Applicability of LC-QToF and Microscopical Tools in Combating the Sophisticated, Economically Motivated Adulteration of Poppy Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Preparation of Standard Solutions
2.3. Plant Materials
2.4. Plant Sample Preparation
2.5. Micro Morphology Analysis
2.6. Instrumentation and Analytical Conditions
Liquid Chromatography–Quadrupole Time of Flight Mass Spectrometry (LC–QToF)
2.7. Method Validation
2.8. Post-Processing of Poppy Seeds
2.8.1. Ground vs. Intact Poppy Seeds
2.8.2. Washing Effect on Poppy Seeds
3. Results and Discussion
3.1. Scanning Electron Microscopic Observation of Poppy and Its Adulteration/Substitution Seeds
3.2. Extraction from Poppy Seeds
3.3. Optimization of Chromatographic Conditions
3.4. Validation Procedure
3.5. Analysis of Poppy Seeds
3.6. Post-Processing Studies of Alkaloids
3.6.1. Alkaloid Content in Ground vs. Intact Poppy Seeds
3.6.2. Removal of Free Alkaloids by Soaking
3.7. Identification and Characterization of Chemical Constituents
3.7.1. Fragmentation Patterns of Compounds 1–6 (Table 4)
3.7.2. Fragmentation Patterns of Alkaloids (Compounds 7–47) (Table 4)
3.8. Poppy Seed Adulteration or Substitution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merlin, M.D. Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ. Bot. 2003, 57, 295–323. [Google Scholar] [CrossRef]
- Mirsafavi, R.Y.; Lai, K.; Kline, N.D.; Fountain, A.W., III; Meinhart, C.D.; Moskovits, M. Detection of papaverine for the possible of illicit opium cultivation. Anal. Chem. 2017, 89, 1684–1688. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.A.; Jones, A.B. Morphine and Codeine in biological fluids: Approaches to source differentiation. Forensic Sci. Rev. 1989, 1, 13–22. [Google Scholar]
- Chain, E.; Panel, O.C.I.T.F.; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; et al. Update of the scientific opinion on opium alkaloids in poppy seeds. EFSA J. 2018, 16, e05243. [Google Scholar] [CrossRef]
- Reisfield, G.M.; Teitelbaum, S.A.; Jones, J.T. Poppy seed consumption may be associated with codeine-only urine drug test results. J. Anal. Toxicol. 2022, 47, bkac079. [Google Scholar] [CrossRef]
- Hosokawa, K.; Shibata, T.; Nakamura, I.; Hishida, A. Discrimination among species of Papaver based on the plastid rpl16 gene and the rpl16-rpl14 spacer sequence. Forensic Sci. Int. 2004, 139, 195–199. [Google Scholar] [CrossRef]
- WFO. The World flora online—Papaver L. Available online: http://www.worldfloraonline.org/taxon/wfo-4000027914 (accessed on 31 March 2023).
- Langlois, A.; Mulholland, D.A.; Crouch, N.R.; Grace, O.M. Aporphine alkaloid from Papaver aculeatum (sect. Horrida; Papaveraceae) of Southern Africa. Biochem. Syst. Ecol. 2004, 32, 1087–1090. [Google Scholar] [CrossRef]
- Garnock-Jones, P.J.; Scholes, P. Alkaloid content of Papaver somniferum subsp. setigerum from New Zealand. N. Z. J. Bot. 1990, 28, 367–369. [Google Scholar] [CrossRef] [Green Version]
- Yoshimatsu, K.; Kiuchi, F.; Shimomura, K.; Makino, Y. A rapid and reliable solid-phase extraction method for high-performance liquid chromatographic analysis of opium alkaloids from Papaver plants. Chem. Pharm. Bull. 2005, 53, 1446–1450. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, H.; Abdul Wahab, I.; Nasir, N.; Hidayah, N.; Nasir, N. The chemical investigation of Papaver seeds. Int. J. Adv. Sci. Eng. Inform. Technol. 2012, 2, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Choe, S.; Kim, S.; Lee, C.; Yang, W.; Park, Y.; Choi, H.; Chung, H.; Lee, D.; Hwang, B.Y. Species identification of Papaver by metabolite profiling. Forensic Sci. Int. 2011, 211, 51–60. [Google Scholar] [CrossRef]
- Tenore, P.L. Advanced urine toxicology testing. J. Addict. Dis. 2010, 29, 436–448. [Google Scholar] [CrossRef]
- Swarbrick, J.T.; Raymond, J.C. The identification of the seeds of the British Papaveraceae. Ann. Bot. 1970, 34, 1115–1122. [Google Scholar] [CrossRef]
- EU Database of Registered Plant Varieties. Available online: https://ec.europa.eu/food/plant-variety-portal/ (accessed on 31 March 2023).
- L 433/8; Maximum Levels of Opium Alkaloids in Certain Foodstuffs. The Publications Office of the Europena Union: Brussel, Belgium, 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R2142 (accessed on 31 March 2023).
- L 271/96; Good Practices to Prevent and to Reduce the Presence of Opium Alkaloids in Poppy Seeds and Poppy Seed Products. The Publications Office of the Europena Union: Brussel, Belgium, 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014H0662&from=SK (accessed on 31 March 2023).
- Meadway, C.; George, S.; Braithwaite, R. Opiate concentrations following the ingestion of poppy seed products—Evidence for ‘the poppy seed defence’. Forensic Sci. Int. 1998, 96, 29–38. [Google Scholar] [CrossRef]
- López, P.; Pereboom-de Fauw, D.P.K.H.; Mulder, P.P.J.; Spanjer, M.; de Stoppelaar, J.; Mol, H.G.J.; de Nijs, M. Straightforward analytical method to determine opium alkaloids in poppy seeds and bakery products. Food Chem. 2018, 242, 443–450. [Google Scholar] [CrossRef]
- Powers, D.; Erickson, S.; Swortwood, M.J. Quantification of morphine, codeine, and thebaine in home-brewed poppy seed tea by LC-MS/MS. J. Forensic Sci. 2018, 63, 1229–1235. [Google Scholar] [CrossRef]
- Croitoru, M.D.; Fülöp, I.; Irimia-Constantin, M.-R.; Varga, E.; Kelemen, H.; Fogarasi, E.; Faliboga, L.-M. The risk of using poppy seed tea made from several varieties available on the Romanian market. Acta Marisiensis-Ser. Med. 2017, 63, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Soares, M.E.; Seabra, V.; Bastos, M.D.L.A. Comparative study of different extractive procedures to quantify morphine in urine by HPLC-UV. J. Liq. Chromatogr. 1992, 15, 1533–1541. [Google Scholar] [CrossRef]
- Ghafoor, K.; Özcan, M.M.; Al-Juhaimi, F.; Babiker, E.E.; Fadimu, G.J. Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven- and microwave-roasted poppy seeds and oil. LWT 2019, 99, 490–496. [Google Scholar] [CrossRef]
- Azcan, N.; Ozturk Kalender, B.; Kara, M. Investigation of Turkish poppy seeds and seed oils. Chem. Nat. Comp. 2004, 40, 370–372. [Google Scholar] [CrossRef]
- Hayes, L.W.; Krasselt, W.G.; Mueggler, P.A. Concentrations of morphine and codeine in serum and urine after ingestion of poppy seeds. Clin. Chem. 1987, 33, 806–808. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.H.; Taylor, E.H.; Pappas, A.A. Comparison of derivatives for determination of codeine and morphine by gas chromatography/mass spectrometry. J. Anal. Toxicol. 1990, 14, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Moeller, M.R.; Hammer, K.; Engel, O. Poppy seed consumption and toxicological analysis of blood and urine samples. Forensic Sci. Int. 2004, 143, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Özbunar, E.; Aydoğdu, M.; Döğer, R.; Bostancı, H.İ.; Koruyucu, M.; Akgür, S.A. Morphine concentrations in human urine following poppy seed paste consumption. Forensic Sci. Int. 2019, 295, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Rohrig, T.P.; Moore, C. The determination of morphine in urine and oral fluid following ingestion of poppy seeds*. J. Anal. Toxicol. 2003, 27, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Wong, R.C.; Tran, M.; Tung, J.K. Oral fluid drug tests: Effects of adulterants and foodstuffs. Forensic Sci. Int. 2005, 150, 175–180. [Google Scholar] [CrossRef]
- Jankovičová, K.; Ulbrich, P.; Fuknová, M. Effect of poppy seed consummation on the positive results of opiates screening in biological samples. Leg. Med. 2009, 11, S416–S418. [Google Scholar] [CrossRef]
- Musa Özcan, M.; Atalay, Ç. Determination of seed and oil properties of some poppy (Papaver somniferum L.) varieties. Grasas Y Aceites 2006, 57, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Van Thuyne, W.; Van Eenoo, P.; Delbeke, F.T. Urinary concentrations of morphine after the administration of herbal teas containing papaveris fructus in relation to doping analysis. J. Chromatogr. B 2003, 785, 245–251. [Google Scholar] [CrossRef]
- Bjerver, K.; Jonsson, J.; Nilsson, A.; Schuberth, J.; Schuberth, J. Morphine intake from poppy seed food. J. Pharm. Pharmacol. 1982, 34, 798–801. [Google Scholar] [CrossRef]
- Newmeyer, M.N.; Concheiro, M.; da Costa, J.L.; LoDico, C.; Gorelick, D.A.; Huestis, M.A. Simultaneous plasma and oral fluid morphine and codeine concentrations after controlled administration of poppy seeds with known opiate content. Forensic Toxicol. 2015, 33, 235–243. [Google Scholar] [CrossRef]
- Desgagné-Penix, I.; Farrow, S.C.; Cram, D.; Nowak, J.; Facchini, P.J. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Mol. Biol. 2012, 79, 295–313. [Google Scholar] [CrossRef]
- Zentai, A.; Sali, J.; Szeitzné-Szabó, M.; Szabó, I.J.; Ambrus, Á. Exposure of consumers to morphine from poppy seeds in Hungary. Food Addit. Contam Part A 2012, 29, 403–414. [Google Scholar] [CrossRef]
- Sproll, C.; Perz, R.C.; Lachenmeier, D.W. Optimized LC/MS/MS analysis of morphine and codeine in poppy seed and evaluation of their fate during food processing as a basis for risk analysis. J. Agric. Food Chem. 2006, 54, 5292–5298. [Google Scholar] [CrossRef]
- Stranska, I.; Skalicky, M.; Novak, J.; Matyasova, E.; Hejnak, V. Analysis of selected poppy (Papaver somniferum L.) cultivars: Pharmaceutically important alkaloids. Ind. Crop. Prod. 2013, 41, 120–126. [Google Scholar] [CrossRef]
- Liu, C.; Hua, Z.; Bai, Y. Classification of opium by UPLC-Q-TOF analysis of principal and minor alkaloids. J. Forensic Sci. 2016, 61, 1615–1621. [Google Scholar] [CrossRef]
- Bosch, M.E.; Sánchez, A.R.; Rojas, F.S.; Ojeda, C.B. Morphine and its metabolites: Analytical methodologies for its determination. J. Pharm. Biomed. Anal. 2007, 43, 799–815. [Google Scholar] [CrossRef]
- Barroso, M.; Gallardo, E.; Vieira, D.N.; Queiroz, J.A.; López-Rivadulla, M. Bioanalytical procedures and recent developments in the determination of opiates/opioids in human biological samples. Anal. Bioanal. Chem. 2011, 400, 1665–1690. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Sproll, C.; Musshoff, F. Poppy seed foods and opiate drug testing-where are we today? Ther. Drug Monit. 2010, 32, 11–18. [Google Scholar] [CrossRef]
- Haber, I.; Pergolizzi, J., Jr.; LeQuang, J.A. Poppy seed tea: A short review and case study. Pain. Ther. 2019, 8, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Lebrero, E.A.; Baviera, J.M.B.; Moreno, M.P.C.; Riba, R.E.; Pérez, M.A.F.; Pérez, G.F.; Arnau, S.G.; de la Torre, A.H.; Gallego, A.J.; Sánchez, A.M.; et al. Report of the scientific committee of the Spanish agency for consumer affairs, food safety and nutrition (AECOSAN) in relation to the assessment of the exposure of the Spanish population to morphine resulting from the consumption of poppy seeds. Rev. Del Com. Científico AECOSAN 2016, 23, 11–20. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M.; Quilitzsch, R.; Schütze, W. Determination of alkaloids in capsules, milk and ethanolic extracts of poppy (Papaver somniferum L.) by ATR-FT-IR and FT-Raman spectroscopy. Analyst 2004, 129, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Jillian, L. Poppy Seeds: Healthy, Beneficial Food or Dangerous Opiate? 2018. Available online: https://draxe.com/nutrition/poppy-seeds/ (accessed on 31 March 2023).
- Singhal, R.S.; Kulkarni, P.R. Detection of adultration of the spice poppy seeds (Papaver somniferum) with Amaranthus paniculatus (Rajgeera) seeds. J. Food Qual. 1990, 13, 375–381. [Google Scholar] [CrossRef]
- Čermáková, E.; Zdeňková, K.; Demnerová, K.; Ovesna, J.; Svoboda, P.; Vašek, J. Authentication of opium poppy (Papaver somniferum L.) using DNA analysis. Arh. Za Hig. Rada I Toksikol. 2022, 73, 38. [Google Scholar]
- Cheng, L.; Lin, Z.; Xin, C.; Sun, H.; Li, X. Molecular identification and phylogenetic analysis of Papaver based on ITS2 barcoding. J. Forensic Sci. 2022, 67, 712–719. [Google Scholar] [CrossRef]
- Krikorian, A.D.; Ledbetter, M.C. Some observations on the cultivation of opium poppy (Papaver somniferum L.) for its latex. Bot. Rev. 1975, 41, 30–103. [Google Scholar] [CrossRef]
- Eisenreich, A.; Sachse, B.; Gürtler, R.; Dusemund, B.; Lindtner, O.; Schäfer, B. What do we know about health risks related to thebaine in food? Food Chem. 2020, 309, 125564. [Google Scholar] [CrossRef]
- Svoboda, P.; Vasek, J.; Vejl, P.; Ovesna, J. Genetic features of Czech blue poppy (Papaver somniferum L.) revealed by DNA polymorphism. Czech J. Food Sci. 2020, 38, 198–202. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH. Q2 (R1),Validation of analytical procedures: Text and methodology. In Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Chicago, IL, USA, 2–4 March 2005. [Google Scholar]
- Avula, B.; Cohen, P.A.; Wang, Y.-H.; Sagi, S.; Feng, W.; Wang, M.; Zweigenbaum, J.; Shuangcheng, M.; Khan, I.A. Chemical profiling and quantification of monacolins and citrinin in red yeast rice commercial raw materials and dietary supplements using liquid chromatography-accurate QToF mass spectrometry: Chemometrics application. J. Pharm. Biomed. Anal. 2014, 100, 243–253. [Google Scholar] [CrossRef]
- Sproll, C.; Perz, R.C.; Buschmann, R.; Lachenmeier, D.W. Guidelines for reduction of morphine in poppy seed intended for food purposes. Eur. Food Res. Technol. 2007, 226, 307–310. [Google Scholar] [CrossRef]
- Vermeire, A.; Remon, J.P. Stability and compatibility of morphine. Int. J. Pharm. 1999, 187, 17–51. [Google Scholar] [CrossRef]
- Carlin, M.G.; Dean, J.R.; Ames, J.M. Opium alkaloids in harvested and thermally processed poppy seeds. Front. Chem. 2020, 8, 737. [Google Scholar] [CrossRef]
- Lo, D.S.T.; Chua, T.H. Poppy Seeds: Implications of consumption. Med. Sci. Law 1992, 32, 296–302. [Google Scholar] [CrossRef]
- Zhang, P.; Chan, W.; Ang, I.L.; Wei, R.; Lam, M.M.T.; Lei, K.M.K.; Poon, T.C.W. Revisiting fragmentation reactions of protonated α-amino acids by high-resolution electrospray ionization tandem mass spectrometry with collision-induced dissociation. Sci. Rep. 2019, 9, 6453. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ye, Y.; Qiang, L.; Liao, X.; Zhao, Y. The fragmentation pathway of the nucleosides under the electrospray ionization multi-stage mass spectrometry. Life Sci. J. 2008, 5, 37–40. Available online: http://www.lifesciencesite.com/lsj/life0502/07_life0502_37_40_fragmentation.pdf (accessed on 31 March 2023).
- Raith, K.; Neubert, R.; Poeaknapo, C.; Boettcher, C.; Zenk, M.H.; Schmidt, J. Electrospray tandem mass spectrometric investigations of morphinans. J. Am. Soc. Mass Spectrom. 2003, 14, 1262–1269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yan, B.; Liu, K.; Bo, T.; Liao, Y.; Liu, H. Fragmentation pathways of heroin-related alkaloids revealed by ion trap and quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 2851–2862. [Google Scholar] [CrossRef]
- Wickens, J.R.; Sleeman, R.; Keely, B.J. Atmospheric pressure ionisation mass spectrometric fragmentation pathways of noscapine and papaverine revealed by multistage mass spectrometry and in-source deuterium labelling. Rapid Commun. Mass Spectrom. 2006, 20, 473–480. [Google Scholar] [CrossRef]
- Schmidt, J.; Raith, K.; Boettcher, C.; Zenk, M.H. Analysis of benzylisoquinoline-type alkaloids by electrospray tandem mass spectrometry and atmospheric pressure photoionization. Eur. J. Mass Spectrom. 2005, 11, 325–333. [Google Scholar] [CrossRef]
- Shim, H.; Lee, J.Y.; Kim, B.; Hong, J. General fragmentations of alkaloids in electrospray ionization tandem mass spectrometry. Mass Spectrom. Lett. 2013, 4, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Sai, C.; Wang, J.a.; Li, B.; Ding, L.; Wang, H.; Wang, Q.; Hua, H.; Zhang, F.; Ren, Q. Isolation and identification of alkaloids from Macleaya microcarpa by UHPLC–Q-TOF-MS and their cytotoxic activity in vitro, antiangiogenic activity in vivo. BMC Chem. 2020, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Boettcher, C.; Kuhnt, C.; Kutchan, T.M.; Zenk, M.H. Poppy alkaloid profiling by electrospray tandem mass spectrometry and electrospray FT-ICR mass spectrometry after [ring-13C6]-tyramine feeding. Phytochemistry 2007, 68, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Dolejš, L.; Hanuš, V. Mass spectrometry of rhoeadine type alkaloids. Tetrahedron 1967, 23, 2997–3005. [Google Scholar] [CrossRef]
- Menéndez-Perdomo, I.M.; Hagel, J.M.; Facchini, P.J. Benzylisoquinoline alkaloid analysis using high-resolution orbitrap LC-MSn. J. Mass Spectrom. 2021, 56, e4683. [Google Scholar] [CrossRef]
- Peng, Z.; Song, W.; Han, F.; Chen, H.; Zhu, M.; Chen, Y. Chromatographic tandam mass spectrometric detection of papaverine and its major metabolites in rat urine. Int. J. Mass Spectrom. 2007, 266, 114–121. [Google Scholar] [CrossRef]
- Amazonas, D.R.; Oliveira, C.; Barata, L.E.S.; Tepe, E.J.; Kato, M.J.; Mourão, R.H.V.; Yamaguchi, L.F. Chemical and genotypic variations in Aniba rosiodora from the Brazilian amazon forest. Molecules 2021, 26, 69. [Google Scholar] [CrossRef]
- Singhal, R.S.; Kulkarni, P.R.; Rege, D.V. Chapter 1—The development of the concept of food quality, safety, and authenticity. In Handbook of Indices of Food Quality and Authenticity; Woodhead Publishing: Cambridge, UK, 1997; pp. 9–34. [Google Scholar] [CrossRef]
- Kintzios, S.E. The Genus Salvia, 1st ed.; CRC Press: London, UK, 2000; p. 318. [Google Scholar]
- Khan, M.A. Chemical composition and medicinal properties of Nigella sativa Linn. Inflammopharmacology 1999, 7, 15–35. [Google Scholar] [CrossRef]
- Ali, B.H.; Blunden, G. Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 2003, 17, 299–305. [Google Scholar] [CrossRef]
- Avula, B.; Wang, Y.-H.; Ali, Z.; Khan, I.A. Quantitative determination of chemical constituents from seeds of Nigella sativa L. Using HPLC-UV and Identification by LC-ESI-TOF. J. AOAC Int. 2010, 93, 1778–1787. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, M.F. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): An overview. Int. J. Food Sci. Technol. 2007, 42, 1208–1218. [Google Scholar] [CrossRef]
- Elbandy, M.; Kang, O.-H.; Kwon, D.-Y.; Rho, J.-R. Two new antiinflammatory triterpene saponins from the Egyptian edicinal food black cumin (Seeds of Nigella sativa). Bull. Korean Chem. Soc. 2009, 30, 1811–1816. [Google Scholar] [CrossRef] [Green Version]
- Paula, C.-P.; Pablo, M.-R.; Salvador, H.-N.; Iosody, S.-C.; Manuela, R.-S.; Jesús, M.-G. Vibrational analysis and thermal behavior of Salvia hispanica, Nigella sativa and Papaver somniferum seeds. Pharmacog. J. 2017, 9, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Silva-Sánchez, C.; de la Rosa, A.P.B.; León-Galván, M.F.; de Lumen, B.O.; de León-Rodríguez, A.; de Mejía, E.G. Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J. Agric. Food Chem. 2008, 56, 1233–1240. [Google Scholar] [CrossRef]
- Klimczak, I.; Małecka, M.; Pachołek, B. Antioxidant activity of ethanolic extracts of Amaranth seeds. Food Nahr. 2002, 46, 184–186. [Google Scholar] [CrossRef]
- Kauffman, C.S.; Hass, P.W. Grain Amaranth: A crop with low water requirements and high nutritional value. In Environmentally Sound Agriculture; Keretz, W.L., Ed.; Praeger Press: New York, NY, USA, 1983; p. 299. [Google Scholar]
- Saunders, R.M.; Becker, R. Amaranthus: A potential food and feed resource. Adv. Cereal Sci. Technol. 1984, 6, 357–396. [Google Scholar]
- Rastogi, A.; Shukla, S. Amaranth: A new millennium crop of nutraceutical values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef]
- Burgos, V.; Armada, M. Characterization and nutritional value of precooked products of kiwicha grains (Amaranthus caudatus). Food Sci. Technol. 2015, 35, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Rangkadilok, N.; Pholphana, N.; Mahidol, C.; Wongyai, W.; Saengsooksree, K.; Nookabkaew, S.; Satayavivad, J. Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and oil products in Thailand. Food Chem. 2010, 122, 724–730. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography–diode array detection–electrospray ionization–time-of-flight mass spectrometry methodology. J. Agric. Food Chem. 2011, 59, 10815–10825. [Google Scholar] [CrossRef]
- Fabre, N.; Claparols, C.; Richelme, S.; Angelin, M.-L.; Fourasté, I.; Moulis, C. Direct characterization of isoquinoline alkaloids in a crude plant extract by ion-pair liquid chromatography–electrospray ionization tandem mass spectrometry: Example of Eschscholtzia californica. J. Chromatogr. A 2000, 904, 35–46. [Google Scholar] [CrossRef]
Botanical Name | Features | ||||
---|---|---|---|---|---|
Testa Surface | Color | Size (l × b in mm) and Shape (n = 25) | Mucilage | Hilum Location | |
Papaver somniferum | Rough, honeycomb pitted. | Blue–black/pale white | 1.65 × 1.15 reniform | Absent | At the center of the concave curve of the seed |
Amaranthus cruentus | Smooth, circular compressed, with a thick yellowish margin and a translucent center | White | 1.54 × 1.461 spheroidal | Absent | Top of the seed in a notch |
Amaranthus caudatus | Smooth, circular compressed, with a thick margin and a translucent center | White/pink | 1.66 × 1.44 spheroidal | Absent | Top of the seed in a notch |
Amaranthus paniculatus var. cruentus | Reticulate somewhat hierarchically structure | Reddish-brown | 1.04 × 1.06 spheroidal | Absent | Top of the seed in a notch |
Chenopodium quinoa | Very tiny dusty surface with no protuberance | Pale White | 1.78 × 1.90 spheroidal | Absent | Hilum location is noted at radicle as hypocotyl radicle |
Eschscholzia californica | Rough, microsculpted | Gray to gray–brown | 0.5 × 1.5 cylindrical | Absent | On top, with a line joining both poles |
Salvia hispanica | Smooth | Gray with black and white strips | 1.95 × 1.23 oval | Conspicuous | At the tip of the upper end |
Sesamum indicum | Smooth, plain white | White | 4.12 × 2.39 flattened pear | Absent | At the tip of the upper end |
Nigella sativa | Reticulate pattern of the ridge with ocellate spinulose. | Black | 3.95 × 2.31 angular oblong funnel | Absent | At the tip of the upper end |
Parameters | Morphine | Codeine | Thebaine | Papaverine | Noscapine |
---|---|---|---|---|---|
Retention time (min) | 8.2 | 11.9 | 18.0 | 20.2 | 20.6 |
LOD (pg/mL) | 10 | 10 | 25 | 10 | 10 |
LOQ (pg/mL) | 25 | 25 | 100 | 25 | 25 |
Range (ng/mL) | 0.5–250 | 0.5–250 | 0.5–250 | 0.5–250 | 0.5–250 |
r2 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 |
Regression equation | y = 46470x + 21760 | y = 60115x + 45412 | y = 43224x − 9873 | y = 110904x − 67919 | y = 80587x + 5161 |
Precision (%RSD) | |||||
Intra-day (%) | 2.6–3.0 | 3.5–3.9 | 0.7–3.5 | 1.7–3.7 | 0.8–3.0 |
Inter-day (%) | 3.2–3.9 | 3.1–3.9 | 1.3–3.6 | 2.1–3.4 | 1.1–2.2 |
Accuracy (±RSD)% | 90–109% (1.7–4.4%) |
No. | NCNPR # | Content of Alkaloids (μg/g ± %RSD) | Total Amt. of Five Alkaloids (μg/g ± %RSD) | ||||
---|---|---|---|---|---|---|---|
Morphine | Codeine | Thebaine | Papaverine | Noscapine | |||
1 | 24792 | 2 ± 1 * | 386 ± 3 | 65 ± 1 | 0.4 ± 1 | 0.4 ± 0.1 | 455 ± 1 |
2 | 25124 | 10 ± 1 | 3 ± 3 | 3 ± 4 | 1 ± 4 | 2 ± 5 | 19 ± 3 |
3 | 5552 | 161 ± 0.1 | 19 ± 1 | 63 ± 1 | 0.5 ± 1 | DUL | 246 ± 1 |
4 | 22469 | 138 ± 1 | 11 ± 4 | 22 ± 2 | 0.4 ± 0.4 | 0.3 ± 4 | 172 ± 2 |
5 | 24790 | 144 ± 2 | 23 ± 4 | 140 ± 2 | 0.5 ± 1 | 0.3 ± 2 | 309 ± 2 |
6 | 24791 | 223 ± 4 | 34 ± 3 | 176 ± 2 | 0.5 ± 0.1 | DUL | 434 ± 2 |
7 | 25107 | 3 ± 4 | 0.5 ± 4 | 0.4 ± 4 | 0.2 ± 2 | 0.6 ± 3 | 5 ± 4 |
8 | 24793 | 18 ± 2 | 3 ± 4 | 3 ± 3 | 0.1 ± 3 | 3 ± 2 | 27 ± 3 |
9 | 16725 | 4 ± 3 | 3 ± 4 | 1 ± 4 | 1 ± 5 | 2 ± 4 | 12 ± 4 |
10 | 25064 | 3 ± 4 | 0.6 ± 4 | 0.5 ± 3 | 0.6 ± 3 | 1 ± 4 | 5 ± 3 |
11 | 7528 | 9 ± 2 | 3 ± 4 | 6 ± 4 | 2 ± 4 | 3 ± 2 | 23 ± 3 |
12 | 2546 | 27 ± 1 | 23 ± 1 | 11 ± 2 | 20 ± 3 | 14 ± 1 | 96 ± 2 |
13 | 5558 | 20 ± 1 | 8 ± 3 | 8 ± 3 | 13 ± 3 | 14 ± 1 | 62 ± 2 |
14 | 6485 | 65 ± 1 | 33 ± 0.5 | 55 ± 3 | 28 ± 4 | 73 ± 3 | 254 ± 2 |
15 | 12750 | 8 ± 3 | 5 ± 4 | 6 ± 4 | 8 ± 4 | 7 ± 2 | 34 ± 3 |
16 | 2117PR | 6 ± 2 | 4 ± 4 | 162 ± 1 | DUL | 2 ± 0.2 | 174 ± 2 |
17 | 2120PR | 8 ± 3 | 205 ± 1 | 41 ± 3 | DUL | 0.5 ± 0.4 | 254 ± 2 |
18 | 2116PR | 33 ± 1 | 10 ± 0.3 | 19 ± 1 | 1 ± 0.4 | 0.8 ± 1 | 64 ± 2 |
19 | 2119PR | 2 ± 4 | 0.5 ± 4 | 0.3 ± 4 | 0.8 ± 3 | 1 ± 3 | 5 ± 4 |
20 | 2123PR | 69 ± 0.4 | 13 ± 1 | 36 ± 0.2 | 3 ± 0.4 | 3 ± 1 | 124 ± 1 |
21 | 2118PR | 0.8 ± 4 | 0.2 ± 4 | 0.1 ± 4 | 0.6 ± 4 | 0.9 ± 3 | 3 ± 4 |
22 | 2121PR | 6 ± 2 | 0.6 ± 2 | 0.7 ± 2 | 2 ± 3 | 2 ± 2 | 10 ± 2 |
23 | 2124PR | 3 ± 3 | 0.4 ± 4 | 0.2 ± 4 | 0.6 ± 3 | 1 ± 4 | 5 ± 4 |
No. | RT (min) | Compounds | Formula | Mass | [M + H]+ (m/z) | Fragment Ions of MS-MS | Class of Compounds |
---|---|---|---|---|---|---|---|
1 | 3.3 | Dopamine | C8H11NO2 | 153.0790 | 154.0863 (154.0863) * | 137.0598 [M + H-NH3]+, 119.0488 [M + H-NH3-H2O]+, 109.0647, 91.0543, 65.0389 | Catecholamine |
2 | 2.91 | Phenylalanine | C9H11NO2 | 165.0790 | 166.0863 (166.0863) | 120.0809 [M + H-H2O-CO]+, 103.0541 [M + H-H2O-CO-NH3]+ | Amino acid |
3 | 4.5 | Leucine/Isoleucine | C6H13NO2 | 131.0946 | 132.1019 (132.1019) | 86.0966 [M + H-H2O-CO]+, 69.0696 [M + H-H2O-CO-NH3]+ | |
4 | 4.94 | ||||||
5 | 6.6 | Adenosine | C10H13N5O4 | 267.0968 | 268.1042 (268.1040) | 136.0619 [M + H-132]+, 119.0351 [M + H-132-NH3]+, 94.0400 [M + H-132-NH2CN]+ | Purine nucleoside |
6 | 7.05 | Guanosine | C10H13N5O5 | 283.0917 | 284.0890 (284.0989) | 152.0567 [M + H-132]+, 135.0300 [M + H-152-NH3]+, 107.0489, 110.0345 [M + H-152-NH2CN]+ | |
7 | 8.2 | Morphine | C17H19NO3 | 285.1365 | 286.1440 (286.1438) | 229.0854 [M + H-CH2CHNHCH3]+, 211.0783 [M + H-CH2CHNHCH3-H2O]+, 201.0910 [M + H-CH2CHNHCH3-CO]+, 173.0596 [M + H-CH2CHNHCH3-2CO]+, 183.0804 [M + H-CH2CHNHCH3-CO-H2O]+, 185.0596 [M + H-CH2CHNHCH3-C2H4O]+, 165.0701 [M + H-CH2CHNHCH3-CO-2H2O]+, 155.0856 [M + H-CH2CHNHCH3-2CO-H2O]+, 153.0699, 58.0657 [C3H8N]+ | Morphinane alkaloid |
8 | 8.45 | Morphinone | C17H17NO3 | 283.1208 | 284.1284 (284.1281) | 227.0708 [M + H-CH2CHNHCH3]+, 209.0597 [M + H-CH2CHNHCH3-H2O]+, 199.0752 [M + H-CH2CHNHCH3-CO]+, 185.0598 [M + H-CH2CHNHCH3-CH2CO]+, 58.0656 | |
9 | 13.2 | Codeinone | C18H19NO3 | 297.1365 | 298.1441 (298.1438) | 241.1091 [M + H-CH2CHNHCH3], 239.0705 [M + H-CH2CHNHCH3], 223.0765 [M + H-C2H5NHCH3], 213.0547 [M + H-CH2CHNHCH3-CO], 223.0765 [M + H-C2H5NHCH3-CO], 199.0717 [M + H-CH2CHNHCH3-CH2CO], 58.0655 | |
10 | 18.0 | Thebaine | C19H21NO3 | 311.1521 | 312.1597 (312.1594) | 281.1176 [M + H-CH3NH2], 266.0944 [M + H-CH3NH2-CH3], 251.0706 [M + H-CH3NH2-2CH3], 249.0917 [M + H-CH3NH2-CH3OH], 58.0656 [C3H8N]+ | |
11 | 11.9 | Codeine | C18H21NO3 | 299.1521 | 300.1596 (300.1594) | 243.1019 [M + H-CH2CHNHCH3]+, 225.0909 [M + H-CH2CHNHCH3-H2O]+, 215.1067 [M + H-CH2CHNHCH3-CO]+, 183.0807 [M + H-CH2CHNHCH3-CH3OH]+, 199.0751[M + H-CH2CHNHCH3-C2H4O]+, 165.0698 [M + H-CH2CHNHCH3-CH3OH-H2O]+, 155.0855 [M + H-CH2CHNHCH3-CH3OH-CO]+, 58.0655 | |
12 | 10.8 | Neopine | C18H21NO3 | 299.1521 | 300.1597 (300.1594) | 243.1027 [M + H-CH2CHNHCH3]+, 225.0911 [M + H-CH2CHNHCH3-H2O]+, 199.0754, 171.0806, 165.0699, 141.0698, 58.0659 | |
13 | 7.2 | Morphine-N-Oxide isomers | C17H19NO4 | 301.1314 | 302.1390 (302.1387) | 286.1443 [M + H-16]+, 229.0854 [M + H-16-CH2CHNHCH3]+, 266.1180, 215.0941, 201.0910 [M + H-16-CH2CHNHCH3-CO]+, 165.0695 [M + H-16-CH2CHNHCH3-CO-2H2O]+, 77.0389, 58.0655 | |
14 | 8.5 | ||||||
15 | 10.4 | ||||||
16 | 13.5 | Morphine; (-)-form, Di-Me ether | C19H23NO3 | 313.1678 | 314.1756 (314.1751) | 299.1551 [M + H-CH3]+, 58.0656 | |
17 | 11.4 | Codeine; N-Oxide | C18H21NO4 | 315.1471 | 316.1544 (316.1543) | 300.1593, 58.0654 | |
18 | 11.6 | ||||||
19 | 13.6 | ||||||
20 | 13.1 | Thebaine; (-)-form, O3-De-Me | C18H19NO3 | 297.1365 | 298.1440 (298.1438) | 267.1026 [M + H-CH3NH2]+, 252.0777 [M + H-CH3NH2-CH3]+, 237.0555 [M + H-CH3NH2-2CH3]+, 58.0656 | |
21 | 14.69 | Thebaine-N-oxide isomers | C19H21NO4 | 327.1471 | 328.1551 (328.1543) | - | |
22 | 16.44 | ||||||
23 | 16.6 | Narcotine; (1R,9S)-form, O8-De-Me | C21H21NO7 | 399.1318 | 400.1387 (400.1391) | 372.1442, 206.0816, 178.0864, 163.0630, 58.0657 | |
24 | 17.8 | Tetrahydropapaverine | C20H25NO4 | 343.1784 | 344.1860 (344.1856) | 340.1545, 313.1450 [M + H-CH3NH2]+, 151.0754 [C9H11O2]+, 137.0599 [C8H9O2]+ | Benzylisoquinoline alkaloid |
25 | 17.7 | Papaveroline; 4′,6,7-Tri-Me ether | C19H19NO4 | 325.1314 | 326.1390 (326.1387) | 310.1077 [M + H-CH4]+, 188.0708 [M + H-122-16]+, 156.0443, 128.0495, 58.0656 | |
26 | 18.7 | ||||||
27 | 19.3 | Laudanosine; (S)-form (N-Methyl-1,2,3,4-tetrahydropapaverine) | C21H27NO4 | 357.1940 | 358.2018 (358.2013) | 342.1345 [M + H-CH4]+, 206.1177, 189.0911 [M + H-122-16-OCH3]+,151.0754, 58.0655 | |
28 | 19.9 | Papaveraldine | C20H19NO5 | 353.1263 | 354.1340 (354.1336) | 151.0757, 188.0706, 58.0655 | |
29 | 20.2 | Papaverine | C20H21NO4 | 339.1471 | 340.1541 (340.1543) | 324.1236 [M + H-CH4]+, 308.0924, 280.0976, 202.0868 [M + H-122-16]+, 187.0628, 171.0682 [M + H-122-16-OCH3]+, 156.0443 | |
30 | 20.6 | Narcotine; (1R,9S)-form (Noscapine) | C22H23NO7 | 413.1475 | 414.1545 (414.1547) | 353.1001 [M + H-aziridine(43Da)-H2O]+, 220.0972 [M + H-C10H10O4]+, 205.0736 [M + H-C10H10O4-CH3]+, 188.0705 [M + H-C10H10O4-CH3-OH]+, 179.0716 [M + H-C10H10O4-41]+, 175.0655 [M + H-C10H10O4-CH3-OCH2]+ | Phthalideisoquinoline |
31 | 15.6 | Glaucamine; 8-Epimer, O2-de-Me, O8-Me (N-Methylporphyroxine/N-Methylpapaver-rubine D) | C21H23NO6 | 385.1525 | 386.1595 (386.1598) | 209.0786, 156.0523, 140.0680, 77.0387, 67.0544, 58.0655 | Rhoeadine alkaloid |
32 | 16.5 | Glaucamine; O2-De-Me (N-Methyl-14-O-demethylepipor-phyroxine) | C20H21NO6 | 371.1369 | 372.1440 (372.1442) | 322.1074, 307.0841, 279.0889, 262.0631, 178.0864, 163.0628, 91.0543, 58.0655 | |
33 | 18.1 | Rhoeadine | C21H21NO6 | 383.1369 | 384.1445 (384.1442) | 368.1129 [M-15]+, 177.0786 | |
34 | 15.8 | Reticuline; (S)-form | C19H23NO4 | 329.1627 | 330.1701 (330.1700) | 299.1281 [M + H-CH3NH2]+, 192.1022 [M + H-C8H9O2]+, 175.0750, 177.0787[M + H-C8H9O2-CH3]+, 143.0491, 137.0600 [M + H-CH3NH2-C10H10O2]+, 115.0542, 91.0544 | Tetrahydroisoquinoline alkaloid |
35 | 17.3 | Laudanidine; (R)-form | C20H25NO4 | 343.1784 | 344.1851 (344.1856) | 137.0598 | |
36 | 9.2 | N-methyl-2,3-dioxole-tetrahydroisoquinoline | C11H13NO2 | 191.0946 | 192.1017 (192.1019) | 177.0783, 148.0756 | |
37 | 12.8 | 6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline | C12H17NO2 | 207.1259 | 208.1330 (208.1332) | 58.0655 | |
38 | 14.2 | Hydrocotarnine | C12H15NO3 | 221.1052 | 222.1121 (222.1125) | 118.0860, 114.0914, 77.0388, 58.0655 | |
39 | 14.95 | Salutaridine | C19H21NO4 | 327.1471 | 328.1540 (328.1543) | 297.1132 [M + H-CH3NH2]+, 298.1430 [M + H-CH2O]+, 265.0857 [M + H-CH3NH2-CH3OH]+, 253.0860 [M + H-CH2CHNHCH3-H2O]+, 239.0705 [M + H-CH2CHNHCH3-CH3OH]+, 237.0905 [M + H-CH3NH2-CH3OH-CO]+, 233.0597 [M + H-CH3NH2-2CH3OH]+, 221.0601 [M + H-CH2CHNHCH3-CH3OH-H2O]+, 211.0756 [M + H-CH2CHNHCH3-CH3OH-CO]+, 207.0805 [M + H-CH2CHNHCH3-2CH3OH]+, 205.0649 [M + H-CH3NH2-2CH3OH-CO]+, 181.0649 [M + H-CH2CHNHCH3-2CH3OH-CO]+ | Pro-Morphinane alkaloid |
40 | 15.8 | Salutaridinol | C19H23NO4 | 329.1627 | 330.1703 (330.1700) | 298.1455 [M + H-CH3OH]+, 267.1020 [M + H-CH3NH2-CH3OH]+, 255.1020 [M + H-CH2CHNHCH3-H2O]+, 241.0861 [M + H-CH2CHNHCH3-CH3OH]+, 239.1067 [M + H-CH3NH2-CH3OH-CO]+, 223.0757 [M + H-CH2CHNHCH3-CH3OH-H2O]+, 213.0904 [M + H-CH2CHNHCH3-CH3OH-CO]+, 209.0602 [M + H-CH2CHNHCH3-2CH3OH]+, 207.0808 [M + H-CH3NH2-2CH3OH-CO]+, 192.1022 [M + H-CH2CHNHCH3-2CH3OH-2H2O]+ [C11H14NO2]+, 181.0651 [M + H-CH2CHNHCH3-2CH3OH-CO]+ | |
41 | 18.73 | Cryptopine; 13-Oxo | C21H21NO6 | 383.1369 | 384.1441 (384.1442) | 310.1076, 241.1051, 91.0543, 58.0655 | Protopine |
42 | 19.4 | Cryptopine | C21H23NO5 | 369.1576 | 370.1650 (370.1649) | 291.1013, 222.1109, 204.1020, 165.0908, 149.0596, 58.0656 | |
43 | 19.8 | Protopine | C20H19NO5 | 353.1263 | 354.1338 (354.1336) | 336.1206 [M + H-H2O]+, 323.0939 [M + H-CH3NH2], 206.0808, 188.0708 [M + H-H2O-148(RDA)]+, 149.0597, 58.0655 | |
44 | 19.0 | Protopine; 14-Alcohol | C20H21NO5 | 355.142 | 356.1492 | 322.1076, 294.1125, 140.0683, 58.0655 | |
45 | 20.9 | Allocryptopine | C21H23NO5 | 369.1576 | 370.1648 (370.1649) | 206.0812, 188.0707, 149.0595, 58.0657 | |
46 | 21.4 | Narceine | C23H27NO8 | 445.1737 | 446.1807 (446.1809) | 428.1707 [M + H-18]+, 383.1127 [M + H-63]+, 365.1023 [M + H-81]+, 350.0789, 190.0864, 58.0656 | Stilbene |
47 | 23.01 | Sanguinarine | C20H14NO4+ | 332.0923 | 332.0925 (332.0923) | 304.0969 [M + H-CO]+, 317.0685 [M + H-CH3]+, 302.0811 [M + H-CH2O]+, 274.0865 [M + H-2H-2CO]+, 272.0708 [M + H-2H-2CO-2H]+, 246.0915 [M + H-2H-3CO]+ | Benzophenanthridine |
Plant Name | Compound Name | RT (min) | Molecular Formula | Mass | [M + H]+/[M + Na]+ (m/z) |
---|---|---|---|---|---|
Nigella sativa (black caraway or black cumin seeds) (#4978, 7516) | Magnoflorine | 15.2 | C20H24NO4+ | 342.1705 | 342.1705 [M]+ |
Thymoquinone | 20.03 | C10H12O2 | 164.0837 | 165.091 | |
kaempferol 3-O-β-D-glucopyranosyl-(1→2)-O-β-D-galactopyranosyl-(1→2)-O-β-D-glucospyranoside | 15.8 | C33H40O21 | 772.2062 | 773.2135/795.1954 | |
Tauroside E | 34.3 | C41H66O12 | 750.4554 | 751.4627/773.4446 | |
Sapindoside B | 33.6 | C46H74O16 | 882.4977 | 883.505/905.4869 | |
Sesamum indicum (#2519, 22448) | Sesamin | 35.5 | C20H28O6 | 364.1886 | 365.1959/387.1778 |
Sesamolin | 30.55 | C20H28O7 | 380.1835 | 381.1908/403.1727 | |
Sesamolinol; O-β-D-glucopyranoside | 25.5 | C26H30O12 | 534.1737 | 535.181/557.1629 | |
Sesaminol triglucoside | 19.6 | C38H48O22 | 856.2637 | 857.271/879.2529 | |
Sesamolinol gentiobioside | 23.2 | C32H40O17 | 696.2265 | 697.2338/714.2604/719.2158 | |
Salvia hispanica (Chia seeds) (#22449) | 8,13-Epoxy-15,18-labdanedioic acid; (8α,13S)-form | 31.01 | C20H32O5 | 352.2250 | 353.2323 |
15,16-Epoxy-10-hydroxy-13(16),14-clerodadiene-17,12:18,19-diolide | 24.7 | C20H22O6 | 358.1416 | 359.1489/381.1309 | |
Caffeic acid | 13.8 | C9H8O4 | 180.0423 | 179.035 [M-H]− | |
Linolenic acid | 35.0 | C18H30O2 | 278.2246 | 277.2173 [M-H]− | |
Hydroxylinolenic acid | 36.7/38.3 | C18H30O3 | 294.2195 | 293.2122 [M-H]− | |
Linoleic acid | 40.8 | C18H32O2 | 280.2402 | 279.233 [M-H]− | |
Oleic acid | 40.9 | C18H34O2 | 282.2559 | 281.2486 [M-H]− | |
Rosmarinic acid | 18.2/20.3 | C18H16O8 | 360.0845 | 359.0772 [M-H]− | |
Salvipalestinoic acid | 20.9 | C20H24O7 | 376.1522 | 377.1595/399.1414 | |
Salviaflaside | 18.2 | C24H26O13 | 522.1373 | 523.1446/540.1712/545.1266 (frag. 163.0393) | |
Sepulturin F | 19.5/19.8 | C20H22O7 | 374.1366 | 375.1438/397.1258 (frag. 357.1335) | |
Niacin | 2.8 | C6H5NO2 | 123.032 | 124.0393 | |
Amaranthus caudatus (Kiwicha seeds) (#23019, 25226) | Linoleic acid | C18H32O2 | 280.2402 | ||
Leucine/isoleucine | 4.5/4.9 | C6H13NO2 | 131.0946 | 132.1019 | |
Hydroxylinolenic acid | 36.7/38.3 | C18H30O3 | 294.2195 | 293.2122 [M-H]− | |
2,3,23-Trihydroxy-30-nor-12,20(29)-oleanadien-28-oic acid; (2β,3β)-form, 23-Carboxylic acid, 28-O-β-D-glucopyranosyl ester | 23.8 | C35H52O11 | 648.3510 | 647.3437 [M-H]− | |
2,3,6,23-Tetrahydroxy-12-oleanen-28-oic acid; (2β,3β,6α)-form, 23-Aldehyde, 3-O-[α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside], 28-O-β-D-glucopyranosyl ester | 25.5 | C48H76O20 | 972.4930 | 971.4857 [M-H]− | |
Amaranthus cruentus (purple or red amaranthus) (#22982, 25225) | Linoleic acid | C18H32O2 | 280.2402 | ||
Leucine/isoleucine | 4.5/4.9 | C6H13NO2 | 131.0946 | 132.1019 | |
Hydroxylinolenic acid | 36.7/38.3 | C18H30O3 | 294.2195 | 293.2122 [M-H]− | |
HydroxyLinoleic acid | 38.1/38.4 | C18H32O3 | 296.2351 | 297.2424 [M-H]− | |
Amaranthus saponin I | 28.4 | C48H76O19 | 956.4981 | 955.4880 [M-H]− | |
Amaranthus saponin II | 26.7 | C48H74O20 | 970.4773 | 969.4701 [M-H]− (Frag. 807.4148 [M-H-Glc (162)]−, 193.0356) | |
3-β-O-[α-L-rhamnopyranosyl(1 → 3)-β-glucuronopyranosyl]-2β,3β,23-trihydroxyolean-12-en-28-oic acid 28-O-[β-D-glucopyranosyl] ester | 25.56 | C48H76O20 | 972.4930 | 971.4857 [M-H]− | |
28-β-D-glucopyranosyl (2β,3β,4α)-3-(β-D-glucopyranuronosyloxy)-2-hydroxy-30-noroleana-12,20(29)-diene-23,28-dioate | 23.87 | C41H60O17 | 924.3831 | 823.3758 [M-H]− (Frag. 647.3418 [M-H-Glu (176)]−, 193.0356) | |
30-noroleana-12,20(29)-diene-23,28-dioic acid, 2,3-dihydroxy-(2β,3β,4α)- | 39.9 | C29H42O6 | 486.2981 | 485.2909 [M-H]− | |
2,3-dihydroxy-12-oleanene-23,28-dioic acid; 3-O-β-D-glucuronopyranoside, 28-O-β-D-glucopyranosyl ester | 25.9 | C42H64O17 | 840.4144 | 839.4071[M-H]− (Frag. 663.3724 [M-H-Glu (176)]−, 193.0356) | |
Amaranthus paniculatus (purple or red amaranthus) (#25223) | Leucine/isoleucine | 4.5/4.9 | C6H13NO2 | 131.0946 | 132.1019 |
hydroxybenzoic acid | 11.69 | C7H6O3 | 138.0317 | 137.0244 [M-H]− | |
Amaranthus saponin III | 26.7 | C47H72O19 | 940.4668 | 939.4595 [M-H]− | |
Tetrahydroxy-oleanenoic acid; form, Aldehyde, O-rhamnopyranosyl-D-glucopyranoside] -D-glucopyranosyl ester | 25.5 | C48H76O20 | 972.493 | 971.4857 [M-H]− | |
Trihydroxy-30-nor-oleanadien-28-oic acid; -form, Carboxylic acid, glucuronopyranoside, O-D-glucopyranosyl ester | 23.9 | C41H60O17 | 824.3831 | 823.3758 [M-H]− | |
Amaranthus saponin IV | 24.78 | C47H70O20 | 954.4460 | 953.4388 [M-H]− | |
Amaranthus saponin II | 26.75 | C48H74O20 | 970.4773 | 969.4701 [M-H]− | |
Eschscholzia californica (California poppy) (#24794) benzophenanthridine alkaloids | Californidine | 20.1 | C20H20NO4+1 | 338.1392 | 338.1394 (frag. 293.0811, 263.0706, 235.0759, 205.0652, 177.0701) |
Escholtzine | 16.7 | C19H17NO4 | 323.1158 | 324.1231 (frag. 187.0627) | |
N-methyllaurotetanine | 18.4 | C20H23NO4 | 341.1627 | 342.1702 (frag. 237.0847) | |
Caryachine | 14.1/16.4 | C19H19NO4 | 325.1314 | 326.1387 (frag. 223.0755, 205.0650) | |
Protopine/chelidonine | 19.4 | C20H19NO5 | 353.1263 | 354.1336 (frag. 237.0791) | |
Cryptopine | 20.3 | C21H23NO5 | 369.1576 | 370.1649 | |
Sanguinarine | 22.4 | C20H14NO4+ | 332.0923 | 332.0929 (frag.317.0687, 274.0865, 246.0918, 218.0965) | |
Eschscholtzidine/ O-methylcaryachine | 19.1 | C20H21NO4 | 339.1471 | 340.1543 | |
Chenopodium quinoa (#6146, 22444) * (flavonoids and saponins) | Kaempferol 3-O-[α-L-rhamnopyranosyl (1″–2″)]-β-D-galactopyranoside | 16.6 | C27H30O15 | 594.1585 | 595.1657 (frag.449.1084, 287.0555) |
Kaempferol-3-O-(apiofuranosyl-(1‴-2″))-galactopyranoside | 17.8 | C26H28O15 | 580.1428 | 581.1501 (frag. 449.1080, 287.0552) | |
Kaempferol 3-O-[β-D-apiofuranosyl (1′–2″)-α-L-rhamnopyranosyl (1″–6″)]-β-D-galactopyranoside | 17.01 | C32H38O19 | 726.2007 | 727.2080 (frag. 595.1655, 449.1079, 287.0559) | |
Quercetin 3-rhamninoside | 15.65 | C33H40O20 | 756.2113 | 757.2186 (frag. 611.1610, 465.1027, 303.0502) | |
Quercetin 3-O-[β-D-xylosyl-(1->2)-β-D-glucoside] | 16.76 | C26H28O16 | 596.1377 | 597.1450 (frag. 465.1029, 303.0506) | |
quercetin 3-O-[β-D-apiofuranosyl (1′–2″)-α-L-rhamnopyranosyl (1″–6″)]-β-D-galactopyranoside | 16.08 | C32H38O20 | 742.1956 | 743.2029 (frag. 463.1430, 303.0498) | |
Kaempferol 3-rhamninoside | 16.5 | C33H40O19 | 740.2164 | 741.2237 (frag. 595.1662, 449.1082, 287.0555) | |
quercetin 3-O-(2,6-di-α-L-rhamnopyranosyl)-β-D-galactopyranoside | 15.69/ 16.09 | C27H30O16 | 610.1534 | 611.1607 (frag. 465.1032, 303.0505) | |
Hederagenin bisdesmosides; Triglycosides, 3-O-[β-D-Xylopyranosyl-(1→3)-β-D-glucuronopyranoside], 28-O-β-D-glucopyranosyl ester | 26.9 | C47H74O19 | 942.4824 | 941.4752 [M-H]− | |
3,27-Dihydroxy-12-oleanen-28-oic acid; 3β-form, 27-Aldehyde, 3-O-[β-D-glucopyranosyl-(1→3)-α-L-arabinopyranoside], 28-O-β-D-glucopyranosyl ester | 29.4 | C47H74O18 | 926.4875 | 925.4802 [M-H]− | |
3-Hydroxy-12-oleanene-28,30-dioic acid; 3β-form, 30-Me ester, 3-O-α-L-arabinopyranoside, 28-O-β-D-glucopyranosyl ester | 29.9 | C42H66O14 | 794.4453 | 793.4380 [M-H]− | |
3-Hydroxy-12-oleanene-28,30-dioic acid; 3β-form, 30-Me ester, 3-O-[β-D-glucopyranosyl-(1→3)-α-L-arabinopyranoside], 28-O-β-D-glucopyranosyl ester | 28.1 | C48H76O19 | 956.4981 | 955.4908 [M-H]− | |
3-Hydroxy-12-oleanene-28,30-dioic acid; 3β-form, 30-Me ester, 3-O-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)-α-L-arabinopyranoside], 28-O-β-D-glucopyranosyl ester | 26.6 | C54H86O24 | 1118.5509 | 1117.5436 [M-H]− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avula, B.; Katragunta, K.; Adams, S.J.; Wang, Y.-H.; Chittiboyina, A.G.; Khan, I.A. Applicability of LC-QToF and Microscopical Tools in Combating the Sophisticated, Economically Motivated Adulteration of Poppy Seeds. Foods 2023, 12, 1510. https://doi.org/10.3390/foods12071510
Avula B, Katragunta K, Adams SJ, Wang Y-H, Chittiboyina AG, Khan IA. Applicability of LC-QToF and Microscopical Tools in Combating the Sophisticated, Economically Motivated Adulteration of Poppy Seeds. Foods. 2023; 12(7):1510. https://doi.org/10.3390/foods12071510
Chicago/Turabian StyleAvula, Bharathi, Kumar Katragunta, Sebastian John Adams, Yan-Hong Wang, Amar G. Chittiboyina, and Ikhlas A. Khan. 2023. "Applicability of LC-QToF and Microscopical Tools in Combating the Sophisticated, Economically Motivated Adulteration of Poppy Seeds" Foods 12, no. 7: 1510. https://doi.org/10.3390/foods12071510
APA StyleAvula, B., Katragunta, K., Adams, S. J., Wang, Y.-H., Chittiboyina, A. G., & Khan, I. A. (2023). Applicability of LC-QToF and Microscopical Tools in Combating the Sophisticated, Economically Motivated Adulteration of Poppy Seeds. Foods, 12(7), 1510. https://doi.org/10.3390/foods12071510