàrdia, M.D.; Guerrero, L.; Gelabert, J.; Gou, P.; Arnau, J. Sensory characterisation and consumer acceptability of small calibre fermented sausages with 50% substitution of NaCl by mixtures of KCl and potassium lactate. Meat Sci. 2008, 80, 1225–1230. [Google Scholar] [CrossRef]
- McClure, B.N.; Sebranek, J.G.; Kim, Y.H.; Sullivan, G.A. The effects of lactate on nitrosylmyoglobin formation from nitrite and metmyoglobin in a cured meat system. Food Chem. 2011, 129, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Shelef, L.A. Antimicrobial Effects of Lactates: A Review. J. Food Prot. 1994, 57, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Astruc, T.; Labas, R.; Vendeuvre, J.L.; Martin, J.L.; Taylor, R.G. Beef sausage structure affected by sodium chloride and potassium lactate. Meat Sci. 2008, 80, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Quilo, S.; Pohlman, F.; Brown, A.; Crandall, P.; Dias-Morse, P.; Baublits, R.; Aparicio, J. Effects of potassium lactate, sodium metasilicate, peroxyacetic acid, and acidified sodium chlorite on physical, chemical, and sensory properties of ground beef patties. Meat Sci. 2009, 82, 44–52. [Google Scholar] [CrossRef]
- Zhou, G.; Zhao, G. Biochemical changes during processing of traditional Jinhua ham. Meat Sci. 2007, 77, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F. The role of muscle enzymes in dry-cured meat products with different drying conditions. Trends Food Sci. Technol. 2006, 17, 164–168. [Google Scholar] [CrossRef]
- Fulladosa, E.; Serra, X.; Gou, P.; Arnau, J. Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content. Meat Sci. 2009, 82, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Martín, L.; Antequera, T.; Ventanas, J.; Benítez-Donoso, R.; Córdoba, J. Free amino acids and other non-volatile compounds formed during processing of Iberian ham. Meat Sci. 2001, 59, 363–368. [Google Scholar] [CrossRef]
- Hernández-Cázares, A.S.; Aristoy, M.-C.; Toldrá, F. Nucleotides and their degradation products during processing of dry-cured ham, measured by HPLC and an enzyme sensor. Meat Sci. 2011, 87, 125–129. [Google Scholar] [CrossRef]
- Sugimoto, M.; Obiya, S.; Kaneko, M.; Enomoto, A.; Honma, M.; Wakayama, M.; Soga, T.; Tomita, M. Metabolomic Profiling as a Possible Reverse Engineering Tool for Estimating Processing Conditions of Dry-Cured Hams. J. Agric. Food Chem. 2017, 65, 402–410. [Google Scholar] [CrossRef]
- Zhang, J.; Yi, Y.; Pan, D.; Zhou, G.; Wang, Y.; Dang, Y.; He, J.; Li, G.; Cao, J. 1H NMR-based metabolomics profiling and taste of boneless dry-cured hams during processing. Food Res. Int. 2019, 122, 114–122. [Google Scholar] [CrossRef]
- Zhou, C.-Y.; Bai, Y.; Wang, C.; Li, C.-B.; Xu, X.-L.; Pan, D.-D.; Cao, J.-X.; Zhou, G.-H. 1H NMR-based metabolomics and sensory evaluation characterize taste substances of Jinhua ham with traditional and modern processing procedures. Food Control 2021, 126, 107873. [Google Scholar] [CrossRef]
- Zhao, G.; Zhou, G.; Wang, Y.; Xu, X.; Huan, Y.; Wu, J. Time-related changes in cathepsin B and L activities during processing of Jinhua ham as a function of pH, salt and temperature. Meat Sci. 2005, 70, 381–388. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Tian, W.; Zhou, G.; Xu, X.; Liu, Y. Changes of arginyl and leucyl aminopeptidase activities in biceps femoris along Jinhua ham processing. Meat Sci. 2006, 74, 450–458. [Google Scholar] [CrossRef]
- Flores, M.; Aristoy, M.-C.; Toldrá, F. Feedback Inhibition of Porcine Muscle Alanyl and Arginyl Aminopeptidases in Cured Meat Products. J. Agric. Food Chem. 1998, 46, 4982–4986. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Y.; Sun, Y.; Pan, D.; Ou, C.; Dang, Y.; Wang, Y.; Cao, J.; Wang, D. 1H NMR and multivariate data analysis of the differences of metabolites in five types of dry-cured hams. Food Res. Int. 2018, 113, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Kranz, M.; Viton, F.; Smarrito-Menozzi, C.; Hofmann, T. Sensomics-Based Molecularization of the Taste of Pot-au-Feu, a Traditional Meat/Vegetable Broth. J. Agric. Food Chem. 2017, 66, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Petrova, I.; Aasen, I.M.; Rustad, T.; Eikevik, T.M. Manufacture of dry-cured ham: A review. Part 1. Biochemical changes during the technological process. Eur. Food Res. Technol. 2015, 241, 587–599. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Pérez-Santaescolástica, C.; Franco, D.; Fulladosa, E.; Carballo, J.; Zapata, C.; Lorenzo, J. Comparative proteomic profiling of myofibrillar proteins in dry-cured ham with different proteolysis indices and adhesiveness. Food Chem. 2018, 244, 238–245. [Google Scholar] [CrossRef]
- Pugliese, C.; Sirtori, F.; Škrlep, M.; Piasentier, E.; Calamai, L.; Franci, O.; Čandek-Potokar, M. The effect of ripening time on the chemical, textural, volatile and sensorial traits of Bicep femoris and Semimembranosus muscles of the Slovenian dry-cured ham Kraški pršut. Meat Sci. 2015, 100, 58–68. [Google Scholar] [CrossRef]
- Erdemir, E. Free amino acids profile and quality properties of Turkish pastırma cured with potassium lactate and sodium chloride combinations. J. Food Process. Preserv. 2021, 46, e16263. [Google Scholar] [CrossRef]
- Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Physicochemical changes during manufacture and final sensory characteristics of dry-cured Celta ham. Effect of muscle type. Food Control 2014, 43, 263–269. [Google Scholar] [CrossRef]
- Toldrá, F.; Flores, M. The Role of Muscle Proteases and Lipases in Flavor Development During the Processing of Dry-Cured Ham. Crit. Rev. Food Sci. Nutr. 1998, 38, 331–352. [Google Scholar] [CrossRef]
- Toldrá, F.; Aristoy, M.-C.; Flores, M. Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Res. Int. 2000, 33, 181–185. [Google Scholar] [CrossRef]
- Flores, M.; Aristoy, M.-C.; Toldrá, F. HPLC Purification and Characterization of Soluble Alanyl Aminopeptidase from Porcine Skeletal Muscle. J. Agric. Food Chem. 1996, 44, 2578–2583. [Google Scholar] [CrossRef]
- Flores, M.; Aristoy, M.C.; Toldrá, F. Curing agents affect aminopeptidase activity from porcine skeletal muscle. Z. Lebensm. Und-Forsch. A 1997, 205, 343–346. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Aristoy, M.C.; Toldrá, F. The use of label-free mass spectrometry for relative quantification of sarcoplasmic proteins during the processing of dry-cured ham. Food Chem. 2016, 196, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Mora, L.; Sentandreu, M.A.; Fraser, P.D.; Toldrá, F.; Bramley, P.M. Oligopeptides Arising from the Degradation of Creatine Kinase in Spanish Dry-Cured Ham. J. Agric. Food Chem. 2009, 57, 8982–8988. [Google Scholar] [CrossRef] [PubMed]
- Škrlep, M.; Čandek-Potokar, M.; Mandelc, S.; Javornik, B.; Gou, P.; Chambon, C.; Santé-Lhoutellier, V. Proteomic profile of dry-cured ham relative to PRKAG3 or CAST genotype, level of salt and pastiness. Meat Sci. 2011, 88, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Dai, B.; Ayed, C.; Liu, Y. Comparing the metabolic profiles of raw and cooked pufferfish (Takifugu flavidus) meat by NMR assessment. Food Chem. 2019, 290, 107–113. [Google Scholar] [CrossRef]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. Eur. Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Xiao, Z.; Ge, C.; Zhou, G.; Zhang, W.; Liao, G. 1H NMR-based metabolic characterization of Chinese Wuding chicken meat. Food Chem. 2019, 274, 574–582. [Google Scholar] [CrossRef]
- Klamt, S.; Stelling, J. Two approaches for metabolic pathway analysis? Trends Biotechnol. 2003, 21, 64–69. [Google Scholar] [CrossRef]
- Liao, R.; Xia, Q.; Zhou, C.; Geng, F.; Wang, Y.; Sun, Y.; He, J.; Pan, D.; Cao, J. LC-MS/MS-based metabolomics and sensory evaluation characterize metabolites and texture of normal and spoiled dry-cured hams. Food Chem. 2021, 371, 131156. [Google Scholar] [CrossRef]
Potassium Lactate Levels | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
0% | 1% | 2% | ||||||
Content | TAVs | Content | TAVs | Content | TAVs | |||
Free amino acids | Phenylalanine | 1.64 ± 0.18 b | 1.82 | 2.02 ± 0.49 ab | 2.25 | 2.77 ± 0.43 a | 3.08 | <0.01 |
Alanine | 4.37 ± 0.75 c | 7.28 | 6.32 ± 1.30 b | 10.53 | 8.03 ± 1.46 a | 13.38 | <0.001 | |
Methionine | 0.17 ± 0.01 b | 0.56 | 0.16 ± 0.03 b | 0.54 | 0.22 ± 0.01 a | 0.74 | <0.05 | |
Glutamate | 2.89 ± 0.44 b | 9.62 | 4.22 ± 1.00 ab | 14.05 | 5.26 ± 0.99 a | 17.53 | <0.01 | |
Arginine | 0.07 ± 0.05 b | 0.13 | 0.10 ± 0.04 b | 0.21 | 0.18 ± 0.07 a | 0.36 | <0.05 | |
Lysine | 2.34 ± 0.44 b | 4.67 | 2.90 ± 0.57 ab | 5.79 | 3.52 ± 0.64 a | 7.05 | <0.01 | |
Tyrosine | 0.19 ± 0.01 b | 0.21 | 0.36 ± 0.08 a | 0.40 | 0.33 ± 0.06 a | 0.37 | <0.05 | |
Leucine | 2.42 ± 0.39 b | 1.27 | 3.05 ± 0.61 a | 1.61 | 3.39 ± 0.49 a | 1.78 | <0.05 | |
Taurine | 1.17 ± 0.17 b | 0.09 | 1.46 ± 0.29 b | 0.12 | 1.86 ± 0.36 a | 0.15 | <0.05 | |
Proline | 0.59 ± 0.10 b | 0.20 | 0.79 ± 0.24 ab | 0.26 | 1.01 ± 0.21 a | 0.34 | <0.01 | |
Serine | 1.00 ± 0.17 b | 0.67 | 1.54 ± 0.22 a | 1.02 | 1.87 ± 0.45 a | 1.24 | <0.05 | |
Threonine | 2.28 ± 0.20 b | 0.88 | 3.27 ± 0.63 a | 1.26 | 3.78 ± 0.45 a | 1.45 | <0.05 | |
Aspartate | 3.30 ± 0.19 c | 3.30 | 3.91 ± 0.57 b | 3.91 | 5.37 ± 0.52 a | 5.37 | <0.001 | |
Valine | 1.30 ± 0.15 b | 3.25 | 1.61 ± 0.27 b | 4.02 | 2.16 ± 0.39 a | 5.40 | <0.05 | |
Isoleucine | 2.12 ± 0.24 c | 2.35 | 2.89 ± 0.60 b | 3.21 | 3.93 ± 0.25 a | 4.37 | <0.001 | |
Total | 25.84 ± 3.10 c | 34.59 ± 6.84 b | 43.67 ± 6.43 a | <0.05 | ||||
Peptides | Anserine | 0.44 ± 0.04 c | 0.15 | 0.59 ± 0.09 b | 0.19 | 0.69 ± 0.05 a | 0.23 | <0.01 |
Carnosine | 4.47 ± 0.35 c | 0.84 | 5.69 ± 0.88 b | 1.07 | 7.10 ± 0.52 a | 1.34 | <0.001 | |
Total | 4.91 ± 0.39 c | 6.28 ± 0.97 b | 7.79 ± 0.56 a | <0.001 | ||||
Organic acids | Acetate | 1.32 ± 0.03 b | 6.59 | 2.16 ± 0.42 a | 10.82 | 2.45 ± 0.37 a | 12.24 | <0.05 |
Butyrate | 0.18 ± 0.05 c | 0.51 | 0.75 ± 0.41 b | 2.14 | 1.26 ± 0.36 a | 3.61 | <0.001 | |
Succinate | 0.55 ± 0.15 b | 5.21 | 0.96 ± 0.13 a | 9.02 | 0.84 ± 0.05 a | 7.94 | <0.05 | |
Creatine | 2.72 ± 0.23 b | 0.35 | 2.99 ± 0.39 b | 0.38 | 3.49 ± 0.45 a | 0.44 | <0.05 | |
Formate | 0.23 ± 0.04 b | 0.77 | 0.30 ± 0.07 a | 1.01 | 0.36 ± 0.05 a | 1.21 | <0.05 | |
Lactate | 8.00 ± 0.62 c | 6.35 | 12.53 ± 2.23 b | 9.94 | 14.77 ± 1.77 a | 11.73 | <0.001 | |
Total | 13.00 ± 0.91 c | 19.69 ± 3.24 b | 23.18 ± 2.84 a | <0.001 | ||||
Nucleic acids | AMP | 0.11 ± 0.01 | 0.21 | 0.11 ± 0.01 | 0.23 | 0.13 ± 0.02 | 0.26 | >0.05 |
Inosine | 0.18 ± 0.03 b | 0.07 | 0.24 ± 0.03 a | 0.09 | 0.26 ± 0.01 a | 0.10 | <0.05 | |
Uridine | 0.03 ± 0.01 | NA | 0.03 ± 0.01 | NA | 0.05 ± 0.01 | NA | >0.05 | |
Uracil | 0.11 ± 0.02 b | NA | 0.15 ± 0.02 a | NA | 0.14 ± 0.02 a | NA | <0.05 | |
Total | 0.42 ± 0.05 b | 0.52 ± 0.07 a | 0.58 ± 0.06 a | <0.05 | ||||
Other | β-glucose | 4.61 ± 0.63 b | 0.28 | 6.50 ± 1.31 a | 0.40 | 7.11 ± 1.18 a | 0.44 | <0.01 |
myo-Inositol | 0.51 ± 0.10 b | NA | 0.62 ± 0.11 ab | NA | 0.70 ± 0.09 a | NA | <0.05 | |
Choline | 1.19 ± 0.17 b | 2.86 | 1.62 ± 0.32 a | 3.87 | 1.72 ± 0.13 a | 4.12 | <0.01 | |
Betaine | 0.50 ± 0.06 b | NA | 0.53 ± 0.13 b | NA | 0.91 ± 0.14 a | NA | <0.05 | |
Glycerol | 5.31 ± 1.11 b | NA | 7.04 ± 0.98 a | NA | 6.58 ± 0.51 ab | NA | <0.01 | |
Creatinine | 0.48 ± 0.05 b | 0.42 | 1.07 ± 0.41 b | 0.94 | 1.96 ± 0.72 a | 1.73 | <0.01 | |
Nicotinamide | 0.38 ± 0.02 b | NA | 0.49 ± 0.09 ab | NA | 0.59 ± 0.15 a | NA | <0.05 | |
Total | 7.86 ± 1.35 b | 10.74 ± 1.91 a | 11.76 ± 1.55 a | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Liao, R.; Pan, D.; Xia, Q.; Wang, Y.; Geng, F.; Zhou, C.; Cao, J. 1H NMR Reveals the Mechanism of Potassium Lactate on Proteolysis and Taste Metabolites of Rugao Ham. Foods 2023, 12, 1453. https://doi.org/10.3390/foods12071453
Cai X, Liao R, Pan D, Xia Q, Wang Y, Geng F, Zhou C, Cao J. 1H NMR Reveals the Mechanism of Potassium Lactate on Proteolysis and Taste Metabolites of Rugao Ham. Foods. 2023; 12(7):1453. https://doi.org/10.3390/foods12071453
Chicago/Turabian StyleCai, Xin, Renyong Liao, Daodong Pan, Qiang Xia, Ying Wang, Fang Geng, Changyu Zhou, and Jinxuan Cao. 2023. "1H NMR Reveals the Mechanism of Potassium Lactate on Proteolysis and Taste Metabolites of Rugao Ham" Foods 12, no. 7: 1453. https://doi.org/10.3390/foods12071453
APA StyleCai, X., Liao, R., Pan, D., Xia, Q., Wang, Y., Geng, F., Zhou, C., & Cao, J. (2023). 1H NMR Reveals the Mechanism of Potassium Lactate on Proteolysis and Taste Metabolites of Rugao Ham. Foods, 12(7), 1453. https://doi.org/10.3390/foods12071453