Development of a Functional Dark Chocolate with Baobab Pulp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Chocolate Samples
2.2. Chemical Analysis
2.2.1. Moisture and Ash
2.2.2. Protein
2.2.3. Fat
2.2.4. Fatty Acids
2.2.5. Elemental Analysis
2.2.6. Total Phenolic Content (TPC)
2.2.7. Antioxidant Activity (AA)
2.2.8. Vitamin C
2.3. Physical Analysis
2.3.1. Texture Analysis
2.3.2. Colour
2.4. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physical Parameters and Centesimal Composition
3.2. Fat and Fatty Acids
3.3. Elemental Analysis
3.4. Principal Component Analysis
- Here is a clear separation between the control and the samples produced according to the percentage of incorporation of the baobab pulp flour in the chocolate.
- The incorporation of baobab in chocolate decreases the correlation of the samples produced with the fat variable, evidenced by the tendency of negative correlation in PC1, and proves the decrease in fat in the samples.
- There is a strong correlation between K, vitamin C, AA, Ca, ash and TPC that, due to its projection in PC1, shows the correlation between this set of variables and the incorporation of baobab in chocolate.
3.5. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crown, P.L. Pre-Hispanic Use of Cocoa. In Chocolate in Health and Nutrition; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 3–10. ISBN 978-1-61779-803-0. [Google Scholar]
- Lippi, D. Sin and Pleasure: The History of Chocolate in Medicine. J. Agric. Food Chem. 2015, 63, 9936–9941. [Google Scholar] [CrossRef] [PubMed]
- Arts, I.C.; Hollman, P.C.; Kromhout, D. Chocolate as a Source of Tea Flavonoids. Lancet 1999, 354, 488. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.A.; Proch, J.; Bose, P.; Muchler, S.; Taffera, P.; Shuta, D.; Samman, N.; Agbor, G.A. Chocolate Is a Powerful Ex Vivo and in Vivo Antioxidant, an Antiatherosclerotic Agent in an Animal Model, and a Significant Contributor to Antioxidants in the European and American Diets. J. Agric. Food Chem. 2006, 54, 8071–8076. [Google Scholar] [CrossRef]
- Wollgast, J.; Anklam, E. Review on Polyphenols in Theobroma Cacao: Changes in Composition during the Manufacture of Chocolate and Methodology for Identification and Quantification. Food Res. Int. 2000, 33, 423–447. [Google Scholar] [CrossRef]
- Ackar, D.; Valek Lendić, K.; Valek, M.; Šubarić, D.; Miličević, B.; Babić, J.; Nedić, I. Cocoa Polyphenols: Can We Consider Cocoa and Chocolate as Potential Functional Food? J. Chem. 2013, 2013, 289392. [Google Scholar] [CrossRef]
- Panda, A.; Coelho, P.; Alvarenga, N.B.; da Silva, J.L.; Lampreia, C.; Santos, M.T.; Pinto, C.A.; Amaral, R.A.; Saraiva, J.A.; Dias, J. Effect of High Pressure on the Properties of Chocolate Fillings during Long-Term Storage. Foods 2022, 11, 970. [Google Scholar] [CrossRef]
- Dias, J.M.; Almeida, M.; Adikevičius, D.; Andzevičius, P.; Alvarenga, N.B. Impact of Olive Oil Usage on Physical Properties of Chocolate Fillings. Grasas Aceites 2016, 67, e145. [Google Scholar] [CrossRef]
- Komes, D.; Belščak-Cvitanović, A.; Škrabal, S.; Vojvodić, A.; Bušić, A. The Influence of Dried Fruits Enrichment on Sensory Properties of Bitter and Milk Chocolates and Bioactive Content of Their Extracts Affected by Different Solvents. LWT-Food Sci. Technol. 2013, 53, 360–369. [Google Scholar] [CrossRef]
- Mayorga-Gross, A.L.; Montoya-Arroyo, A. Chapter 3-Cacao. In Functional Foods and Their Implications for Health Promotion; Zabetakis, I., Tsoupras, A., Lordan, R., Ramji, D., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 55–95. ISBN 978-0-12-823811-0. [Google Scholar]
- Kaur, S.; Das, M. Functional Foods: An Overview. Food Sci. Biotechnol. 2011, 20, 861. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.; Alvarenga, N.; Sousa, I. Effect of Hydrocolloids on Low-Fat Chocolate Fillings. J. Food Sci. Technol. 2015, 52, 7209–7217. [Google Scholar] [CrossRef]
- Monteiro, S.; Reboredo, F.H.; Lageiro, M.M.; Lourenço, V.M.; Dias, J.; Lidon, F.; Abreu, M.; Martins, A.P.L.; Alvarenga, N. Nutritional Properties of Baobab Pulp from Different Angolan Origins. Plants 2022, 11, 2272. [Google Scholar] [CrossRef] [PubMed]
- Gruenwald, J. Novel Botanical Ingredients for Beverages. Clin. Dermatol. 2009, 27, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Sokeng, A.J.T.; Sobolev, A.P.; Di Lorenzo, A.; Xiao, J.; Mannina, L.; Capitani, D.; Daglia, M. Metabolite Characterization of Powdered Fruits and Leaves from Adansonia digitata L. (Baobab): A Multi-Methodological Approach. Food Chem. 2019, 272, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.B.; Pu, Y.; Fan, L.; Dandago, M.A.; Guo, M.; Liu, D. Characterizing the Phenolic Constituents of Baobab (Adansonia digitata) Fruit Shell by LC-MS/QTOF and Their in Vitro Biological Activities. Sci. Total Environ. 2019, 694, 133387. [Google Scholar] [CrossRef]
- Ismail, B.B.; Guo, M.; Pu, Y.; Wang, W.; Ye, X.; Liu, D. Valorisation of Baobab (Adansonia digitata) Seeds by Ultrasound Assisted Extraction of Polyphenolics. Optimisation and Comparison with Conventional Methods. Ultrason. Sonochem. 2019, 52, 257–267. [Google Scholar] [CrossRef]
- OJEU. Commission Decision of Authorising the Placing on the Market of Baobab Dried Fruit Pulp as a Novel Food Ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council (Notified under Document Number C (2008/575/EC). Off. J. Eur. Union. 2008, L183, 38–39. [Google Scholar]
- FDA; United States Food and Drug Administration. GRN No. 273 Baobab (Adansonia digitata) Dried Fruit Pulp. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=273 (accessed on 11 December 2017).
- UC Davis. What Makes Superfood so Super? Available online: https://www.ucdavis.edu/food/what-makes-superfood-so-super (accessed on 4 January 2023).
- Assogbadjo, A.E.; Chadare, F.J.; Kakaï, R.G.; Fandohan, B.; Baidu-Forson, J.J. Variation in Biochemical Composition of Baobab (Adansonia digitata) Pulp, Leaves and Seeds in Relation to Soil Types and Tree Provenances. Agric. Ecosyst. Environ. 2012, 157, 94–99. [Google Scholar] [CrossRef]
- Godočiková, L.; Ivanišová, E.; Noguera-Artiaga, L.; arbonell-Barrachina, A.A. Biological Activity, Antioxidant Capacity and Volatile Profile of Enriched Slovak Chocolates. J. Food Nutr. Res. 2019, 58, 283–293. [Google Scholar]
- Roda, A.; Lambri, M. Changes in Antioxidants and Sensory Properties of Italian Chocolates and Related Ingredients Under Controlled Conditions During an Eighteen-Month Storage Period. Nutrients 2019, 11, 2719. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International, Ed.; AOAC International: Gaithersburg, MD, USA, 2006; ISBN 978-0-935584-77-6. [Google Scholar]
- Azzatul, F.; Jahurul, M.H.A.; Norliza, J.; Norazlina, M.R.; Hasmadi; Sharifudin, M.S.; Matanjun, P.; Lee, J.S. Characteristics of Rambutan (Nephelium lappaceum L.) Seed Fat Fractions and Their Potential Application as Cocoa Butter Improver. Food Res. 2020, 4, 852–859. [Google Scholar] [CrossRef]
- ISO 5509:2000; Animal and Vegetable Fats and Oils: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2000.
- Reboredo, F.; Simões, M.; Jorge, C.; Mancuso, M.; Martinez, J.; Guerra, M.; Ramalho, J.C.; Pessoa, M.F.; Lidon, F. Metal Content in Edible Crops and Agricultural Soils Due to Intensive Use of Fertilizers and Pesticides in Terras Da Costa de Caparica (Portugal). Environ. Sci. Pollut. Res. 2019, 26, 2512–2522. [Google Scholar] [CrossRef]
- Reboredo, F.H.; Pelica, J.; Lidon, F.C.; Pessoa, M.F.; Silva, M.M.; Guerra, M.; Leitão, R.; Ramalho, J.C. The Tolerance of Eucalyptus Globulus to Soil Contamination with Arsenic. Plants 2021, 10, 627. [Google Scholar] [CrossRef] [PubMed]
- Cerit, İ.; Şenkaya, S.; Tulukoğlu, B.; Kurtuluş, M.; Seçilmişoğlu, Ü.R.; Demirkol, O. Enrichment of Functional Properties of White Chocolates with Cornelian Cherry, Spinach and Pollen Powders. GIDA 2016, 41, 311–316. [Google Scholar] [CrossRef]
- Laličić-Petronijević, J.; Komes, D.; Gorjanović, S.; Belščak-Cvitanović, A.; Pezo, L.; Pastor, F.; Ostojić, S.; Popov-Raljić, J.; Sužnjević, D. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate during Storage. Food Technol. Biotechnol. 2016, 54, 13–20. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The Phenolic Constituents of Prunus domestica I.—The Quantitative Analysis of Phenolic Constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Quevedo, R.; Valencia, E.; Alvarado, F.; Ronceros, B.; Bastias, J.M. Comparison of Whiteness Index vs. Fractal Fourier in the Determination of Bloom Chocolate Using Image Analysis. Food Bioprocess Technol. 2013, 6, 1878–1884. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Komes, D.; Benković, M.; Karlović, S.; Hečimović, I.; Ježek, D.; Bauman, I. Innovative Formulations of Chocolates Enriched with Plant Polyphenols from Rubus idaeus L. Leaves and Characterization of Their Physical, Bioactive and Sensory Properties. Food Res. Int. 2012, 48, 820–830. [Google Scholar] [CrossRef]
- Tukey, J.W. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99. [Google Scholar] [CrossRef] [PubMed]
- Moder, K. Alternatives to F-Test in One Way ANOVA in Case of Heterogeneity of Variances (a Simulation Study). Psychol. Test Assess. Model. 2010, 52, 343–353. [Google Scholar]
- Dunnett, C.W. Pairwise Multiple Comparisons in the Unequal Variance Case. J. Am. Stat. Assoc. 1980, 75, 796–800. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Vásquez, C.; Henríquez, G.; López, J.V.; Penott-Chang, E.K.; Sandoval, A.J.; Müller, A.J. The Effect of Composition on the Rheological Behavior of Commercial Chocolates. LWT-Food Sci. Technol. 2019, 111, 744–750. [Google Scholar] [CrossRef]
- Torres-Moreno, M.; Torrescasana, E.; Salas-Salvadó, J.; Blanch, C. Nutritional Composition and Fatty Acids Profile in Cocoa Beans and Chocolates with Different Geographical Origin and Processing Conditions. Food Chem. 2015, 166, 125–132. [Google Scholar] [CrossRef]
- Ieggli, C.V.S.; Bohrer, D.; do Nascimento, P.C.; de Carvalho, L.M. Determination of Sodium, Potassium, Calcium, Magnesium, Zinc and Iron in Emulsified Chocolate Samples by Flame Atomic Absorption Spectrometry. Food Chem. 2011, 124, 1189–1193. [Google Scholar] [CrossRef]
- Kruszewski, B.; Obiedziński, M.W. Multivariate Analysis of Essential Elements in Raw Cocoa and Processed Chocolate Mass Materials from Three Different Manufacturers. LWT-Food Sci. Technol 2018, 98, 113–123. [Google Scholar] [CrossRef]
- Cinquanta, L.; Di Cesare, C.; Manoni, R.; Piano, A.; Roberti, P.; Salvatori, G. Mineral Essential Elements for Nutrition in Different Chocolate Products. Int. J. Food Sci. Nutr. 2016, 67, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Alvarenga, N.; da Silva, J.L.; Partidário, A.; Lageiro, M.; Roseiro, C.; Dias, J. Influence of Cocoa Origin on the Nutritional Characterization of Chocolate. Eur. Food Res. Technol. 2022, 248, 2569–2577. [Google Scholar] [CrossRef]
- Aroyeun, S.; Okunade, A.; Obatoye, A.; Adeniran, M.O. Nutritional Profile and Organoleptic Qualities of Milk Chocolate Incorporated with Different Spices. Asian J. Agric. Food Sci. 2019, 13, 1–8. [Google Scholar] [CrossRef]
- Gupta, N.; Ravindra, U.; Hanagi, C. Standardization and Nutrient Analysis of β-Carotene Enhanced Chocolate. Pharma Innov. J. 2022, 11, 41–45. [Google Scholar]
- Baky, M.H.; Badawy, M.T.; Bakr, A.F.; Hegazi, N.M.; Abdellatif, A.; Farag, M.A. Metabolome-Based Profiling of African Baobab Fruit (Adansonia digitata L.) Using a Multiplex Approach of MS and NMR Techniques in Relation to Its Biological Activity. RSC Adv. 2021, 11, 39680–39695. [Google Scholar] [CrossRef] [PubMed]
- Jahangir, M.A.; Shehzad, A.; Butt, M.S.; Bashir, S. Influence of Supercritical Fluid Extract of Cinnamomum Zeylanicum Bark on Physical, Bioactive and Sensory Properties of Innovative Cinnamaldehyde-Enriched Chocolates. Czech J. Food Sci. 2018, 36, 28–36. [Google Scholar] [CrossRef]
- Salvador, I.; Massarioli, A.P.; Silva, A.P.; Malaguetta, H.; Melo, P.S.; Alencar, S.M. Can We Conserve Trans-resveratrol Content and Antioxidant Activity during Industrial Production of Chocolate? J. Sci. Food Agric. 2019, 99, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Chadare, F.J.; Linnemann, A.R.; Hounhouigan, J.D.; Nout, M.J.R.; Van Boekel, M.A.J.S. Baobab Food Products: A Review on Their Composition and Nutritional Value. Crit. Rev. Food Sci. Nutr. 2009, 49, 254–274. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M. An Updated Review of Adansonia digitata: A Commercially Important African Tree. S. Afr. J. Bot. 2011, 77, 908–919. [Google Scholar] [CrossRef]
- Besco, E.; Braccioli, E.; Vertuani, S.; Ziosi, P.; Brazzo, F.; Bruni, R.; Sacchetti, G.; Manfredini, S. The Use of Photochemiluminescence for the Measurement of the Integral Antioxidant Capacity of Baobab Products. Food Chem. 2007, 102, 1352–1356. [Google Scholar] [CrossRef]
- Vertuani, S.; Braccioli, E.; Buzzoni, V.; Manfredini, S. Antioxidant Capacity of Adansonia digitata Fruit Pulp and Leaves. Acta Phytother. 2002, 5, 2–7. [Google Scholar]
- Hidayah, N. Effect of Addition of Moringa Leaf Powder to Fe, Vitamin C, and Acceptability of Moringa Chocolate (Kokoa Moringa Oleifera). Public Health Saf. Intern. J. 2022, 2, 83–90. [Google Scholar] [CrossRef]
- Mishra, D.; Chauhan, A.K.; Bhardwaj, R.; Kumar, P.; Yadav, D. Optimization of Guava Milk Chocolate Using Response Surface Methodology. Biosci. Biotechnol. Res. Asia 2016, 13, 1715–1723. [Google Scholar] [CrossRef]
- Dias, J.; Panda, A.; Partidário, A.; Alvarenga, N.; da Silva, J.L.; Cordeiro, T.; Prazeres, P. Impact of Geographical Origin on Chocolate Microstructure, Phase Transition, and Fat Bloom. In Trends in Sustainable Chocolate Production; Galanakis, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 153–187. ISBN 978-3-030-90168-4. [Google Scholar]
- Shourideh, M.; Taslimi, A.; Azizi, M.; Mohammadifar, M. Effects of D-Tagatose and Inulin on Some Physicochemical, Rheological and Sensory Properties of Dark Chocolate. Int. J. Biosci. Biochem. Bioinf. 2012, 2, 314–319. [Google Scholar] [CrossRef]
- Afoakwa, E.O. Chocolate Science and Technology, 2nd ed.; Wiley Blackwell: Hoboken, NJ, USA, 2016; ISBN 978-1-118-91378-9. [Google Scholar]
- Belščak-Cvitanović, A.; Komes, D.; Dujmović, M.; Karlović, S.; Biškić, M.; Brnčić, M.; Ježek, D. Physical, Bioactive and Sensory Quality Parameters of Reduced Sugar Chocolates Formulated with Natural Sweeteners as Sucrose Alternatives. Food Chem. 2015, 167, 61–70. [Google Scholar] [CrossRef]
- Furlán, L.T.R.; Baracco, Y.; Lecot, J.; Zaritzky, N.; Campderrós, M.E. Influence of Hydrogenated Oil as Cocoa Butter Replacers in the Development of Sugar-Free Compound Chocolates: Use of Inulin as Stabilizing Agent. Food Chem. 2017, 217, 637–647. [Google Scholar] [CrossRef]
- Briones, V.; Aguilera, J.M. Image Analysis of Changes in Surface Color of Chocolate. Food Res. Int. 2005, 38, 87–94. [Google Scholar] [CrossRef]
- Jardim, D.C.P.; Orse, A.G.; Efraim, P.; Moura, S.C.S.R. de Kinetic of White Chocolate Color Loss. Procedia Food Sci. 2011, 1, 1026–1030. [Google Scholar] [CrossRef]
- Popov-Raljié, J.; Laličié-Petronijević, J. Sensory Properties and Color Measurements of Dietary Chocolates with Different Compositions During Storage for Up to 360 Days. Sensors 2009, 9, 1996–2016. [Google Scholar] [CrossRef]
- Nopens, I.; Foubert, I.; De Graef, V.; Van Laere, D.; Dewettinck, K.; Vanrolleghem, P. Automated Image Analysis Tool for Migration Fat Bloom Evaluation of Chocolate Coated Food Products. LWT-Food Sci. Technol. 2008, 41, 1884–1891. [Google Scholar] [CrossRef]
- Beckett, S.T. The Science of Chocolate; The Royal Society of Chemistry: London, UK, 2008; ISBN 978-0-85404-970-7. [Google Scholar]
- Rossini, K.; Noreña, C.P.Z.; Brandelli, A. Changes in the Color of White Chocolate during Storage: Potential Roles of Lipid Oxidation and Non-Enzymatic Browning Reactions. J. Food. Sci. Technol. 2011, 48, 305–311. [Google Scholar] [CrossRef]
- Torbica, A.M.; Pajin, B.S.; Omorjan, R.P.; Lončarević, I.S.; Tomić, J.M. Physical Properties of Chocolate with Addition of Cocoa Butter Equivalent of Moderate Hardness. J. Am. Oil Chem. Soc. 2014, 91, 39–48. [Google Scholar] [CrossRef]
- Paiva, C.F.; Hokama, L.M.; Candido, C.J.; Guimarães, R. de C.A. Elaboração de Barras de Chocolate Funcionais Enriquecidas Com Chia. Multitemas 2017, 22, 185–199. [Google Scholar] [CrossRef]
- Yeo, Y.; Thed, S. Product Development of Passion Fruit and Citrus Peel Dark Chocolate. Food Res. 2022, 6, 41–44. [Google Scholar] [CrossRef]
- Karabulut, I. Fatty Acid Composition of Frequently Consumed Foods in Turkey with Special Emphasis on Trans Fatty Acids. Int. J. Food Sci. Nutr. 2007, 58, 619–628. [Google Scholar] [CrossRef]
- Mexis, S.; Badeka, A.; Riganakos, K.; Kontominas, M. Effect of Active and Modified Atmosphere Packaging on Quality Retention of Dark Chocolate with Hazelnuts. Innov. Food Sci. Emerg. Technol. 2010, 11, 177–186. [Google Scholar] [CrossRef]
- Neto, A. Influência Da Origem Do Cacau Na Caracterização Do Chocolate e Aplicação Da Hiperpressão No Aumento Do Tempo de Prateleira de Recheios. Ph.D. Thesis, FCT/UNL, Caparica, Portugal, 2021. [Google Scholar]
- Yılmaz, I.; Geçgel, U. Effects of Gamma Irradiation on Trans Fatty Acid Composition in Ground Beef. Food Control 2007, 18, 635–638. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Ascherio, A.; Colditz, G.A.; Speizer, F.E.; Hennekens, C.H.; Willett, W.C. Dietary Saturated Fats and Their Food Sources in Relation to the Risk of Coronary Heart Disease in Women. Am. J. Clin. Nutr. 1999, 70, 1001–1008. [Google Scholar] [CrossRef]
- Fraser, G.E.; Sabate, J.; Beeson, W.L.; Strahan, T.M. A Possible Protective Effect of Nut Consumption on Risk of Coronary Heart Disease: The Adventist Health Study. Arch. Int. Med. 1992, 152, 1416–1424. [Google Scholar] [CrossRef]
- Garcia-Lorda, P.; Megias Rangil, I.; Salas-Salvado, J. Nut Consumption, Body Weight and Insulin Resistance. Eur. J. Clin. Nutr. 2003, 57, S8–S11. [Google Scholar] [CrossRef]
- Godočiková, L.; Ivanišová, E.; Zaguła, G.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Kowalczewski, P.Ł.; Kačániová, M. Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates. Molecules 2020, 25, 3648. [Google Scholar] [CrossRef] [PubMed]
- Komarnisky, L.A.; Christopherson, R.J.; Basu, T.K. Sulfur: Its Clinical and Toxicologic Aspects. Nutrition 2003, 19, 54–61. [Google Scholar] [CrossRef] [PubMed]
- van de Poll, M.C.G.; Dejong, C.H.C.; Soeters, P.B. Adequate Range for Sulfur-Containing Amino Acids and Biomarkers for Their Excess: Lessons from Enteral and Parenteral Nutrition. J. Nutr. 2006, 136, 1694S–1700S. [Google Scholar] [CrossRef] [PubMed]
- Demarini, S. Calcium and Phosphorus Nutrition in Preterm Infants. Acta Pædiatrica 2005, 94, 87–92. [Google Scholar] [CrossRef]
- Copp, D.H. Calcium and Phosphorus Metabolism. Am. J. Med. 1957, 22, 275–285. [Google Scholar] [CrossRef]
- Roy, P.K.; Lall, S.P. Dietary Phosphorus Requirement of Juvenile Haddock (Melanogrammus aeglefinus L.). Aquaculture 2003, 221, 451–468. [Google Scholar] [CrossRef]
- Tuerk, M.J.; Fazel, N. Zinc Deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143. [Google Scholar] [CrossRef]
- Osendarp, S.J.; West, C.E.; Black, R.E. The Need for Maternal Zinc Supplementation in Developing Countries: An Unresolved Issue. J. Nutr. 2003, 133, 817S–827S. [Google Scholar] [CrossRef]
- Fechetia, M.; Tognon, A.L.; da Veiga, M.A. Determination of Chlorine in Food Samples via the AlCl Molecule Using High-Resolution Continuum Source Molecular Absorption Spectrometry in a Graphite Furnace. Spectrochim. Acta Part B At. Spectrosc. 2012, 71, 98–101. [Google Scholar] [CrossRef]
- Ozbek, N.; Akman, S. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. J. Agric. Food Chem. 2016, 64, 5767–5772. [Google Scholar] [CrossRef]
- Guilherme, R.; Reboredo, F.; Guerra, M.; Ressurreição, S.; Alvarenga, N. Elemental Composition and Some Nutritional Parameters of Sweet Pepper from Organic and Conventional Agriculture. Plants 2020, 9, 863. [Google Scholar] [CrossRef] [PubMed]
Parameter | Control | Baobab | Incorporation of Baobab (w/w) | ||
---|---|---|---|---|---|
3% | 6% | 9% | |||
Moisture % (w/w) | 1.6 (0.0) e | 13.31 (0.4) d | 2.1 (0.0) c | 2.3 (0.0) b | 2.7 (0.1) a |
Ashes % (w/w) | 1.7 (0.0) c | 4.7 (0.1) a | 1.7 (0.0) c | 1.9 (0.1) b | 1.9 (0.0) b |
Protein % (w/w) | 5.2 (0.1) a | 2.27 (0.0) b | 4.9 (0.1) a | 4.8 (0.2) a | 5.0 (0.3) a |
Fat % (w/w) | 37.8 (0.2) a | 0.5 (0.02) b | 37.2 (0.8) a | 30.2 (9.1) a | 31.2 (5.2) a |
TPC (mg GAE/100 g) | 210.2 (48.8) a | 460.5 (88) b | 228.8 (39.6) a | 303.4 (38.5) a | 305.8 (24.0) a |
AA (mmol TE/100 g) | 1531 (285) b | 539.9 (161) c | 1676(242) ab | 2254 (209) a | 2297 (136) a |
Vitamin C (mg ascorbic acid/100 g) | <LQ | 288.9 (37.5) a | 9.8 (3.3) d | 30.8 (4.0) c | 49.7 (2.5) b |
Hardness (N) | 21.6 (0.2) | - | 22.8 (1.8) | 22.8 (1.5) | 21.6 (1.9) |
L* | 27.6 (0.2) | - | 27.9 (0.2) | 27.6 (0.2) | 28.1 (0.3) |
a* | 5.3 (0.2) b | - | 6.1 (0.1) a | 6.4 (0.3) a | 6.3 (0.1) a |
b* | 5.5 (0.2) b | - | 6.1 (0.1) ab | 6.3 (0.4) a | 6.1 (0.1) a |
WI | 27.2 (0.2) | - | 27.4 (0.2) | 27.1 (0.3) | 27.5 (0.3) |
Fatty Acid | Control | Incorporation of Baobab (w/w) | ||
---|---|---|---|---|
3% | 6% | 9% | ||
Lauric—C12 | 0.05 (0.01) | 0.07 (0.02) | 0.06 (0.03) | 0.08 (0.02) |
Mystiric—C14 | 0.29 (0.08) | 0.29 (0.11) | 0.27 (0.17) | 0.37 (0.11) |
Pentadecanoic—C15 | 0.05 (0.02) | 0.06 (0.02) | 0.06 (0.03) | 0.07 (0.02) |
Palmitic—C16 | 25.74 (1.37) | 24.90 (0.29) | 24.29 (0.16) | 24.34 (0.55) |
Palmitoleic—C16:1 (cis 9) | 0.31 (0.06) | 0.37 (0.06) | 0.39 (0.10) | 0.39 (0.08) |
Margaric—C17 | 0.55 (0.57) | 0.47 (0.31) | 0.42 (0.10) | 0.49 (0.05) |
Heptadecenoic—C17:1 (cis 10) | 0.03 (0.00) | 0.06 (0.03) | 0.06 (0.02) | 0.07 (0.03) |
Stearic—C18 | 34.72 (1.10) | 34.52 (0.38) | 35.09 (0.78) | 34.97 (0.68) |
Oleic—C18:1 (cis 9) | 31.68 (0.29) | 32.87 (0.43) | 33.00 (0.41) | 32.74 (0.81) |
Linoleic—C18:2 (cis 9,12) | 3.39 (0.38) | 3.28 (0.14) | 3.13 (0.06) | 3.17 (0.07) |
Linolenic—C18:3 (cis 9,12,15) | 0.23 (0.05) | 0.21 (0.01) | 0.21 (0.01) | 0.22 (0.02) |
Arachidic—C20 | 1.01 (0.12) | 0.97 (0.06) | 1.04 (0.07) | 0.96 (0.04) |
Gadoleic—C20:1 (cis 11) | 0.10 (0.04) ab | 0.03 (0.00) b | 0.21 (0.08) a | 0.23 (0.09) a |
SFA | 62.41 (0.04) | 61.28 (0.37) | 61.24 (0.58) | 61.27 (0.95) |
MUFA | 32.09 (0.37) | 33.26 (0.38) | 33.60 (0.52) | 33.36 (0.94) |
PUFA | 3.63 (0.41) | 3.49 (0.13) | 3.34 (0.05) | 3.38 (0.09) |
Mineral | Control | Baobab | Incorporation of Baobab (w/w) | ||
---|---|---|---|---|---|
3% | 6% | 9% | |||
Zn (mg/kg) | 21.50 (1.84) | <LQ | 18.79 (0.46) | 19.71 (1.52) | 18.09 (1.21) |
Ca (mg/kg) | 648.9 (78.1) d | 2937 (352) a | 828.7 (13.1) c | 927.0 (29.7) c | 1052 (11) b |
K (mg/kg) | 8058 (42) e | 40973 (340) a | 8693 (170) d | 9419 (222) c | 10175 (265) b |
P (mg/kg) | 667.9 (66.2) c | 9273 (179) a | 746.7 (39.7) bc | 766.5 (29.8) bc | 795.9 (38.2) b |
Cl (mg/kg) | 79.83 (11.35) e | 31997 (528) a | 152.7 (2.9) d | 193.5 (15.0) c | 235.4 (4.9) b |
S (mg/kg) | 988.2 (39.9) c | 1675 (324) a | 1140 (21) b | 1130 (29) b | 1158 (39) b |
Component | PC1 | PC2 |
---|---|---|
Antioxidant activity (AA) | −0.91 ** | 0.35 |
Total polyphenolic content (TPC) | −0.83 ** | 0.4 |
Ash | −0.91 ** | 0.05 |
Fat content | 0.67 * | −0.44 |
Vitamin C | −0.98 ** | −0.08 |
Ca | −0.93 ** | −0.28 |
K | −0.96 ** | −0.19 |
P | −0.66 * | −0.71 ** |
Eigenvalue | 6.01 | 1.10 |
% Variance | 75.07 | 13.74 |
% Cumulative variance | 75.07 | 88.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, S.; Dias, J.; Lourenço, V.; Partidário, A.; Lageiro, M.; Lampreia, C.; Fernandes, J.; Lidon, F.; Reboredo, F.; Alvarenga, N. Development of a Functional Dark Chocolate with Baobab Pulp. Foods 2023, 12, 1711. https://doi.org/10.3390/foods12081711
Monteiro S, Dias J, Lourenço V, Partidário A, Lageiro M, Lampreia C, Fernandes J, Lidon F, Reboredo F, Alvarenga N. Development of a Functional Dark Chocolate with Baobab Pulp. Foods. 2023; 12(8):1711. https://doi.org/10.3390/foods12081711
Chicago/Turabian StyleMonteiro, Sara, João Dias, Vanda Lourenço, Ana Partidário, Manuela Lageiro, Célia Lampreia, Jaime Fernandes, Fernando Lidon, Fernando Reboredo, and Nuno Alvarenga. 2023. "Development of a Functional Dark Chocolate with Baobab Pulp" Foods 12, no. 8: 1711. https://doi.org/10.3390/foods12081711
APA StyleMonteiro, S., Dias, J., Lourenço, V., Partidário, A., Lageiro, M., Lampreia, C., Fernandes, J., Lidon, F., Reboredo, F., & Alvarenga, N. (2023). Development of a Functional Dark Chocolate with Baobab Pulp. Foods, 12(8), 1711. https://doi.org/10.3390/foods12081711