Effect of Fermentation Humidity on Quality of Congou Black Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Sample Processing
2.2. Chemical Reagents
2.3. Sensory Evaluation
2.4. Chemical Composition Determination
2.5. DPPH Radical Scavenging Activity Assay
2.6. α-Amylase Inhibition Assay
2.7. α-Glucosidase Inhibition Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effects of Fermentation Humidity on Congou Black Tea Sensory Quality
3.2. Effects of Fermentation Humidity on Congou Black Tea Taste Composition
3.3. Effects of Fermentation Humidity on Congou Black Tea Volatile Compound Composition
3.4. Effects of Fermentation Humidity on Congou Black Tea Bioactivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Zhang, Y.; Zhang, M.; Yang, H.; Wang, Y. Consumption of coffee and tea with all-cause and cause-specific mortality: A prospective cohort study. BMC Med. 2022, 20, 449. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Liu, D.; Yang, L.; Hu, W.; Kuang, L.; Huang, Y.; Teng, J.; Liu, Y. Multi-omics and enzyme activity analysis of flavour substances formation: Major metabolic pathways alteration during Congou black tea processing. Food Chem. 2023, 403, 134263. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhu, Y.; Liu, Y.; Liu, Y.; Dong, C.; Lin, Z.; Teng, J. Black tea aroma formation during the fermentation period. Food Chem. 2022, 374, 131640. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.F.; Mohamad, N.E.; Alitheen, N.B. Fermented Black Tea and Its Relationship with Gut Microbiota and Obesity: A Mini Review. Fermentation 2022, 8, 603. [Google Scholar] [CrossRef]
- Qu, F.; Zeng, W.; Tong, X.; Feng, W.; Chen, Y.; Ni, D. The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. LWT 2020, 117, 108646. [Google Scholar] [CrossRef]
- Chen, L.; Liu, F.; Yang, Y.; Tu, Z.; Lin, J.; Ye, Y.; Xu, P. Oxygen-enriched fermentation improves the taste of black tea by reducing the bitter and astringent metabolites. Food Res. Int. 2021, 148, 110613. [Google Scholar] [CrossRef]
- Wang, H.; Shen, S.; Wang, J.; Jiang, Y.; Li, J.; Yang, Y.; Hua, J.; Yuan, H. Novel insight into the effect of fermentation time on quality of Yunnan Congou black tea. LWT 2022, 155, 112939. [Google Scholar] [CrossRef]
- Hua, J.; Wang, H.; Yuan, H.; Yin, P.; Wang, J.; Guo, G.; Jiang, Y. New insights into the effect of fermentation temperature and duration on catechins conversion and formation of tea pigments and theasinensins in black tea. J. Sci. Food Agric. 2022, 102, 2750–2760. [Google Scholar] [CrossRef]
- Vargas, R.; Vecchietti, A. Influence of raw material moisture on the synthesis of black tea production process. J. Food Eng. 2016, 173, 76–84. [Google Scholar] [CrossRef]
- Hossain, M.A.; Ahmed, T.; Hossain, M.S.; Dey, P.; Ahmed, S.; Hossain, M.M. Optimization of the factors affecting BT-2 black tea fermentation by observing their combined effects on the quality parameters of made tea using Response Surface Methodology (RSM). Heliyon 2022, 8, e08948. [Google Scholar] [CrossRef]
- Deka, H.; Pollov Sarmah, P.; Devi, A.; Tamuly, P.; Karak, T. Changes in major catechins, caffeine, and antioxidant activity during CTC processing of black tea from North East India. RSC Adv. 2021, 11, 11457–11467. [Google Scholar] [CrossRef] [PubMed]
- Ntezimana, B.; Li, Y.; He, C.; Yu, X.; Zhou, J.; Chen, Y.; Yu, Z.; Ni, D. Different Withering Times Affect Sensory Qualities, Chemical Components, and Nutritional Characteristics of Black Tea. Foods 2021, 10, 2627. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ren, Z.; Chen, Y.; Lu, C.; Deng, W.-W.; Zhang, Z.; Ning, J. Visualizing chemical indicators: Spatial and temporal quality formation and distribution during black tea fermentation. Food Chem. 2023, 401, 134090. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.S.; Tudela, J.A.; Marín, A.; Allende, A.; Gil, M.I. Short postharvest storage under low relative humidity improves quality and shelf life of minimally processed baby spinach (Spinacia oleracea L.). Postharvest Biol. Technol. 2012, 67, 1–9. [Google Scholar] [CrossRef]
- Wu, H.; Huang, W.; Chen, Z.; Chen, Z.; Shi, J.; Kong, Q.; Sun, S.; Jiang, X.; Chen, D.; Yan, S. GC–MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing. Food Res. Int. 2019, 120, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-H.; Ye, Y.; Yin, J.-F.; Jin, J.; Liang, Y.-R.; Liu, R.-Y.; Tang, P.; Xu, Y.-Q. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci. Technol. 2022, 123, 130–143. [Google Scholar] [CrossRef]
- Scharbert, S.; Hofmann, T. Molecular Definition of Black Tea Taste by Means of Quantitative Studies, Taste Reconstitution, and Omission Experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lo, C.-Y.; Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Black tea: Chemical analysis and stability. Food Funct. 2013, 4, 10–18. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, Z.; Lai, M.; Zhao, M.; Lin, B. Determination of optimum humidity for air-curing of cigar tobacco leaves during the browning period. Ind. Crops Prod. 2022, 183, 114939. [Google Scholar] [CrossRef]
- Shao, P.; Wu, W.; Chen, H.; Sun, P.; Gao, H. Bilayer edible films with tunable humidity regulating property for inhibiting browning of Agaricus bisporus. Food Res. Int. 2020, 138, 109795. [Google Scholar] [CrossRef]
- Sarpong, F.; Yu, X.; Zhou, C.; Hongpeng, Y.; Uzoejinwa, B.B.; Bai, J.; Wu, B.; Ma, H. Influence of anti-browning agent pretreatment on drying kinetics, enzymes inactivation and other qualities of dried banana (Musa ssp.) under relative humidity-convective air dryer. J. Food Meas. Charact. 2018, 12, 1229–1241. [Google Scholar] [CrossRef]
- Li, N.; Taylor, L.S.; Mauer, L.J. Degradation Kinetics of Catechins in Green Tea Powder: Effects of Temperature and Relative Humidity. J. Agric. Food Chem. 2011, 59, 6082–6090. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Lim, S.-W.; Cho, S.-H.; Choi, S.-G.; Heo, H.-J.; Lee, S.-C. Effect of Relative Humidity and Storage Temperature on the Quality of Green Tea Powder. J. Korean Soc. Food Sci. Nutr. 2009, 38, 83–88. [Google Scholar] [CrossRef]
- Dutta, R.; Stein, A.; Bhagat, R.M. Integrating satellite images and spectroscopy to measuring green and black tea quality. Food Chem. 2011, 127, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Xu, Q.; Yuan, H.; Wang, J.; Wu, Z.; Li, X.; Jiang, Y. Effects of novel fermentation method on the biochemical components change and quality formation of Congou black tea. J. Food Compos. Anal. 2021, 96, 103751. [Google Scholar] [CrossRef]
- Yu, P.; Huang, H.; Zhao, X.; Zhong, N.; Zheng, H. Dynamic variation of amino acid content during black tea processing: A review. Food Rev. Int. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, F.; Qin, L.; Zhang, N.; Cao, Q.; Schwab, W.; Li, D.; Song, C. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J. Food Compos. Anal. 2019, 77, 28–38. [Google Scholar] [CrossRef]
- Sarpong, F.; Jiang, H.; Oteng-Darko, P.; Zhou, C.; Amenorfe, L.P.; Mustapha, A.T.; Rashid, M.T. Mitigating effect of relative humidity (RH) on 2-furoylmethyl-Amino acid formation. LWT 2019, 101, 551–558. [Google Scholar] [CrossRef]
- Winters, A.L.; Minchin, F.R.; Michaelson-Yeates, T.P.T.; Lee, M.R.F.; Morris, P. Latent and Active Polyphenol Oxidase (PPO) in Red Clover (Trifolium pratense) and Use of a Low PPO Mutant To Study the Role of PPO in Proteolysis Reduction. J. Agric. Food Chem. 2008, 56, 2817–2824. [Google Scholar] [CrossRef]
- Zuo, X.; Cao, S.; Ji, N.; Li, Y.; Zhang, J.; Jin, P.; Zheng, Y. High relative humidity enhances chilling tolerance of zucchini fruit by regulating sugar and ethanol metabolisms during cold storage. Postharvest Biol. Technol. 2022, 189, 111932. [Google Scholar] [CrossRef]
- Li, N.; Chen, F.; Cui, F.; Sun, W.; Zhang, J.; Qian, L.; Yang, Y.; Wu, D.; Dong, Y.; Jiang, J.; et al. Improved postharvest quality and respiratory activity of straw mushroom (Volvariella volvacea) with ultrasound treatment and controlled relative humidity. Sci. Hortic. 2017, 225, 56–64. [Google Scholar] [CrossRef]
- Mao, A.; Su, H.; Fang, S.; Chen, X.; Ning, J.; Ho, C.; Wan, X. Effects of roasting treatment on non-volatile compounds and taste of green tea. Int. J. Food Sci. Technol. 2018, 53, 2586–2594. [Google Scholar] [CrossRef]
- Fu, M.; An, K.; Xu, Y.; Chen, Y.; Wu, J.; Yu, Y.; Zou, B.; Xiao, G.; Ti, H. Effects of different temperature and humidity on bioactive flavonoids and antioxidant activity in Pericarpium Citri Reticulata (Citrus reticulata ‘Chachi’). LWT 2018, 93, 167–173. [Google Scholar] [CrossRef]
- Shin, Y.; Ryu, J.-A.; Liu, R.H.; Nock, J.F.; Watkins, C.B. Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biol. Technol. 2008, 49, 201–209. [Google Scholar] [CrossRef]
- Lavelli, V.; Scarafoni, A. Effect of water activity on lycopene and flavonoid degradation in dehydrated tomato skins fortified with green tea extract. J. Food Eng. 2012, 110, 225–231. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Corke, H.; Zhu, H. Dynamic changes in flavonoids content during congou black tea processing. LWT 2022, 170, 114073. [Google Scholar] [CrossRef]
- Finger, A. In-vitro studies on the effect of polyphenol oxidase and peroxidase on the formation of polyphenolic black tea constituents. J. Sci. Food Agric. 1994, 66, 293–305. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, Q.; Chen, Z.; Zhang, J.; Chen, Q.; Wang, Y.; Wei, X. Distinct Changes of Metabolic Profile and Sensory Quality during Qingzhuan Tea Processing Revealed by LC-MS-Based Metabolomics. J. Agric. Food Chem. 2020, 68, 4955–4965. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Deng, Y.; Liu, Z.; Xie, J.; Shen, S.; Yuan, H.; Jiang, Y. Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis. LWT 2022, 153, 112496. [Google Scholar] [CrossRef]
- Xue, J.; Guo, G.; Liu, P.; Chen, L.; Wang, W.; Zhang, J.; Yin, J.; Ni, D.; Engelhardt, U.H.; Jiang, H. Identification of aroma-active compounds responsible for the floral and sweet odors of Congou black teas using gas chromatography-mass spectrometry/olfactometry, odor activity value, and chemometrics. J. Sci. Food Agric. 2022, 102, 5399–5410. [Google Scholar] [CrossRef]
- Zeng, L.; Xiao, Y.; Zhou, X.; Yu, J.; Jian, G.; Li, J.; Chen, J.; Tang, J.; Yang, Z. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chem. 2021, 345, 128752. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Lu, C.; Li, M.; Ye, Y.; Wei, X.; Tong, H. Identification of key aromatic compounds in Congou black tea by partial least-square regression with variable importance of projection scores and gas chromatography-mass spectrometry/gas chromatography-olfactometry. J. Sci. Food Agric. 2018, 98, 5278–5286. [Google Scholar] [CrossRef]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Chen, L.; Wang, Y. Effect of storage time on antioxidant activity and inhibition on α-Amylase and α-Glucosidase of white tea. Food Sci. Nutr. 2019, 7, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Villaño, D.; Fernández-Pachón, M.S.; Moyá, M.L.; Troncoso, A.M.; García-Parrilla, M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef]
- Sun, L.; Warren, F.J.; Gidley, M.J. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends Food Sci. Technol. 2019, 91, 262–273. [Google Scholar] [CrossRef]
- Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in Dietary Polyphenols as α-Glucosidases Inhibitors: A Review on Structure-Activity Relationship Aspect. Crit. Rev. Food Sci. Nutr. 2013, 53, 818–836. [Google Scholar] [CrossRef]
- He, H.-F. Research progress on theaflavins: Efficacy, formation, and preparation. Food Nutr. Res. 2017, 61, 1344521. [Google Scholar] [CrossRef]
- Triantis, T.M.; Yannakopoulou, E.; Nikokavoura, A.; Dimotikali, D.; Papadopoulos, K. Chemiluminescent studies on the antioxidant activity of amino acids. Anal. Chim. Acta 2007, 591, 106–111. [Google Scholar] [CrossRef]
- Jayaraj, S.; Suresh, S.; Kadeppagari, R.-K. Amylase inhibitors and their biomedical applications. Starch-Stärke 2013, 65, 535–542. [Google Scholar] [CrossRef]
- Siahbalaei, R.; Kavoosi, G.; Noroozi, M. Protein nutritional quality, amino acid profile, anti-amylase and anti-glucosidase properties of microalgae: Inhibition and mechanisms of action through in vitro and in silico studies. LWT 2021, 150, 112023. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, H.; Pan, X.; Orfila, C.; Lu, W.; Ma, Y. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein. Food Sci. Nutr. 2019, 7, 1848–1856. [Google Scholar] [CrossRef] [PubMed]
Samples | Appearance | Infusion Color | Aroma | Taste | Infused Leaf | Total Scores |
---|---|---|---|---|---|---|
(25%) | (10%) | (25%) | (30%) | (10%) | ||
RH55 | 78.2 ± 0.2 e | 84.8 ± 0.3 a | 73.8 ± 0.3 e | 72.1 ± 0.1 e | 80.1 ± 0.1 bc | 76.1 ± 0.1 e |
RH65 | 79.9 ± 0.1 d | 84.2 ± 0.3 a | 76 ± 0.2 d | 77 ± 0.2 d | 80 ± 0.2 c | 78.5 ± 0 d |
RH75 | 83.8 ± 0.2 c | 85 ± 0.9 a | 81.2 ± 0.3 c | 80.9 ± 0.1 c | 80.2 ± 0.1 ab | 82.1 ± 0.1 c |
RH85 | 85.1 ± 0.1 b | 84.5 ± 0.9 a | 83.9 ± 0.1 b | 83.9 ± 0.1 b | 80.2 ± 0.1 ab | 83.9 ± 0.1 b |
RH95 | 86 ± 0.2 a | 84.5 ± 0.5 a | 87 ± 0.2 a | 88 ± 0.2 a | 80.4 ± 0.1 a | 86.2 ± 0.1 a |
Substances | RH55 | RH65 | RH75 | RH85 | RH95 |
---|---|---|---|---|---|
Alcohols | 257.22 ± 5.34 a | 258.88 ± 6.44 a | 262.55 ± 6.16 a | 266.57 ± 16.09 a | 270.37 ± 5.33 a |
Alkanes & Alkenes | 12.64 ± 0.9 b | 12.97 ± 0.99 b | 16.95 ± 1.54 a | 15.79 ± 1.58 a | 15.67 ± 0.89 a |
Esters | 49.21 ± 1.29 a | 47.85 ± 1.72 a | 48.7 ± 3.28 a | 49.07 ± 2.43 a | 48.85 ± 2.12 a |
Aldehydes & Ketones | 93.45 ± 0.68 b | 91.6 ± 1.14 b | 94.99 ± 3.89 b | 95.2 ± 1.47 b | 98.99 ± 1.21 a |
Acids | 17.55 ± 1.45 c | 17.73 ± 0.19 c | 17.94 ± 1.63 bc | 19.91 ± 0.47 b | 22.33 ± 1.37 a |
Phenols | 5.17 ± 0.34 ab | 5.35 ± 0.11 a | 4.51 ± 0.25 c | 4.52 ± 0.19 c | 4.83 ± 0.15 bc |
Others | 1.65 ± 0.07 d | 1.87 ± 0.02 c | 4.46 ± 0.12 a | 3.71 ± 0.07 b | 3.81 ± 0.11 b |
Total | 436.88 ± 5.90 b | 436.25 ± 8.52 b | 450.11 ± 7.04 ab | 454.77 ± 20.71 ab | 464.84 ± 6.05 a |
Samples | DPPH | α-Amylase | α-Glucosidase |
---|---|---|---|
IC50 (μg/mL) | IC50 (mg/mL) | IC50 (μg/mL) | |
RH55 | 397.27 ± 6.53 c | 37 ± 1.17 c | 28.63 ± 1.7 c |
RH65 | 404.33 ± 9.87 bc | 36.73 ± 1.11 c | 27.38 ± 1.79 c |
RH75 | 413.03 ± 3.17 b | 47.91 ± 1.55 b | 33.65 ± 2.38 b |
RH85 | 431.6 ± 11.25 a | 55.19 ± 5.3 a | 33.54 ± 1.85 b |
RH95 | 437.07 ± 8.01 a | 57.81 ± 5.1 a | 38.36 ± 2.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Jiang, X.; Li, C.; Qiu, L.; Chen, Y.; Yu, Z.; Ni, D. Effect of Fermentation Humidity on Quality of Congou Black Tea. Foods 2023, 12, 1726. https://doi.org/10.3390/foods12081726
Zhang S, Jiang X, Li C, Qiu L, Chen Y, Yu Z, Ni D. Effect of Fermentation Humidity on Quality of Congou Black Tea. Foods. 2023; 12(8):1726. https://doi.org/10.3390/foods12081726
Chicago/Turabian StyleZhang, Sirui, Xinfeng Jiang, Chen Li, Li Qiu, Yuqiong Chen, Zhi Yu, and Dejiang Ni. 2023. "Effect of Fermentation Humidity on Quality of Congou Black Tea" Foods 12, no. 8: 1726. https://doi.org/10.3390/foods12081726
APA StyleZhang, S., Jiang, X., Li, C., Qiu, L., Chen, Y., Yu, Z., & Ni, D. (2023). Effect of Fermentation Humidity on Quality of Congou Black Tea. Foods, 12(8), 1726. https://doi.org/10.3390/foods12081726