Effect of Buffalo Breed on the Detailed Milk Composition in Guangxi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Buffalo Milk Samples
2.3. Gross Chemical Composition of Buffalo Milk
2.4. Fat Globule Particle Size
2.5. Fatty Acid Content
2.6. Composition of Polar Lipids (PLs)
2.7. Sterol Content
2.8. Amino Acid Content
2.9. Protein Fraction
2.10. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Fat Characterization
3.2.1. Fat Globule Size
3.2.2. Fatty Acid Profile
3.2.3. Polar Lipid Profile
3.2.4. Sterol Content
3.3. Protein Characterization
3.3.1. Amino Acid Profiles
3.3.2. Protein Fractions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IDF. Bulletin of the IDF N° 512/2021: The World Dairy Situation 2021; IDF: Brussels, Belgium, 2021. [Google Scholar]
- Abd El-Salam, M.H.; El-Shibiny, S. A Comprehensive Review on the Composition and Properties of Buffalo Milk. Dairy Sci. Technol. 2011, 91, 663–699. [Google Scholar] [CrossRef]
- Minervino, A.H.H.; Zava, M.; Vecchio, D.; Borghese, A. Bubalus bubalis: A Short Story. Front. Vet. Sci. 2020, 7, 570413. [Google Scholar] [CrossRef] [PubMed]
- Garau, V.; Manis, C.; Scano, P.; Caboni, P. Compositional Characteristics of Mediterranean Buffalo Milk and Whey. Dairy 2021, 2, 469–488. [Google Scholar] [CrossRef]
- Kapadiya, D.B.; Prajapati, D.B.; Jain, A.K.; Mehta, B.M.; Darji, V.B.; Aparnathi, K.D. Comparison of Surti Goat Milk with Cow and Buffalo Milk for Gross Composition, Nitrogen Distribution, and Selected Minerals Content. Vet. World 2016, 9, 710–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Zeini, H.M. Microstructure, rheological and geometrical properties of fat globules of milk from different animal species. Pol. J. Food Nutr. Sci. 2006, 15, 147–152. [Google Scholar]
- Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. Cow Milk Fat Globules: Size Distribution, Zeta-Potential, Compositions in Total Fatty Acids and in Polar Lipids from the Milk Fat Globule Membrane. Food Chem. 2010, 120, 544–551. [Google Scholar] [CrossRef]
- Ahmad, S.; Gaucher, I.; Rousseau, F.; Beaucher, E.; Piot, M.; Grongnet, J.F.; Gaucheron, F. Effects of Acidification on Physico-Chemical Characteristics of Buffalo Milk: A Comparison with Cow’s Milk. Food Chem. 2008, 106, 11–17. [Google Scholar] [CrossRef]
- Gustavsson, F.; Buitenhuis, A.J.; Johansson, M.; Bertelsen, H.P.; Glantz, M.; Poulsen, N.A.; Lindmark Månsson, H.; Stålhammar, H.; Larsen, L.B.; Bendixen, C.; et al. Effects of Breed and Casein Genetic Variants on Protein Profile in Milk from Swedish Red, Danish Holstein, and Danish Jersey Cows. J. Dairy Sci. 2014, 97, 3866–3877. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Liang, S.; Liang, A.; Rushdi, H.E.; Deng, T. Evolutionary Analysis of OAT Gene Family in River and Swamp Buffalo: Potential Role of SLCO3A1 Gene in Milk Performance. Genes 2021, 12, 1394. [Google Scholar] [CrossRef]
- Pineda, P.S.; Flores, E.B.; Herrera, J.R.V.; Low, W.Y. Opportunities and Challenges for Improving the Productivity of Swamp Buffaloes in Southeastern Asia. Front. Genet. 2021, 12, 629861. [Google Scholar] [CrossRef]
- Borghese, A.; Moioli, B. Management of Dairy Animals: Buffalo: Mediterranean Region. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1, pp. 845–849. [Google Scholar] [CrossRef]
- Sun, Q.; Lv, J.; Liu, L.; Zhang, S.; Liang, X.; Lu, J. Comparison of Milk Samples Collected from Some Buffalo Breeds and Crossbreeds in China. Dairy Sci. Technol. 2014, 94, 387–395. [Google Scholar] [CrossRef]
- Ren, D.X.; Zou, C.X.; Lin, B.; Chen, Y.L.; Liang, X.W.; Liu, J.X. A Comparison of Milk Protein, Amino Acid and Fatty Acid Profiles of River Buffalo and Their F1 and F2 Hybrids with Swamp Buffalo in China. Pak. J. Zool. 2015, 47, 1459–1465. [Google Scholar]
- Zhou, L.; Tang, Q.; Wasim Iqbal, M.; Xia, Z.; Huang, F.; Li, L.; Liang, M.; Lin, B.; Qin, G.; Zou, C. A Comparison of Milk Protein, Fat, Lactose, Total Solids and Amino Acid Profiles of Three Different Buffalo Breeds in Guangxi, China. Ital. J. Anim. Sci. 2018, 17, 873–878. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Yang, J.; Yang, D.; Wang, X.; Yang, Z.; Jin, Q.; Wang, M.; Lai, J.; Wang, X. Phospholipid Composition and Fat Globule Structure I: Comparison of Human Milk Fat from Different Gestational Ages, Lactation Stages, and Infant Formulas. J. Agric. Food Chem. 2019, 67, 13922–13928. [Google Scholar] [CrossRef]
- Zou, X.; Huang, J.; Jin, Q.; Guo, Z.; Liu, Y.; Cheong, L.; Xu, X.; Wang, X. Lipid Composition Analysis of Milk Fats from Different Mammalian Species: Potential for Use as Human Milk Fat Substitutes. J. Agric. Food Chem. 2013, 61, 7070–7080. [Google Scholar] [CrossRef]
- Avalli, A.; Contarini, G. Determination of Phospholipids in Dairy Products by SPE/HPLC/ELSD. J. Chromatogr. A 2005, 1071, 185–190. [Google Scholar] [CrossRef]
- Wei, W.; Li, D.; Jiang, C.; Zhang, X.; Zhang, X.; Jin, Q.; Zhang, X.; Wang, X. Phospholipid Composition and Fat Globule Structure II: Comparison of Mammalian Milk from Five Different Species. Food Chem. 2022, 388, 132939. [Google Scholar] [CrossRef]
- Ali, A.H.; Zou, X.; Lu, J.; Abed, S.M.; Yao, Y.; Tao, G.; Jin, Q.; Wang, X. Identification of Phospholipids Classes and Molecular Species in Different Types of Egg Yolk by Using UPLC-Q-TOF-MS. Food Chem. 2017, 221, 58–66. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, G.; Xiang, J.; Zou, X.; Jin, Q.; Wang, X. Lipid Composition and Structural Characteristics of Bovine, Caprine and Human Milk Fat Globules. Int. Dairy J. 2016, 56, 64–73. [Google Scholar] [CrossRef]
- He, J.; Xiao, Y.; Orgoldol, K.; Ming, L.; Yi, L.; Ji, R. Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia. Animals 2019, 9, 890. [Google Scholar] [CrossRef] [Green Version]
- Bobe, G.; Beitz, D.C.; Freeman, A.E.; Lindberg, G.L. Separation and Quantification of Bovine Milk Proteins by Reversed-Phase High-Performance Liquid Chromatography. J. Agric. Food Chem. 1998, 46, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Bonfatti, V.; Grigoletto, L.; Cecchinato, A.; Gallo, L.; Carnier, P. Validation of a New Reversed-Phase High-Performance Liquid Chromatography Method for Separation and Quantification of Bovine Milk Protein Genetic Variants. J. Chromatogr. A 2008, 1195, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Sharma, A.; Bhattacharya, T.; Kumar, P.; Saha Roy, S. Association of Breed and Polymorphism of As1-and As2-Casein Genes with Milk Quality and Daily Milk and Constituent Yield Traits of Buffaloes (Bubalus bubalis). Buffalo Bull. 2008, 27, 294–301. [Google Scholar]
- Nguyen, H.T.H.; Ong, L.; Beaucher, E.; Madec, M.-N.; Kentish, S.E.; Gras, S.L.; Lopez, C. Buffalo Milk Fat Globules and Their Biological Membrane: In Situ Structural Investigations. Food Res. Int. 2015, 67, 35–43. [Google Scholar] [CrossRef]
- Schafberg, R.; Schmidt, R.; Thiele, M.; Swalve, H.H. Fat Globule Size Distribution in Milk of a German Buffalo Herd. Ital. J. Anim. Sci. 2007, 6, 1080–1083. [Google Scholar] [CrossRef]
- Fleming, A.; Schenkel, F.S.; Chen, J.; Malchiodi, F.; Ali, R.A.; Mallard, B.; Sargolzaei, M.; Corredig, M.; Miglior, F. Variation in Fat Globule Size in Bovine Milk and Its Prediction Using Mid-Infrared Spectroscopy. J. Dairy Sci. 2017, 100, 1640–1649. [Google Scholar] [CrossRef] [Green Version]
- Michalski, M.-C.; Camier, B.; Briard, V.; Leconte, N.; Gassi, J.-Y.; Goudédranche, H.; Michel, F.; Fauquant, J. The Size of Native Milk Fat Globules Affects Physico-Chemical and Functional Properties of Emmental Cheese. Lait 2004, 84, 343–358. [Google Scholar] [CrossRef]
- Ali, A.H.; Wei, W.; Abed, S.M.; Korma, S.A.; Mousa, A.H.; Hassan, H.M.; Jin, Q.; Wang, X. Impact of Technological Processes on Buffalo and Bovine Milk Fat Crystallization Behavior and Milk Fat Globule Membrane Phospholipids Profile. LWT 2018, 90, 424–432. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, X.; Yu, J.; Yuan, T.; Zhao, P.; Tao, G.; Wei, W.; Wang, X. Comprehensive Lipidomic Analysis of Milk Polar Lipids Using Ultraperformance Supercritical Fluid Chromatography-Mass Spectrometry. Food Chem. 2022, 393, 133336. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Ma, D.; Shui, G.; Wong, P.; Cazenave-Gassiot, A.; Zhang, X.; Wenk, M.R.; Goh, E.L.K.; Silver, D.L. Mfsd2a Is a Transporter for the Essential Omega-3 Fatty Acid Docosahexaenoic Acid. Nature 2014, 509, 503–506. [Google Scholar] [CrossRef]
- Nishina, A.; Kimura, H.; Sekiguchi, A.; Fukumoto, R.; Nakajima, S.; Furukawa, S. Lysophosphatidylethanolamine in Grifola Frondosa as a Neurotrophic Activator via Activation of MAPK. J. Lipid. Res. 2006, 47, 1434–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.T.; Ramesh, T.; Toh, X.R.; Nguyen, L.N. Emerging Roles of Lysophospholipids in Health and Disease. Prog. Lipid. Res. 2020, 80, 101068. [Google Scholar] [CrossRef] [PubMed]
- Dhankhar, J.; Sharma, R.; Indumathi, K.P. A Comparative Study of Sterols in Milk Fat of Different Indian Dairy Animals Based on Chemometric Analysis. J. Food Meas. Charact. 2020, 14, 2538–2548. [Google Scholar] [CrossRef]
- Xiong, Y.L. Dairy Proteins. In Ingredients in Meat Products; Springer: New York, NY, USA, 2009; pp. 131–144. [Google Scholar]
- Addeo, F.; Alloisio, V.; Chianese, L.; Alloisio, V. Tradition and Innovation in the Water Buffalo Dairy Products. Ital. J. Anim. Sci. 2007, 6, 51–57. [Google Scholar] [CrossRef]
Buffalo Breeds | Protein% | Fat% | Lactose% | SNF% | TS% | Fat Globule Size (µm) |
---|---|---|---|---|---|---|
Nili-Ravi | 4.38 ± 0.2 B | 6.84 ± 1.2 B | 5.27 ± 0.3 A | 9.70 ± 0.5 B | 17.29 ± 1.6 B | 6.53 ± 0.7 A |
Murrah | 4.91 ± 0.2 A | 7.17 ± 1.7 B | 5.25 ± 0.2 A | 10.34 ± 0.2 A | 18.23 ± 1.8 B | 5.67 ± 0.6 A |
Mediterranean | 5.08 ± 0.5 A | 8.98 ± 1.2 A | 4.98 ± 0.5 A | 10.17 ± 0.5 A | 20.18 ± 1.2 A | 3.88 ± 0.7 B |
Fatty Acids | Buffalo Breeds | ||
---|---|---|---|
Nili-Ravi | Murrah | Mediterranean | |
C4:0 | 2.34 ± 0.2 A | 1.83 ± 0.2 A | 1.81 ± 0.3 A |
C6:0 | 1.42 ± 0.3 A | 0.92 ± 0.3 B | 1.56 ± 0.3 A |
C8:0 | 0.70 ± 0.1 AB | 0.64 ± 0.1 A | 0.77 ± 0.2 A |
C10:0 | 1.6 ± 0.2 A | 1.5 ± 0.2 A | 1.6 ± 0.3 A |
C11:0 | 0.04 ± 0.0 A | 0.05 ± 0.0 A | 0.03 ± 0.0 A |
C12:0 | 2.23 ± 0.1 A | 2.16 ± 0.2 A | 2.24 ± 0.3 A |
C13:0 | 0.07 ± 0.0 A | 0.08 ± 0.0 A | 0.06 ± 0.0 A |
C14:0 | 11.0 ± 1.1 A | 10.4 ± 1.3 A | 10.6 ± 0.8 A |
C14:1 | 0.78 ± 0.2 B | 0.79 ± 0.1 B | 1.14 ± 0.2 A |
C15:0 | 1.05 ± 0.1 B | 1.08 ± 0.1 AB | 1.19 ± 0.1 A |
C15:1 | 0.28 ± 0.0 B | 0.26 ± 0.0 B | 0.37 ± 0.1 A |
C16:0 | 33.0 ± 1.6 AB | 31.7 ± 1.8 B | 34.4 ± 1.5 A |
C16:1 | 2.10 ± 0.2 B | 2.07 ± 0.2 B | 2.52 ± 0.3 A |
C17:0 | 0.51 ± 0.1 B | 0.54 ± 0.0 B | 0.71 ± 0.0 A |
C17:1 | 0.23 ± 0.0 B | 0.26 ± 0.0 B | 0.35 ± 0.1 A |
C18:0 | 13.79 ± 0.9 A | 14.23 ± 1.0 A | 10.97 ± 0.8 B |
C18:1 | 24.59 ± 1.2 B | 27.22 ± 1.7 A | 25.76 ± 1.7 AB |
C18:2T | 0.83 ± 0.1 A | 0.87 ± 0.1 A | 0.55 ± 0.2 B |
C18:2C | 1.67 ± 0.1 B | 1.70 ± 0.1 B | 1.89 ± 0.2 A |
C18:3N6 | 0.14 ± 0.0 B | 0.14 ± 0.0 B | 0.19 ± 0.0 A |
C20:1 | 1.37 ± 0.1 B | 1.59 ± 0.1 A | 0.86 ± 0.2 C |
C18:3N3 | 0.26 ± 0.0 A | 0.28 ± 0.0 A | 0.21 ± 0.0 B |
C20:2 | 0.04 ± 0.0 A | 0.06 ± 0.0 A | 0.06 ± 0.0 A |
C20:3 | 0.07 ± 0.0 B | 0.07 ± 0.0 B | 0.08 ± 0.0 A |
C20:4 | 0.06 ± 0.0 A | 0.06 ± 0.0 A | 0.07 ± 0.0 A |
C22:0 | 0.1 ± 0.0 A | 0.1 ± 0.0 A | 0.09 ± 0.0 A |
C20:5 | 0.02 ± 0.0 A | 0.03 ± 0.0 A | 0.02 ± 0.0 A |
C22:2 | 0.04 ± 0.0 A | 0.05 ± 0.0 A | 0.06 ± 0.0 A |
C24:0 | 0.08 ± 0.0 A | 0.08 ± 0.0 A | 0.09 ± 0.0 A |
C24:1 | 0.02 ± 0.0 A | 0.03 ± 0.0 A | 0.03 ± 0.0 A |
C22:5N3 | 0.03 ± 0.0 B | 0.03 ± 0.0 B | 0.06 ± 0.0 A |
USFA | 33.18 ± 1.4 B | 36.155 ± 1.8 A | 34.75 ± 2.1 AB |
SFA | 67.49 ± 2.4 A | 64.561 ± 2.3 B | 65.94 ± 1.7 AB |
Buffalo Breeds | SM | PC | PE | PI | PG |
---|---|---|---|---|---|
Nili-Ravi | 6.6 ± 0.5 B | 30.2 ± 1.3 A | 43.3 ± 2.9 A | 19.3 ± 1.5 B | 0.6 ± 0.2 A |
Murrah | 6.9 ± 0.9 B | 29.8 ± 1.8 A | 41.2 ± 1.6 A | 21.9 ± 1.3 A | 0.3 ± 0.1 B |
Mediterranean | 8.5 ± 1 A | 30.3 ± 1.9 A | 41.8 ± 2.5 A | 19.0 ± 1.5 B | 0.3 ± 0.1 B |
Buffalo Breeds | Squalene | Cholesterol | Desmosterol | Lathosterol | Stigmasterol | Beta-Sitosterol | Lanosterol |
---|---|---|---|---|---|---|---|
Nili-Ravi | 14.7 ± 2.8 A | 249.4 ± 8.7 B | 1.4 ± 0.8 A | 9.8 ± 1.1 A | 1.1 ± 0.4 A | 0.8 ± 0.3 A | 7.5 ± 0.9 A |
Murrah | 10.2 ± 1.9 B | 235.2 ± 8.9 C | 1.5 ± 0.3 A | 7.1 ± 1.2 AB | 0.7 ± 0.18 B | 0.5 ± 0.1 B | 6.0 ± 1.3 B |
Mediterranean | 11.1 ± 1.8 B | 289.2 ± 9.4 A | 1.3 ± 0.3 A | 6.3 ± 0.9 B | 1.0 ± 0.3 AB | 0.6 ± 0.1 B | 8.4 ± 0.9 A |
Amino Acids | Buffalo Breeds | ||
---|---|---|---|
Nili-Ravi | Murrah | Mediterranean | |
Aspartic acid | 7.0 ± 0.7 A | 7.2 ± 0.1 A | 6.56 ± 0.3 A |
Methionine | 2.51 ± 0.2 A | 2.58 ± 0.1 A | 2.5 ± 0.2 A |
Threonine | 4.19 ± 0.3 A | 4.21 ± 0.31 A | 4.0 ± 0.1 A |
Serine | 4.65 ± 0.3 A | 4.76 ± 0.2 A | 4.47 ± 0.2 A |
Valine | 5.84 ± 0.5 A | 5.84 ± 0.6 A | 5.84 ± 0.4 A |
Phenylalanine | 4.34 ± 0.2 A | 4.41 ± 0.1 A | 4.33 ± 0.3 A |
Leucine | 9.52 ± 0.6 A | 9.51 ± 0.6 A | 9.47 ± 0.6 A |
Tyrosine | 4.87 ± 0.3 A | 5.03 ± 0.1 A | 4.8 ± 0.3 A |
Lysine | 7.61 ± 0.5 A | 7.67 ± 0.1 A | 7.35 ± 0.3 A |
Proline | 9.74 ± 0.5 A | 9.64 ± 0.2 A | 9.78 ± 0.7 A |
Arginine | 2.74 ± 0.2 A | 2.78 ± 0.1 A | 2.76 ± 0.2 A |
Histidine | 2.51 ± 0.2 A | 2.51 ± 0.1 A | 2.43 ± 0.1 A |
Glycine | 1.74 ± 0.1 A | 1.8 ± 0.1 A | 1.73 ± 0.1 A |
Alanine | 2.97 ± 0.2 A | 2.99 ± 0.1 A | 2.82 ± 0.1 A |
Isoleucine | 5.33 ± 0.3 A | 5.43 ± 0.1 A | 5.31 ± 0.3 A |
Glutamic acid | 19.41 ± 0.6 A | 19.69 ± 0.6 A | 18.83 ± 0.4 A |
Buffalo Breeds | κ-CN | αs-CN | β-CN | α-LA | β-LG |
---|---|---|---|---|---|
Nili-Ravi | 13.4 ± 0.6 A | 36.5 ± 0.5 A | 35.5 ± 1.7 A | 4.98 ± 0.5 C | 8.97 ± 1.3 B |
Murrah | 11.8 ± 0.7 C | 33.7 ± 1.7 B | 28.4 ± 1.9 B | 9.7 ± 1.5 A | 16.3 ± 1.1 A |
Mediterranean | 12.6 ± 0.7 B | 34.2 ± 1.3 B | 30.4 ± 1.8 B | 7.7 ± 1.6 B | 15.1 ± 1.3 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Hamid, M.; Huang, L.; Huang, Z.; Romeih, E.; Yang, P.; Zeng, Q.; Li, L. Effect of Buffalo Breed on the Detailed Milk Composition in Guangxi, China. Foods 2023, 12, 1603. https://doi.org/10.3390/foods12081603
Abdel-Hamid M, Huang L, Huang Z, Romeih E, Yang P, Zeng Q, Li L. Effect of Buffalo Breed on the Detailed Milk Composition in Guangxi, China. Foods. 2023; 12(8):1603. https://doi.org/10.3390/foods12081603
Chicago/Turabian StyleAbdel-Hamid, Mahmoud, Li Huang, Zizhen Huang, Ehab Romeih, Pan Yang, Qingkun Zeng, and Ling Li. 2023. "Effect of Buffalo Breed on the Detailed Milk Composition in Guangxi, China" Foods 12, no. 8: 1603. https://doi.org/10.3390/foods12081603
APA StyleAbdel-Hamid, M., Huang, L., Huang, Z., Romeih, E., Yang, P., Zeng, Q., & Li, L. (2023). Effect of Buffalo Breed on the Detailed Milk Composition in Guangxi, China. Foods, 12(8), 1603. https://doi.org/10.3390/foods12081603