Differentiating Huangjiu with Varying Sugar Contents from Different Regions Based on Targeted Metabolomics Analyses of Volatile Carbonyl Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Reagents and Standards
2.3. Derivatization and HS-SPME Procedure
2.4. GC-MS Analysis
2.5. Qualitative and Quantitative Analyses
2.6. Method Validation
2.7. Statistical Analyses
3. Results and Discussion
3.1. Extraction Method Optimization
3.2. Method Validation
3.3. Quantification of Volatile Carbonyl Compounds in Huangjiu
3.4. OPLS-DA Distinguishes between Carbonyl Compounds in Different Huangjiu
3.4.1. OPLS-DA of Semidry and Semisweet Huangjiu
3.4.2. OPLS-DA of Rice Huangjiu and Nonrice Huangjiu
3.4.3. OPLS-DA of Huangjiu from Different Regions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Yu, Y.; Gao, X.; Jiang, X.; Huang, M.; Ye, H.; Wu, J.; Zhang, J.; Sun, X.; Wu, Q. Succession patterns of aroma components during brewing process of broomcorn millet (Panicum miliaceum L.) Huangjiu. Food Res. Int. 2022, 154, 110982. [Google Scholar] [CrossRef]
- Xie, G.; Zheng, H.; Qiu, Z.; Lin, Z.; Peng, Q.; Bealu, G.D.; Elsheery, N.I.; Lu, Y.; Shen, C.; Fu, J.; et al. Study on relationship between bacterial diversity and quality of Huangjiu (Chinese Rice Wine) fermentation. Food Sci. Nutr. 2021, 9, 3885–3892. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, H.; Sun, L.; Zhang, W.; Lu, X.; Li, Z.; Xu, J.; Ren, Q. The changes of microbial diversity and flavor compounds during the fermentation of millet Huangjiu, a traditional Chinese beverage. PLoS ONE 2022, 17, e0262353. [Google Scholar] [CrossRef]
- Yu, H.; Xie, T.; Xie, J.; Ai, L.; Tian, H. Characterization of key aroma compounds in Chinese rice wine using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem. 2019, 293, 8–14. [Google Scholar] [CrossRef]
- Moreira, N.; Araújo, A.M.; Rogerson, F.; Vasconcelos, I.; De Freitas, V.; de Pinho, P.G. Development and optimization of a HS-SPME-GC-MS methodology to quantify volatile carbonyl compounds in Port wines. Food Chem. 2019, 270, 518–526. [Google Scholar] [CrossRef]
- Culleré, L.; Cacho, J.; Ferreira, V. Analysis for wine C5–C8 aldehydes through the determination of their O-(2,3,4,5,6-pentafluorobenzyl)oximes formed directly in the solid phase extraction cartridge. Anal. Chim. Acta 2004, 524, 201–206. [Google Scholar] [CrossRef]
- Wu, Q.J.; Chen, H.L.; Yang, Z. Determination of aging aldehydes in beer by automated Headspace Derivatization Solid Phase Microextraction. Chin. J. Anal. Lab. 2007, 4, 38–41. [Google Scholar]
- Moreira, N.; Meireles, S.; Brandão, T.; de Pinho, P.G. Optimization of the HS-SPME–GC–IT/MS method using a central composite design for volatile carbonyl compounds determination in beers. Talanta 2013, 117, 523–531. [Google Scholar] [CrossRef]
- Saison, D.; De Schutter, D.P.; Delvaux, F.; Delvaux, F.R. Determination of carbonyl compounds in beer by derivatisation and headspace solid-phase microextraction in combination with gas chromatography and mass spectrometry. J. Chromatogr. A 2009, 1216, 5061–5068. [Google Scholar] [CrossRef]
- Sowiński, P.; Wardencki, W.; Partyka, M. Development and evaluation of headspace gas chromatography method for the analysis of carbonyl compounds in spirits and vodkas. Anal. Chim. Acta 2005, 539, 17–22. [Google Scholar] [CrossRef]
- Ledauphin, J.; Barillier, D.; Beljean-Leymarie, M. Gas chromatographic quantification of aliphatic aldehydes in freshly distilled Calvados and Cognac using 3-methylbenzothiazolin-2-one hydrazone as derivative agent. J. Chromatogr. A 2006, 1115, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Changjiang, C. Flavor Compounds of Chinese Kongfujia Liquor. Master’s Thesis, Jiangnan University, Wuxi, China, 2014. [Google Scholar]
- Fan, W.; Qian, M.C. Characterization of Aroma Compounds of Chinese “Wuliangye” and “Jiannanchun” Liquors by Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2006, 54, 2695–2704. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, R.; García-Martínez, T.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J. Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle. Food Chem. 2017, 237, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Saison, D.; De Schutter, D.P.; Delvaux, F.; Delvaux, F.R. Optimisation of a complete method for the analysis of volatiles involved in the flavour stability of beer by solid-phase microextraction in combination with gas chromatography and mass spectrometry. J. Chromatogr. A 2008, 1190, 342–349. [Google Scholar] [CrossRef]
- Ferreira, A.C.D.S.; Reis, S.; Rodrigues, C.; Oliveira, C.; de Pinho, P.G. Simultaneous Determination of Ketoacids and Dicarbonyl Compounds, Key Maillard Intermediates on the Generation of Aged Wine Aroma. J. Food Sci. 2007, 72, S314–S318. [Google Scholar] [CrossRef] [PubMed]
- Baert, J.J.; De Clippeleer, J.; Hughes, P.S.; De Cooman, L.; Aerts, G. On the Origin of Free and Bound Staling Aldehydes in Beer. J. Agric. Food Chem. 2012, 60, 11449–11472. [Google Scholar] [CrossRef]
- Saison, D.; De Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F.R. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- da Costa, M.S.; Gonçalves, C.; Ferreira, A.; Ibsen, C.; de Pinho, P.G. Further Insights into the Role of Methional and Phenylacetaldehyde in Lager Beer Flavor Stability. J. Agric. Food Chem. 2004, 52, 7911–7917. [Google Scholar] [CrossRef]
- Moreira, N.; Lopes, P.; Cabral, M.; de Pinho, P.G. HS-SPME/GC-MS methodologies for the analysis of volatile compounds in cork material. Eur. Food Res. Technol. 2016, 242, 457–466. [Google Scholar] [CrossRef]
- López-Vázquez, C.; Orriols, I.; Perelló, M.-C.; de Revel, G. Determination of aldehydes as pentafluorobenzyl derivatives in grape pomace distillates by HS-SPME-GC/MS. Food Chem. 2011, 130, 1127–1133. [Google Scholar] [CrossRef]
- Peng, Q.; Tian, R.; Chen, F.; Li, B.; Gao, H. Discrimination of producing area of Chinese Tongshan kaoliang spirit using electronic nose sensing characteristics combined with the chemometrics methods. Food Chem. 2015, 178, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Leborgne, C.; Lambert, M.; Ducasse, M.-A.; Meudec, E.; Verbaere, A.; Sommerer, N.; Boulet, J.-C.; Masson, G.; Mouret, J.-R.; Cheynier, V. Elucidating the Color of Rosé Wines Using Polyphenol-Targeted Metabolomics. Molecules 2022, 27, 1359. [Google Scholar] [CrossRef]
- Schmarr, H.-G.; Potouridis, T.; Ganß, S.; Sang, W.; Köpp, B.; Bokuz, U.; Fischer, U. Analysis of carbonyl compounds via headspace solid-phase microextraction with on-fiber derivatization and gas chromatographic–ion trap tandem mass spectrometric determination of their O-(2,3,4,5,6-pentafluorobenzyl)oxime derivatives. Anal. Chim. Acta 2008, 617, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Jian, D.; Gong, M.; Zhu, S.; Li, G.; Zhang, S.; Zhong, F.; Mao, J. Characterization of the key aroma compounds in aged Zhenjiang aromatic vinegar by gas chromatography-olfactometry-mass spectrometry, quantitative measurements, aroma recombination and omission experiments. Food Res. Int. 2020, 136, 109434. [Google Scholar] [CrossRef] [PubMed]
- Pellati, F.; Benvenuti, S.; Yoshizaki, F.; Bertelli, D.; Rossi, M.C. Headspace solid-phase microextraction-gas chromatography–mass spectrometry analysis of the volatile compounds of Evodia species fruits. J. Chromatogr. A 2005, 1087, 265–273. [Google Scholar] [CrossRef]
- Rocha, S.; Delgadillo, I.; Correia, A.J.F. GC−MS Study of Volatiles of Normal and Microbiologically Attacked Cork from Quercus suber L. J. Agric. Food Chem. 1996, 44, 865–871. [Google Scholar] [CrossRef]
- Genovese, A.; Gambuti, A.; Piombino, P.; Moio, L. Sensory properties and aroma compounds of sweet Fiano wine. Food Chem. 2007, 103, 1228–1236. [Google Scholar] [CrossRef]
- Feng, T.; Hu, Z.; Chen, L.; Chen, D.; Wang, X.; Yao, L.; Sun, M.; Song, S.; Wang, H. Quantitative structure-activity relationships (QSAR) of aroma compounds in different aged Huangjiu. J. Food Sci. 2020, 85, 3273–3281. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Qian, M.C.; Li, Z.; Xu, Y. Characterization of the Key Aroma Compounds in Aged Chinese Rice Wine by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2019, 67, 4876–4884. [Google Scholar] [CrossRef]
- Chen, S.; Xu, Y.; Qian, M.C. Comparison of the aromatic profile of traditional and modern types of Huang Jiu (Chinese rice wine) by aroma extract dilution analysis and chemical analysis. Flavour Fragr. J. 2018, 33, 263–271. [Google Scholar] [CrossRef]
- Wang, N.; Chen, S.; Zhou, Z. Age-dependent characterization of volatile organic compounds and age discrimination in Chinese rice wine using an untargeted GC/MS-based metabolomic approach. Food Chem. 2020, 325, 126900. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Dai, X.; Zhu, J.; Yu, H. Classification of Chinese Rice Wine According to Geographic Origin and Wine Age Based on Chemometric Methods and SBSE-TD-GC-MS Analysis of Volatile Compounds. Food Sci. Technol. Res. 2015, 21, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Ren, Q.; Sun, L.; Sun, Z.; Liu, Q.; Lu, X.; Li, Z.; Xu, J. Bacterial succession and the dynamics of flavor compounds in the Huangjiu fermented from corn. Arch. Microbiol. 2019, 202, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-M.; Li, W.-L.; Tong, S.-G.; Qiu, Y.-T.; Han, J.-Z.; Lv, X.-C.; Ai, L.-Z.; Sun, J.-Y.; Sun, B.-G.; Ni, L. Effects of the microbial community on the formation of volatile compounds and biogenic amines during the traditional brewing of Hongqu rice wine. Curr. Res. Food Sci. 2022, 5, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xia, Y.; Wang, G.; Zhang, H.; Xiong, Z.; Yu, J.; Yu, H.; Ai, L. Comparison of oenological property, volatile profile, and sensory characteristic of Chinese rice wine fermented by different starters during brewing. Int. J. Food Prop. 2017, 20, S3195–S3211. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.; Zhou, Z.; Jin, J.; Yu, Y.; Liu, S.; Han, X.; Zhong, F.; Mao, J. Effects of soaking on physicochemical properties of four kinds of rice used in Huangjiu brewing. J. Cereal Sci. 2020, 91, 102855. [Google Scholar] [CrossRef]
- Ji, Z.W.; Huang, G.D.; Mao, J.; JW, F. Effect of socking time of rice on the quality of Chinese rice wine. Food Mach. 2013, 29, 49–52. [Google Scholar]
- Chen, T.; Wu, F.; Guo, J.; Ye, M.; Hu, H.; Guo, J.; Liu, X. Effects of glutinous rice protein components on the volatile substances and sensory properties of Chinese rice wine. J. Sci. Food Agric. 2020, 100, 3297–3307. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Zhou, J.; Miao, L.H.; Chen, X. Reasearch progress of specific rice for Huangjiu production. China Brew. 2018, 37, 1–5. [Google Scholar]
- Yang, Y.; Hu, W.; Xia, Y.; Mu, Z.; Tao, L.; Song, X.; Zhang, H.; Ni, B.; Ai, L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front. Microbiol. 2020, 11, 580247. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Wu, Q.; Jiang, X.Y.; Liu, H.J.; Wang, C.Z.; Huang, M.Q.; Wu, J.H.; Zhang, J.L.; Yu, Y.G. Sensomics-assisted flavor decoding of coarse cereal Huangjiu. Food Chem. 2022, 381, 132296. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, Y.; Tian, H.; Ai, L.; Yu, H. Metagenomic analysis reveals the impact of JIUYAO microbial diversity on fermentation and the volatile profile of Shaoxing-jiu. Food Microbiol. 2019, 86, 103326. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, H.; Wang, Z.; Zheng, F.; Lu, X.; Li, Z.; Ren, Q. Microbial dynamics and metabolite changes in Chinese Rice Wine fermentation from sorghum with different tannin content. Sci. Rep. 2018, 8, 4639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factor | Experimental Domain | ||||
---|---|---|---|---|---|
−α a | −1 | 0 | +1 | +α a | |
PFBHA (g/L) | 0.5 | 1 | 1.5 | 2 | 2.5 |
Extraction temperature (Tex-°C) | 30 | 40 | 50 | 60 | 70 |
Extraction time (tex-min) | 20 | 30 | 40 | 50 | 60 |
Incubation time (tinc-min) | 3 | 6 | 9 | 12 | 15 |
RT (min) | RIcalc a | RIlit b | Compounds | Ions (m/z) | ID |
---|---|---|---|---|---|
Alkanals | |||||
15.53/15.69 | 1447/1453 | 1451/1457 | Ethanal | 181/209/239 | STD/MS |
16.87/17.10 | 1495/1504 | 1502/1509 | Propanal | 181/236/253 | STD/MS |
18.70/18.75 | 1558/1560 | 1572/1585 | Butanal | 181/239 | STD/MS |
21.01/21.28 | 1655/1666 | 1664/1675 | Pentanal | 181/239 | STD/MS |
22.90/23.08 | 1745/1754 | 1755/1765 | Hexanal | 181/239 | STD/MS |
24.89/25.06 | 1827/1833 | 1852/1861 | Heptanal | 181/239 | STD/MS |
26.89/27.03 | 1928/1935 | 1943/1950 | Octanal | 181/239 | STD/MS |
28.85/28.95 | 2027/2038 | 2041/2047 | Nonanal | 181/239 | STD/MS |
30.72/30.80 | 2127/2131 | 2138/2143 | Decanal | 181/239 | STD/MS |
32.55/32.62 | 2227/2231 | 2239/2243 | Undecanal | 181/239 | STD/MS |
34.30/34.35 | 2327/2329 | 2337/2340 | Dodecanal | 181/239 | STD/MS |
35.99 | 2426 | 2443 | Tridecanal | 181/239 | STD/MS |
Alkenals | |||||
18.37/19.20 | 1544/1578 | 1566/1594 | 2-Propenal | 181/251 | STD/MS |
22.19/23.20 | 1713/1759 | 1728/1763 | (E)-2-Butenal | 181/250 | STD/MS |
24.14/24.49 | 1801/1813 | 1808/1825 | (E)-2-Pentenal | 181/250 | STD/MS |
26.04/26.27 | 1886/1897 | 1898/1910 | (E)-2-Hexenal | 181/250 | STD/MS |
28.14/28.26 | 1987/1995 | 2009/2016 | (E)-2-Heptenal | 181/250 | STD/MS |
30.09 | 2093 | 2109 | (E)-2-Octenal | 181/250 | STD/MS |
31.92 | 2192 | - | (E)-2-Nonenal | 181/250 | STD/MS |
33.65/33.74 | 2290/2294 | 2307/2309 | (E)-2-Decenal | 181/250 | STD/MS |
Strecker aldehydes | |||||
16.82/16.89 | 1493/1496 | – | 2-Methylpropanal | 181/250 | STD/MS |
18.77/18.92 | 1561/1567 | – | 2-Methylbutanal | 181/239 | STD/MS |
19.60/20.00 | 1594/1611 | 1599/1618 | 3-Methylbutanal | 181/239 | STD/MS |
24.85/25.69 | 1928/1969 | – | 3-Methyl-2-butenal | 181/264 | STD/MS |
30.77/30.83 | 2129/2133 | 2147/2150 | Methional | 181/299 | STD/MS |
33.20/33.26 | 2264/2267 | – | Benzaldehyde | 181/301 | STD/MS |
33.90/33.99 | 2303/2309 | 2326/2329 | Phenyl acetaldehyde | 181/91 | STD/MS |
Dicarbonyl | |||||
32.97/34.26/35.67 | 2251/2324/2407 | – | Diacetyl | 181/279 | STD/MS |
35.74/36.17/36.32 | 2411/2437/2447 | – | Methyl glyoxal | 181/265 | STD/MS |
36.69/36.88 | 2469/2480 | – | Glyoxal | 181/251 | STD/MS |
Ketones | |||||
15.98 | 1463 | 1466 | Acetone | 181/253 | MS |
17.20/17.26 | 1508/1511 | 1521/1521 | 2-Butanone | 181/253 | MS |
17.55/18.04 | 1511/1531 | – | 3-Methyl-2-butanone | 181/253 | STD/MS |
17.54/18.90 | 1511/1566 | – | 2-Pentanone | 181/253 | STD/MS |
18.1192 | 1534 | – | 3-Pentanone | 181/253 | STD/MS |
20.90/21.11 | 1650/1659 | – | 2-Hexanone | 181/253 | STD/MS |
20.94 | 1651 | – | 4-Heptanone | 181/253 | STD/MS |
22.46/22.73 | 1725/1738 | – | 2-Heptanone | 181/253 | STD/MS |
24.33/24.67 | 1803/1819 | 1818/1833 | 2-Octanone | 181/253 | STD/MS |
26.25/26.60 | 1895/1913 | 1925/1943 | 2-Nonanone | 181/253 | STD/MS |
28.14/28.52 | 1986/2010 | – | 2-Decanone | 181/253 | STD/MS |
Furans | |||||
29.22/30.52 | 2047/2116 | 2056/2126 | 2-Furfural | 181/291 | STD/MS |
30.64/31.65 | 2122/2177 | – | 5-Methyl-2-furfural | 181/305 | STD/MS |
46.81/48.18 | 3158/3266 | – | 5-(Hydroxymethyl)furfural | 181/321 | STD/MS |
Others | |||||
23.12 | 1755 | – | 3-Penten-2-one | 181/264 | STD/MS |
24.55/25.39 | 1813/1854 | 1838/1880 | 1-Octen-3- one | 181/140 | STD/MS |
24.83 | 1825 | – | Cyclopentanone | 181/279 | STD/MS |
25.86 | 1862 | – | Cyclohexanone | 181/293 | STD/MS |
25.26/25.67 | 1841/1855 | 1864/1883 | 6-Methyl-5-hepten-2-one | 181/253 | STD/MS |
28.36 | 1803 | – | 2-Cyclohexen-1-one | 181/291 | STD/MS |
29.49/30.50 | 2061/2115 | 2092/2146 | Acetoin | 181/240 | STD/MS |
33.50/31.32 | 2159/2281 | 2171/2295 | Acetophenone | 181/315 | STD/MS |
35.03 | 2369 | – | 2-Phenyl-2-butenal | 181/341 | STD/MS |
Internal standard | |||||
33.33/33.39 | 2271/2274 | – | p-Fluorobenzaldehyde | 181/319 | STD/MS |
Compounds | Linear Range (μg/L) | Determination Coefficient (r2) | LOD (μg/L) | LOQ (μg/L) |
---|---|---|---|---|
Propanal | 0.785–785 | 0.9995 | 0.017 | 0.055 |
Butanal | 0.074–74.2 | 0.9993 | 0.004 | 0.011 |
Pentanal | 0.084–83.9 | 0.9999 | 0.016 | 0.059 |
Hexanal | 0.081–81.1 | 0.9999 | 0.026 | 0.079 |
Heptanal | 0.079–79.2 | 0.9999 | 0.011 | 0.038 |
Octanal | 0.083–83.1 | 0.9999 | 0.006 | 0.023 |
Nonanal | 0.242–121 | 0.9993 | 0.010 | 0.033 |
Decanal | 0.026–26.4 | 0.9976 | 0.007 | 0.025 |
Undecanal | 0.046–23.1 | 0.9997 | 0.004 | 0.015 |
Dodecanal | 0.034–33.7 | 0.9980 | 0.007 | 0.026 |
Tridecanal | 0.078–77.5 | 0.9994 | 0.006 | 0.021 |
2-Propenal | 0.112–122 | 0.9999 | 0.029 | 0.098 |
(E)-2-Butenal | 0.837–4185 | 0.9963 | 0.017 | 0.058 |
(E)-2-Pentenal | 0.421–84.1 | 0.9997 | 0.021 | 0.065 |
(E)-2-Hexenal | 0.082–81.8 | 0.9996 | 0.019 | 0.065 |
(E)-2-Heptenal | 0.083–83.3 | 0.9998 | 0.024 | 0.075 |
(E)-2-Octenal | 0.412–41.2 | 0.9992 | 0.061 | 0.194 |
(E)-2-Nonenal | 0.419–41.9 | 0.9974 | 0.072 | 0.219 |
(E)-2-Decenal | 0.176–44.0 | 0.9989 | 0.008 | 0.022 |
2-Methylpropanal | 1.170–5825 | 0.9999 | 0.016 | 0.052 |
2-Methylbutanal | 0.754–3770 | 0.9999 | 0.008 | 0.025 |
3-Methylbutanal | 1.380–13,800 | 0.9999 | 0.043 | 0.135 |
3-Methyl-2-butenal | 0.856–85.6 | 0.9997 | 0.008 | 0.035 |
Methional | 0.500–500 | 0.9999 | 0.068 | 0.206 |
Benzaldehyde | 2.350–11,750 | 0.9990 | 0.082 | 0.248 |
Phenyl acetaldehyde | 0.923–46.2 | 0.9994 | 0.012 | 0.038 |
Diacetyl | 1.042–1042 | 0.9994 | 0.085 | 0.265 |
Methyl glyoxal | 0.450–2248 | 0.9994 | 0.022 | 0.068 |
Glyoxal | 0.511–2556 | 0.9993 | 0.044 | 0.134 |
3-Methyl-2-butanone | 0.567–56.7 | 0.9990 | 0.012 | 0.038 |
2-Pentanone | 0.078–78.4 | 0.9996 | 0.012 | 0.029 |
3-Pentanone | 0.312–156 | 0.9995 | 0.017 | 0.05 |
2-Hexanone | 0.369–73.8 | 0.9999 | 0.002 | 0.007 |
4-Heptanone | 0.059–59.0 | 0.9992 | 0.012 | 0.029 |
2-Heptanone | 0.377–75.5 | 0.9999 | 0.062 | 0.187 |
2-Octanone | 0.405–81.10 | 0.9999 | 0.022 | 0.066 |
2-Nonanone | 0.170–85.0 | 0.9977 | 0.019 | 0.059 |
2-Decanone | 0.152–76.0 | 0.9983 | 0.012 | 0.035 |
2-Furfural | 4.647–46,470 | 0.9992 | 0.066 | 0.201 |
5-Methyl-2-furfural | 0.113–5635 | 0.9993 | 0.012 | 0.046 |
3-Penten -2-one | 1.608–8040 | 0.9998 | 0.080 | 0.243 |
1-Octen-3- one | 0.042–84.0 | 0.9999 | 0.003 | 0.014 |
6-Methyl-5-hepten-2-one | 0.069–69.0 | 0.9998 | 0.002 | 0.007 |
Cyclopentanone | 0.084–4185 | 0.9962 | 0.004 | 0.017 |
Cyclohexanone | 0.091–91.4 | 0.9990 | 0.009 | 0.029 |
2-Cyclohexen-1-one | 0.448–89.6 | 0.9987 | 0.047 | 0.143 |
Acetoin | 41.760–208,800 | 0.9988 | 0.053 | 0.162 |
Acetophenone | 0.103–103 | 0.9992 | 0.011 | 0.027 |
2-Phenyl-2-butenal | 0.750–3750 | 0.9998 | 0.105 | 0.317 |
Compound | VIP a | p-Value b | Semidry vs. Semisweet c |
---|---|---|---|
2-Octanone | 1.8062 | <0.0001 (****) | ⬆ |
(E)-2-Pentenal | 1.7468 | <0.0001 (****) | ⬆ |
2-Hexanone | 1.6892 | <0.0001 (****) | ⬆ |
2-Propenal | 1.6827 | <0.0001 (****) | ⬇ |
2-Heptanone | 1.5018 | <0.0001 (****) | ⬆ |
3-Pentanone | 1.4325 | 0.0003 (***) | ⬆ |
2-Phenyl-2-butenal | 1.3881 | 0.0005 (***) | ⬆ |
(E)-2-Nonenal | 1.3733 | 0.0008 (***) | ⬆ |
(E)-2-Heptenal | 1.3592 | <0.0001 (****) | ⬆ |
Benzaldehyde | 1.2966 | 0.0013 (**) | ⬆ |
2-Furfural | 1.2883 | 0.0005 (***) | ⬆ |
3-Methyl-2-butanone | 1.2679 | 0.0003 (***) | ⬆ |
2-Methylbutanal | 1.2543 | 0.0011 (**) | ⬆ |
2-Cyclohexen-1-one | 1.2394 | 0.0004 (***) | ⬆ |
3-Methylbutanal | 1.1973 | 0.0033 (**) | ⬆ |
Dodecanal | 1.1845 | 0.0037 (**) | ⬆ |
4-Heptanone | 1.1236 | 0.0061 (**) | ⬆ |
Decanal | 1.1213 | 0.0062 (**) | ⬇ |
Glyoxal | 1.0612 | 0.0100 (**) | ⬇ |
Compound | VIP a | p-Value b | Rice vs. Nonrice c |
---|---|---|---|
(E)-2-Hexenal | 1.8955 | 0.0002 (***) | ⬇ |
3-Methylbutanal | 1.7378 | <0.0001 (****) | ⬆ |
Benzaldehyde | 1.6881 | <0.0001 (****) | ⬆ |
2-Nonanone | 1.6221 | <0.0001 (****) | ⬆ |
Cyclopentanone | 1.5839 | 0.0041 (**) | ⬇ |
2-Decanone | 1.5299 | 0.0066 (**) | ⬆ |
2-Methylpropanal | 1.5233 | <0.0001 (****) | ⬆ |
(E)-2-Heptenal | 1.5024 | 0.0077 (**) | ⬇ |
2-Methylbutanal | 1.4562 | 0.0001 (***) | ⬆ |
3-Methyl-2-butanone | 1.3595 | 0.0004 (***) | ⬆ |
(E)-2-Butenal | 1.2837 | 0.0008 (***) | ⬆ |
2-Butanone | 1.2357 | 0.0013 (**) | ⬆ |
Butanal | 1.2134 | 0.0056 (**) | ⬆ |
Methyl glyoxal | 1.1814 | 0.0072 (**) | ⬇ |
2-Hexanone | 1.0771 | 0.0157 (*) | ⬆ |
2-Phenyl-2-butenal | 1.0529 | 0.0083 (**) | ⬆ |
2-Propenal | 1.0508 | 0.0187 (*) | ⬇ |
2-Heptanone | 1.0428 | 0.0198 (*) | ⬆ |
(E)-2-Octenal | 1.0178 | 0.0232 (*) | ⬇ |
Diacetyl | 1.0071 | 0.0249 (*) | ⬇ |
Compound | VIP a | p-Value b |
---|---|---|
2-Phenyl-2-butenal | 1.7335 | <0.0001 (****) |
Cyclopentanone | 1.5191 | <0.0001 (****) |
Glyoxal | 1.3979 | 0.0003 (***) |
2-Decanone | 1.3123 | <0.0001 (****) |
Benzaldehyde | 1.3065 | 0.0006 (***) |
2-Cyclohexene-1-one | 1.2443 | <0.0001 (****) |
(E)-2-Butenal | 1.2438 | <0.0001 (****) |
Dodecanal | 1.2284 | 0.0023 (**) |
Heptanal | 1.2206 | <0.0001 (****) |
Decanal | 1.2165 | 0.0048 (**) |
Pentanal | 1.1786 | <0.0001 (****) |
Methional | 1.1758 | 0.0023 (**) |
Undecanal | 1.1545 | 0.0048 (**) |
2-Pentanone | 1.1265 | 0.046 (*) |
6-Methyl-5-hepten-2-one | 1.1235 | 0.0094 (**) |
3-Methyl-2-butenal | 1.121 | 0.0069 (**) |
Methyl glyoxal | 1.1079 | <0.0001 (****) |
3-Methyl-2-butanone | 1.0926 | 0.001 (***) |
Phenyl acetaldehyde | 1.0685 | <0.0001 (****) |
2-Heptanone | 1.0438 | 0.0023 (**) |
Propanal | 1.0069 | 0.0004 (***) |
Hexanal | 1.0064 | 0.0033 (**) |
Compound | VIP a | p-Value b |
---|---|---|
Phenyl acetaldehyde | 1.5676 | 0.0002 (***) |
2-Pentanone | 1.5134 | 0.0009 (***) |
2-Methylbutanal | 1.4287 | 0.0064 (**) |
2-Octanone | 1.3833 | 0.0445 (*) |
2-Methylpropanal | 1.3766 | 0.0102 (*) |
4-Heptanone | 1.2948 | 0.0178 (*) |
3-Methyl-2-butenal | 1.2901 | 0.0375 (*) |
3-Methylbutanal | 1.2514 | 0.0375 (*) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhou, Z.; Xu, X.; Ren, H.; Gong, M.; Ji, Z.; Liu, S.; Hu, Z.; Mao, J. Differentiating Huangjiu with Varying Sugar Contents from Different Regions Based on Targeted Metabolomics Analyses of Volatile Carbonyl Compounds. Foods 2023, 12, 1455. https://doi.org/10.3390/foods12071455
Yu J, Zhou Z, Xu X, Ren H, Gong M, Ji Z, Liu S, Hu Z, Mao J. Differentiating Huangjiu with Varying Sugar Contents from Different Regions Based on Targeted Metabolomics Analyses of Volatile Carbonyl Compounds. Foods. 2023; 12(7):1455. https://doi.org/10.3390/foods12071455
Chicago/Turabian StyleYu, Junting, Zhilei Zhou, Xibiao Xu, Huan Ren, Min Gong, Zhongwei Ji, Shuangping Liu, Zhiming Hu, and Jian Mao. 2023. "Differentiating Huangjiu with Varying Sugar Contents from Different Regions Based on Targeted Metabolomics Analyses of Volatile Carbonyl Compounds" Foods 12, no. 7: 1455. https://doi.org/10.3390/foods12071455
APA StyleYu, J., Zhou, Z., Xu, X., Ren, H., Gong, M., Ji, Z., Liu, S., Hu, Z., & Mao, J. (2023). Differentiating Huangjiu with Varying Sugar Contents from Different Regions Based on Targeted Metabolomics Analyses of Volatile Carbonyl Compounds. Foods, 12(7), 1455. https://doi.org/10.3390/foods12071455