Rapid and Simple Detection of Burkholderia gladioli in Food Matrices Using RPA-CRISPR/Cas12a Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. DNA Extraction
2.3. Screening of Primers and Establishment of RPA Amplification System
2.4. Optimization of CRISPR/Cas12a Detection System
2.5. RPA-CRISPR/Cas12a Detection Procedure
2.6. Specificity and Sensitivity of RPA-CRISPR/Cas12a
2.7. Real Food Sample Testing
2.8. Method Validation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimizing of RPA Amplification System
3.2. Establishment of RPA-CRISPR/Cas12a Method
3.3. Method Performance Determination
3.4. Application in Real Food Samples
3.5. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coenye, T.; Mahenthiralingam, E.; Henry, D.; LiPuma, J.J.; Laevens, S.; Gillis, M.; Speert, D.P.; Vandamme, P. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int. J. Syst. Evol. Microbiol. 2001, 51, 1481–1490. [Google Scholar] [CrossRef]
- Peeters, C.; Meier-Kolthoff, J.P.; Verheyde, B.; De Brandt, E.; Cooper, V.S.; Vandamme, P. Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front. Microbiol. 2016, 7, 877. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, M.; Wang, J.; Lai, W.; Yang, B.; Zhu, H.; Chen, Q. Identification of the pathogen in rice noodles in relation to food poisoning caused by bongkrekic acid in Guangdong Province. Chin. J. Food Hyg. 2019, 31, 394–398. [Google Scholar] [CrossRef]
- Zhao, L.; Lei, L.; Sun, J.; Liu, Y.; Cai, Z.; Yin, J. Etiology diagnosis of a food poisoning incident caused by bongkrekic acid. Chin. J. Food Hyg. 2022, 34, 606–610. [Google Scholar] [CrossRef]
- Keith, L.M.; Sewake, K.T.; Zee, F.T. Isolation and characterization of Burkholderia gladioli from orchids in Hawaii. Plant Dis. 2005, 89, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Coenye, T.; Vandamme, P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 2003, 5, 719–729. [Google Scholar] [CrossRef]
- Jiao, Z.Q.; Kawamura, Y.; Mishima, N.; Yang, R.F.; Li, N.; Liu, X.M.; Ezaki, T. Need to differentiate lethal toxin-producing strains of Burkholderia gladioli, which cause severe food poisoning: Description of B-gladioli pathovar cocovenenans and an emended description of B-gladioli. Microbiol. Immunol. 2003, 47, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Ojaghian, M.R.; Tao, Z.; Kakar, K.U.; Zeng, J.; Zhao, W.; Duan, Y.; Cruz, C.M.V.; Li, B.; Zhu, B.; et al. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice. J. Appl. Microbiol. 2016, 120, 1357–1367. [Google Scholar] [CrossRef]
- Vandamme, P.; Dawyndt, P. Classification and identification of the Burkholderia cepacia complex: Past, present and future. Syst. Appl. Microbiol. 2011, 34, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Park, H.J.; Jeong, A.R.; Han, S.W.; Park, C.J. Isolation and identification of Burkholderia gladioli on Cymbidium orchids in Korea. Biotechnol. Biotechnol. Equip. 2017, 31, 280–288. [Google Scholar] [CrossRef]
- Peng, P.; Jing, X.; Ye, X.; Zhu, X. The harm and prevention of Burkholderia galdioli pathovar cocovenenans. Bull. Biol. 2021, 56, 1–3. [Google Scholar]
- Li, F.; Huang, Y.; Lei, L.; Ma, R.; Duan, X.; Cui, B. The Contamination and Detection Methods of Pseudomonas cocovenenans subsp. in Food. Guangdong Chem. Ind. 2021, 48, 145–146. [Google Scholar]
- Peng, Z.; Chen, X.; Li, M.; Wang, W.; Xu, J.; Li, F. Analyzing the virulence factor biosynthesis genes of a foodborne pathogen Burkholderia gladioli pv. cocovenenans strain Co14. Chin. J. Food Hyg. 2018, 30, 558–562. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, Y.; Huang, X.; Zhao, Z.; Chen, W.; You, Z.; Zhang, F.; Chen, R.; Lin, T.; Chen, J. Investigation on Contamination of Pseudomonas cocovenenans subsp. Farinofermentans and Risk Control of Wet Rice Noodle Production. J. Chin. Cereals Oils Assoc. 2022, 37, 203–211. [Google Scholar]
- Li, X.; Yang, Z.; Guo, Z.; Zhou, H.; Fan, L.; Li, Y. Isolation and identification of Pseudomonas cocovenenans subsp. Farino fermentans from food poisoning accident. Chin. J. Food Hyg. 2016, 28, 36–39. [Google Scholar] [CrossRef]
- Wang, T.; Lei, Y.; Zhou, L.; Zeng, X. Recent advances on Burkholderia galdioli (Pseudomonas cocovenenans subsp. farinofermentans). Food Mach. 2021, 37, 194–202. [Google Scholar] [CrossRef]
- Kuang, W.G.; Luo, L.X.; Gao, W.N.; Lei, Y.H.; Lv, Q.Y.; Li, J.Q. Development of a Real-time Fluorescence Loop-mediated Isothermal Amplification Assay for Detection of Burkholderia gladioli pv. alliicola. J. Phytopathol. 2017, 165, 82–90. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Chen, G.; Huang, J.; Wang, Y.; Li, B.; Yang, G. Developing a Novel Method Detecting Burkholderia Gladioli pv. cocovenenans by Real-Time Fluorescent PCR. Food Sci. Technol. 2022, 47, 330–335. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Wang, Y.; Liu, Z.; Wang, X.; Zhang, W. Rapid detection of Pseudomonas cocovenenans by loop-mediated isothermal amplification. Sci. Technol. Food Ind. 2013, 34, 321–324. [Google Scholar] [CrossRef]
- van Pelt, C.; Verduin, C.M.; Goessens, W.H.; Vos, M.C.; Tummler, B.; Segonds, C.; Reubsaet, F.; Verbrugh, H.; van Belkum, A. Identification of Burkholderia spp. in the clinical microbiology laboratory: Comparison of conventional and molecular methods. J. Clin. Microbiol. 1999, 37, 2158–2164. [Google Scholar] [CrossRef]
- Weber, C.F.; King, G.M. The phylogenetic distribution and ecological role of carbon monoxide oxidation in the genus Burkholderia. Fems Microbiol. Ecol. 2012, 79, 167–175. [Google Scholar] [CrossRef] [PubMed]
- LiPuma, J.J.; Dulaney, B.J.; McMenamin, J.D.; Whitby, P.W.; Stull, T.L.; Coenye, T.; Vandamme, P. Development of rRNA-based PCR assays for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J. Clin. Microbiol. 1999, 37, 3167–3170. [Google Scholar] [CrossRef]
- Martinucci, M.; Roscetto, E.; Iula, V.D.; Votsi, A.; Catania, M.R.; De Gregorio, E. Accurate identification of members of the Burkholderia cepacia complex in cystic fibrosis sputum. Lett. Appl. Microbiol. 2016, 62, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Whitby, P.W.; Pope, L.C.; Carter, K.B.; LiPuma, J.J.; Stull, T.L. Species-specific PCR as a tool for the identification of Burkholderia gladioli. J. Clin. Microbiol. 2000, 38, 282–285. [Google Scholar] [CrossRef]
- Corrêa, D.B.A.; Ferreira, M.; Balani, D.M.; Rodrigues Neto, J.; Destéfano, S.A.L. Evaluation of 16S-23S rDNA spacer region as a molecular marker to differentiation of Acidovorax avenae subsp. cattleyae and Burkholderia gladioli pv. gladioli pathogenic to orchids. Arq. Inst. Biol. 2007, 74, 233–238. [Google Scholar] [CrossRef]
- Lin, J.; Fang, C.; Lu, J.; Yin, D.; Zhao, Q.; Wang, Q. Detection of Pseudomonas cocovenenans subsp. farinofermentans by fluorescence real-time PCR method. J. Food Saf. Qual. 2020, 11, 3538–3544. [Google Scholar] [CrossRef]
- Kasture, A.; Krishnamurthy, R. Identification of leaf spot causative organisms in Acorus calamus from South Gujarat of India using biochemical and molecular techniques. Eur. J. Plant Pathol. 2015, 142, 263–268. [Google Scholar] [CrossRef]
- Schmoock, G.; Ehricht, R.; Melzer, F.; Rassbach, A.; Scholz, H.C.; Neubauer, H.; Sachse, K.; Mota, R.A.; Saqib, M.; Elschner, M. DNA microarray-based detection and identification of Burkholderia mallei, Burkholderia pseudomallei and Burkholderia spp. Mol. Cell. Probes 2009, 23, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Luo, J.; Chen, L.; Ahmed, T.; Alotaibi, S.S.; Wang, Y.; Sun, G.; Li, B.; An, Q. Development of Droplet Digital PCR Assay for Detection of Seed-Borne Burkholderia glumae and B. gladioli Causing Bacterial Panicle Blight Disease of Rice. Microorganisms 2022, 10, 1223. [Google Scholar] [CrossRef]
- Plongla, R.; Panagea, T.; Pincus, D.H.; Jones, M.C.; Gilligan, P.H. Identification of Burkholderia and Uncommon Glucose-Nonfermenting Gram-Negative Bacilli Isolated from Patients with Cystic Fibrosis by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). J. Clin. Microbiol. 2016, 54, 3071–3072. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.L.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.B.; Jiang, W.Y.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef]
- Mali, P.; Yang, L.H.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-Guided Human Genome Engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.Q.; Zhou, X.M.; Wang, H.Y.; Xing, D. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection. Anal. Chem. 2018, 90, 2193–2200. [Google Scholar] [CrossRef]
- Lee, S.H.; Yu, J.; Hwang, G.H.; Kim, S.; Kim, H.S.; Ye, S.; Kim, K.; Park, J.; Park, D.Y.; Cho, Y.K.; et al. CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene 2017, 36, 6823–6829. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.B.; Harrington, L.B.; Da Costa, M.; Tian, X.R.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Cheng, Q.X.; Wang, J.M.; Li, X.Y.; Zhang, Z.L.; Gao, S.; Cao, R.B.; Zhao, G.P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef]
- Du, Y.C.; Wang, S.Y.; Wang, Y.X.; Ma, J.Y.; Wang, D.X.; Tang, A.N.; Kong, D.M. Terminal deoxynucleotidyl transferase combined CRISPR-Cas12a amplification strategy for ultrasensitive detection of uracil-DNA glycosylase with zero background. Biosens. Bioelectron. 2021, 171, 112734. [Google Scholar] [CrossRef]
- Li, H.L.; Xing, S.; Xu, J.H.; He, Y.; Lai, Y.Z.; Wang, Y.; Zhang, G.; Guo, S.H.; Deng, M.; Zeng, M.S.; et al. Aptamer-based CRISPR/Cas12a assay for the ultrasensitive detection of extracellular vesicle proteins. Talanta 2021, 221, 121670. [Google Scholar] [CrossRef]
- Ding, X.; Yin, K.; Li, Z.Y.; Lalla, R.V.; Ballesteros, E.; Sfeir, M.M.; Liu, C.C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat. Commun. 2020, 11, 4711. [Google Scholar] [CrossRef]
- He, Q.; Yu, D.M.; Bao, M.D.; Korensky, G.; Chen, J.H.; Shin, M.Y.; Kim, J.W.; Park, M.; Qin, P.W.; Du, K. High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system. Biosens. Bioelectron. 2020, 154, 112068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Zhang, Y.; Xie, K.B. Evaluation of CRISPR/Cas12a-based DNA detection for fast pathogen diagnosis and GMO test in rice. Mol. Breed. 2020, 40, 11. [Google Scholar] [CrossRef]
- Jiao, Z.; Cao, W.; Yu, D.; Liu, X.; Wang, X. Study on Comparison of 16S~23S rRNA Gene ISR Sequence of Pseudomonas cocovenenans subsp. farinofermentans Strains and Burkholderia gladioli Strains. Chin. J. Food Hyg. 2008, 20, 197–203. [Google Scholar] [CrossRef]
- GB 4789.2-2016; National Food Safety Standardfood Microbiological Examination: Aerobic Plate Count. State Food and Drug Administration, National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016; p. 12.
- Kim, H.K.; Song, M.; Lee, J.; Menon, A.V.; Jung, S.; Kang, Y.M.; Choi, J.W.; Woo, E.; Koh, H.C.; Nam, J.W.; et al. In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat. Methods 2017, 14, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Jirawannaporn, S.; Limothai, U.; Tachaboon, S.; Dinhuzen, J.; Kiatamornrak, P.; Chaisuriyong, W.; Bhumitrakul, J.; Mayuramart, O.; Payungporn, S.; Srisawat, N. Rapid and sensitive point-of-care detection of Leptospira by RPA-CRISPR/Cas12a targeting lipL32. PLoS Negl. Trop. Dis. 2022, 16, e0010112. [Google Scholar] [CrossRef]
- Li, X.P.; Manz, A. Precise definition of starting time by capillary-based chemical initiation of digital isothermal DNA amplification. Sens. Actuators B-Chem. 2019, 288, 678–682. [Google Scholar] [CrossRef]
- Wilson, I.G. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 1997, 63, 3741–3751. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. Plants 2021, 10, 2424. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Liu, L.; Li, X.; Xu, Z.; Gai, Z.; Zhang, X.; Lei, H.; Shen, X. Rapid and Simple Detection of Burkholderia gladioli in Food Matrices Using RPA-CRISPR/Cas12a Method. Foods 2023, 12, 1760. https://doi.org/10.3390/foods12091760
Zheng J, Liu L, Li X, Xu Z, Gai Z, Zhang X, Lei H, Shen X. Rapid and Simple Detection of Burkholderia gladioli in Food Matrices Using RPA-CRISPR/Cas12a Method. Foods. 2023; 12(9):1760. https://doi.org/10.3390/foods12091760
Chicago/Turabian StyleZheng, Jiale, Li Liu, Xiangmei Li, Zhenlin Xu, Zuoqi Gai, Xu Zhang, Hongtao Lei, and Xing Shen. 2023. "Rapid and Simple Detection of Burkholderia gladioli in Food Matrices Using RPA-CRISPR/Cas12a Method" Foods 12, no. 9: 1760. https://doi.org/10.3390/foods12091760
APA StyleZheng, J., Liu, L., Li, X., Xu, Z., Gai, Z., Zhang, X., Lei, H., & Shen, X. (2023). Rapid and Simple Detection of Burkholderia gladioli in Food Matrices Using RPA-CRISPR/Cas12a Method. Foods, 12(9), 1760. https://doi.org/10.3390/foods12091760