Identification of Novel Peptides with Alcohol Dehydrogenase (ADH) Activating Ability in Chickpea Protein Hydrolysates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Chickpea Protein
2.3. Preparation of CPHs
2.4. Determination of the Degree of Hydrolysis (DH)
2.5. Determination of ADH Activation Rates In Vitro
2.6. In Vitro Simulated Gastrointestinal Digestion
2.7. Peptide Identification and Synthesis
2.8. Computer-Aided Screening of Peptide Sequences
2.9. Molecular Docking
2.10. Solid-Phase Synthesis of the Peptides
2.11. Statistical Analysis
3. Results and Discussion
3.1. Screening of Proteases
3.2. Optimization of Time
3.3. Gastrointestinal Digestion Stability of CPHs-Pro-30
3.4. Identification by Peptidomics and Screening of CPHs-Pro-30
3.5. Validation through Molecular Docking
3.6. In Vitro Activity Verification of Peptides
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Sequence |
ILPHF | Ile-Leu-Pro-His-Phe |
MFPHLPSF | Met-Phe-Pro-His-Leu-Pro-Ser-Phe |
LMLPHF | Leu-Met-Leu-Pro-His-Phe |
FDLPALRF | Phe-Asp-Leu-Pro-Ala-Leu-Arg-Phe |
References
- Zhao, R.-J.; Huo, C.-Y.; Qian, Y.; Ren, D.-F.; Lu, J. Ultra-high-pressure processing improves proteolysis and release of bioactive peptides with activation activities on alcohol metabolic enzymes in vitro from mushroom foot protein. Food Chem. 2017, 231, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Edenberg, H.J. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants. Alcohol Res. Health J. Natl. Inst. Alcohol. Abus. Alcohol. 2007, 30, 5–13. [Google Scholar]
- Orywal, K.; Szmitkowski, M. Alcohol dehydrogenase and aldehyde dehydrogenase in malignant neoplasms. Clin. Exp. Med. 2017, 17, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Wang, H.; Yin, Z.; Jiang, H.; Fang, M.; Han, J. Association of genetic polymorphisms in ADH and ALDH2 with risk of coronary artery disease and myocardial infarction: A meta-analysis. Gene 2013, 526, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wu, X.X.; Fei, X.F.; Zhang, L.Q.; Zhang, X.Z. A study on bioactivity of corn peptides with low molecular weight (Ⅰ)–effect of an intake of them on alcohol metabolism in rats. Chem Res. Chin. U 2003, 19, 180–182. [Google Scholar]
- Chen, X.; Cai, F.; Guo, S.; Ding, F.; He, Y.; Wu, J.; Liu, C. Protective Effect of Flos Puerariae Extract Following Acute Alcohol Intoxication in Mice. Alcohol. Clin. Exp. Res. 2014, 38, 1839–1846. [Google Scholar] [CrossRef]
- Xu, M.; Chang, B.; Mathews, S.; Gao, B. New drug targets for alcoholic liver disease. Hepatol. Int. 2014, 8, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Dodok, L.; Ali, M.A.; Hozova, B.; Halasova, G.; Polacek, I. Importance and utilization of chickpea in cereal technology. Acta Aliment. 1993, 22, 119–129. [Google Scholar]
- Shi, Y.T.; Yu, F.J.; Wu, Y.; Dai, L.; Feng, Y.T.; Chen, S.L.; Wang, G.X.; Ma, H.Y.; Li, X.T.; Dai, C. Identification of a novel peptide that activates alcohol dehydrogenase from crucian carp swim bladder and how it protects against acute alcohol-induced liver injury in mice. J. Pharm. Biomed. Anal. 2022, 207, 114426. [Google Scholar] [CrossRef]
- Aluko, R.E. Determination of Nutritional and Bioactive Properties of Peptides in Enzymatic Pea, Chickpea, and Mung Bean Protein Hydrolysates. J. AOAC Int. 2008, 91, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Mótyán, J.A.; Tóth, F.; Tőzsér, J. Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules 2013, 3, 923–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Cheng, J.M.; Wu, H. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: A review. Int. J. Mol. Sci. 2019, 20, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacroix, I.M.E.; Li-Chan, E.C.Y. Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regula-tion–Current knowledge and future research considerations. Trends Food Sci. Tech. 2016, 54, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Roufik, S.; Gauthier, S.F.; Turgeon, S.L. In vitro digestibility of bioactive peptides derived from bovine beta-lactoglobulin. Int. Dairy J. 2006, 16, 294–302. [Google Scholar] [CrossRef]
- Escudero, E.; Mora, L.; Toldrá, F. Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chem. 2014, 161, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.L.; Liceaga, A.M.; Yoon, K.Y. Purification, characterisation and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus ) protein hydrolysates. J. Funct. Foods 2016, 20, 433–442. [Google Scholar] [CrossRef]
- Zhu, L.J.; Chen, J.; Tang, X.Y.; Xiong, Y.L.L. Reducing, radical scavenging, and chelation properties of in vitro digests of Al-calase-treated zein hydrolysate. J. Agric. Food Chem. 2008, 56, 2714–2721. [Google Scholar] [CrossRef]
- Haseba, T.; Duester, G.; Shimizu, A.; Yamamoto, I.; Kameyama, K.; Ohno, Y. In vivo contribution of class III alcohol dehy-drogenase (ADH3) to alcohol metabolism through activation by cytoplasmic solution hydrophobicity. BBA-Mol. Basis Dis. 2006, 1762, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Kukman, I.L.; Zelenik-Blatnik, M.; Abram, V. Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolysates by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1995, 704, 113–120. [Google Scholar] [CrossRef]
- Yu, G.-C.; Li, J.-T.; He, H.; Huang, W.-H.; Zhang, W.-J. Ultrafiltration Preparation of Potent Bioactive Corn Peptide as Alcohol Metabolism Stimulator in Vivo and Study on its Mechanism of Action. J. Food Biochem. 2013, 37, 161–167. [Google Scholar] [CrossRef]
- Goda, Y.; Shimizu, T.; Kato, Y.; Nakamura, M.; Maitani, T.; Yamada, T.; Terahara, N.; Yamaguchi, M. Two acylated antho-cyanins from purple sweet potato. Phytochemistry 1997, 44, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-C.; Ito, M.; Morimatsu, F.; Furukawa, Y.J.; Kimura, S.C. Effects of Amino Acids on Alcohol Intake in Stroke-Prone Spontaneously Hypertensive Rats. J. Nutr. Sci. Vitaminol. 1993, 39, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goihberg, E.; Dym, O.; Tel-Or, S.; Shimon, L.; Frolow, F.; Peretz, M.; Burstein, Y. Thermal stabilization of the protozoan Entamoeba histolytica alcohol dehydrogenase by a single proline substitution. Proteins 2008, 72, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
Serial Number | Sequence | Length | Relative Molecular Mass (Da) | Activity Score | Steric Hindrance | Amphipathic | Hydrophobic Amino Acid Ratio (%) | Characteristic Amino Acid Ratio (%) | Binding Energy (kcal/mol) |
---|---|---|---|---|---|---|---|---|---|
1 | FDLPALR | 7 | 831.07 | 0.82 | 0.58 | 0.35 | 71.43 | 71.43 | −9.26 |
2 | FDLPALRF | 8 | 978.26 | 0.94 | 0.60 | 0.31 | 75.00 | 75.00 | −9.87 |
3 | FDLPALRW | 8 | 1017.30 | 0.93 | 0.57 | 0.31 | 75.00 | 62.50 | −8.69 |
4 | FLRF | 4 | 581.76 | 0.99 | 0.65 | 0.61 | 75.00 | 75.00 | −9.58 |
5 | IDFEPFRP | 8 | 1020.25 | 0.86 | 0.62 | 0.47 | 62.50 | 75.00 | −9.56 |
6 | IFVPHW | 6 | 798.04 | 0.86 | 0.49 | 0.24 | 83.33 | 66.67 | −9.44 |
7 | IFYVPRYFP | 9 | 1201.55 | 0.83 | 0.62 | 0.27 | 88.89 | 77.78 | −8.55 |
8 | ILPHF | 5 | 625.84 | 0.83 | 0.46 | 0.29 | 80.00 | 80.00 | −10.26 |
9 | ILPHFF | 6 | 773.03 | 0.94 | 0.50 | 0.24 | 83.33 | 83.33 | −8.46 |
10 | IRFL | 4 | 547.75 | 0.88 | 0.65 | 0.61 | 75.00 | 75.00 | −8.08 |
11 | KFL | 3 | 406.56 | 0.83 | 0.64 | 1.22 | 66.67 | 66.67 | −9.23 |
12 | LFR | 3 | 434.57 | 0.94 | 0.64 | 0.82 | 66.67 | 66.67 | −9.14 |
13 | LLPHF | 5 | 625.84 | 0.88 | 0.42 | 0.29 | 80.00 | 80.00 | −9.10 |
14 | LLRF | 4 | 547.75 | 0.90 | 0.61 | 0.61 | 75.00 | 75.00 | −9.97 |
15 | LMLPHF | 6 | 757.05 | 0.86 | 0.48 | 0.24 | 83.33 | 66.67 | −9.66 |
16 | LRFL | 4 | 547.75 | 0.91 | 0.61 | 0.61 | 75.00 | 75.00 | −9.57 |
17 | MFPHLPSF | 8 | 975.28 | 0.93 | 0.49 | 0.18 | 75.00 | 62.50 | −10.21 |
18 | SFDLPALRF | 9 | 1065.35 | 0.92 | 0.59 | 0.27 | 66.67 | 66.67 | −7.60 |
Serial Number | Sequence | Number | Binding Sites |
---|---|---|---|
1 | ILPHF | 12 | THR45, HIS44, ARG340, ILE337, LEU182, VAL245, GLY177, ASP201, MET332, LYS206 |
2 | MFPHLPSF | 7 | HIS48, LEU182, GLY181, ASP201, LYS206, VAL247 |
3 | LLRF | 7 | VAL245, GLY177, GLY183, LEU182, GLY335, MET332, ILE337 |
4 | FDLPALRF | 8 | THR45, VAL247, GLY339, GLU333 |
5 | LMLPHF | 9 | HIS44, GLY181, VAL245, GLY335, LYS334, GLU333 |
Serial Number | Sequence | ADH Activation EC50 a (mM) |
---|---|---|
1 | ILPHF | 1.56 ± 0.07 b |
2 | MFPHLPSF | 1.62 ± 0.23 b |
3 | LMLPHF | 1.76 ± 0.03 b |
4 | FDLPALRF | 9.11 ± 0.11 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zan, R.; Zhu, L.; Wu, G.; Zhang, H. Identification of Novel Peptides with Alcohol Dehydrogenase (ADH) Activating Ability in Chickpea Protein Hydrolysates. Foods 2023, 12, 1574. https://doi.org/10.3390/foods12081574
Zan R, Zhu L, Wu G, Zhang H. Identification of Novel Peptides with Alcohol Dehydrogenase (ADH) Activating Ability in Chickpea Protein Hydrolysates. Foods. 2023; 12(8):1574. https://doi.org/10.3390/foods12081574
Chicago/Turabian StyleZan, Rong, Ling Zhu, Gangcheng Wu, and Hui Zhang. 2023. "Identification of Novel Peptides with Alcohol Dehydrogenase (ADH) Activating Ability in Chickpea Protein Hydrolysates" Foods 12, no. 8: 1574. https://doi.org/10.3390/foods12081574
APA StyleZan, R., Zhu, L., Wu, G., & Zhang, H. (2023). Identification of Novel Peptides with Alcohol Dehydrogenase (ADH) Activating Ability in Chickpea Protein Hydrolysates. Foods, 12(8), 1574. https://doi.org/10.3390/foods12081574