Yolk Fatty Acid Content, Lipid Health Indices, and Oxidative Stability in Eggs of Slow-Growing Sasso Chickens Fed on Flaxseed Supplemented with Plant Polyphenol Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Diets, and Birds
2.2. Chemicals and Materials
2.3. Antioxidant Capacity of Plant Polyphenol Extracts (PPEs) and Diets
2.4. Egg Sample Collection and Processing
2.5. Fatty Acid Analysis
2.5.1. Lipid Extraction and Transesterification of Raw and Cooked Egg Yolks
2.5.2. Gas Chromatography Analysis
2.6. Analysis of Oxidative Stability in Egg Yolks
2.7. Calculating Lipid Health Indices
2.8. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Content in Raw Egg Yolks
3.2. Fatty Acid Content in Cooked Egg Yolks
3.3. Lipid Health Indices in Cooked and Raw Egg Yolks
3.4. Oxidative Stability in Egg Yolks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harcombe, Z. US dietary guidelines: Is saturated fat a nutrient of concern? Br. J. Sports Med. 2019, 53, 1393–1396. [Google Scholar] [CrossRef]
- Sapp, P.A.; Petersen, K.S.; Kris-Etherton, P.M. Dietary Fat: The Good, the Bad, and What Is Best? In BT—Nutrition Guide for Physicians and Related Healthcare Professions; Wilson, T., Temple, N.J., Bray, G.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 309–318. ISBN 978-3-030-82515-7. [Google Scholar]
- Surai, P.F.; Sparks, N.H.C. Designer eggs: From improvement of egg composition to functional food. Trends Food Sci. Technol. 2001, 12, 7–16. [Google Scholar] [CrossRef]
- Hamilton, H.A.; Newton, R.; Auchterlonie, N.A.; Müller, D.B. Systems approach to quantify the global omega-3 fatty acid cycle. Nat. Food 2020, 1, 59–62. [Google Scholar] [CrossRef]
- Skulas-Ray, A.C.; Wilson, P.W.F.; Harris, W.S.; Brinton, E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.B.; Miller, M.; Robinson, J.G.; et al. Omega-3 fatty acids for the management of hypertriglyceridemia: A science advisory from the American Heart Association. Circulation 2019, 140, e673–e691. [Google Scholar] [CrossRef]
- Winkler, J.T. The Most Hidden of All the Hidden Hungers: The Global Deficiency in DHA and EPA and What to do About It. In World Review of Nutrition and Dietetics; Karger: Basel, Switzerland, 2017; Volume 118, pp. 123–130. ISBN 0084-2230. [Google Scholar]
- Chen, X.; Liang, K.; Zhu, H. Effects of cooking on the nutritional quality and volatile compounds in omega-3 fatty acids enriched eggs. J. Sci. Food Agric. 2022, 102, 3703–3711. [Google Scholar] [CrossRef]
- Moghadam, M.H.B.; Rezaei, M.; Behgar, M.; Kermanshahi, H. Effects of Irradiated Flaxseed on Performance, Carcass Characteristics, Blood Parameters, and Nutrient Digestibility in Broiler Chickens. Poult. Sci. J. 2017, 5, 153–163. [Google Scholar] [CrossRef]
- Fraeye, I.; Bruneel, C.; Lemahieu, C.; Buyse, J.; Muylaert, K.; Foubert, I. Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Res. Int. 2012, 48, 961–969. [Google Scholar] [CrossRef]
- Shinn, S.E.; Proctor, A.; Baum, J.I. Egg Yolk as Means for Providing Essential and Beneficial Fatty Acids. J. Am. Oil Chem. Soc. 2018, 95, 5–11. [Google Scholar] [CrossRef]
- Panaite, T.D.; Nour, V.; Saracila, M.; Turcu, R.P.; Untea, A.E.; Vlaicu, P.A. Effects of Linseed Meal and Carotenoids from Different Sources on Egg Characteristics, Yolk Fatty Acid and Carotenoid Profile and Lipid Peroxidation. Foods 2021, 10, 1246. [Google Scholar] [CrossRef]
- Al-Nasser, A.Y.; Al-saffar, A.E.; Abdullah, F.K. Effect of Adding Flaxseed in the Diet of Laying Hens on Both Production of Omega-3 Enriched Eggs and on Production Performance. Int. J. Poult. Sci. 2011, 10, 825–831. [Google Scholar] [CrossRef]
- Coorey, R.; Novinda, A.; Williams, H.; Jayasena, V. Omega-3 Fatty Acid Profile of Eggs from Laying Hens Fed Diets Supplemented with Chia, Fish Oil, and Flaxseed. J. Food Sci. 2015, 80, S180–S187. [Google Scholar] [CrossRef] [PubMed]
- Keum, M.-C.; An, B.-K.; Shin, K.-H.; Lee, K.-W. Influence of dietary fat sources and conjugated fatty acid on egg quality, yolk cholesterol, and yolk fatty acid composition of laying hens. Rev. Bras. Zootec. 2018, 47. [Google Scholar] [CrossRef]
- Kavtarashvili, A.S.; Stefanova, I.L.; Svitkin, V.S.; Novotorov, E.N. The ration recipes developed to improve effective and safe biofortification of hen (Gallus gallus L.) eggs. Agric. Biol. 2018, 53, 787–798. [Google Scholar] [CrossRef]
- Carrillo, S.; López, E.; Casas, M.M.; Avila, E.; Castillo, R.M.; Carranco, M.E.; Calvo, C.; Pérez-Gil, F. Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. In Nineteenth International Seaweed Symposium; Springer: Berlin/Heidelberg, Germany, 2008; pp. 271–278. [Google Scholar]
- Lee, S.H.; Kim, Y.B.; Kim, D.-H.; Lee, D.-W.; Lee, H.-G.; Jha, R.; Lee, K.-W. Dietary soluble flaxseed oils as a source of omega-3 polyunsaturated fatty acids for laying hens. Poult. Sci. 2021, 100, 101276. [Google Scholar] [CrossRef]
- Du, Q.; Zhou, L.; Li, M.; Lyu, F.; Liu, J.; Ding, Y. Omega-3 polyunsaturated fatty acid encapsulation system: Physical and oxidative stability, and medical applications. Food Front. 2022, 3, 239–255. [Google Scholar] [CrossRef]
- Hrebień-Filisińska, A. Application of natural antioxidants in the oxidative stabilization of fish oils: A mini-review. J. Food Process. Preserv. 2021, 45, e15342. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef]
- Njembe, M.N.; Dormal, E.; Gardin, C.; Mignolet, E.; Debier, C.; Larondelle, Y. Effect of the dietary combination of flaxseed and Ricinodendron heudelotii or Punica granatum seed oil on the fatty acid profile of eggs. Food Chem. 2021, 344, 128668. [Google Scholar] [CrossRef]
- Wen, C.; Gu, Y.; Tao, Z.; Cheng, Z.; Wang, T.; Zhou, Y. Effects of Ginger Extract on Laying Performance, Egg Quality, and Antioxidant Status of Laying Hens. Animals 2019, 9, 857. [Google Scholar] [CrossRef]
- Gladine, C.; Morand, C.; Rock, E.; Bauchart, D.; Durand, D. Plant extracts rich in polyphenols (PERP) are efficient antioxidants to prevent lipoperoxidation in plasma lipids from animals fed n−3 PUFA supplemented diets. Anim. Feed Sci. Technol. 2007, 136, 281–296. [Google Scholar] [CrossRef]
- Untea, A.E.; Varzaru, I.; Panaite, T.D.; Gavris, T.; Lupu, A.; Ropota, M. The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals 2020, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Chiorcea-Paquim, A.M.; Enache, T.A.; De Souza Gil, E.; Oliveira-Brett, A.M. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1680–1726. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Song, Z.; Nawaz, M.H.; Dai, M.; Han, D.; Han, L.; Fan, Y.; Xu, J.; Han, D.; Niu, L. MoS2/ZnO-Heterostructures-Based Label-Free, Visible-Light-Excited Photoelectrochemical Sensor for Sensitive and Selective Determination of Synthetic Antioxidant Propyl Gallate. Anal. Chem. 2019, 91, 10657–10662. [Google Scholar] [CrossRef]
- Zanu, H.K.; Asiedu, P.; Tampuori, M.; Abada, M.; Asante, I. Possibilities of using Moringa (Moringa oleifera) leaf meal as a partial substitute for fishmeal in broiler chickens diets. Online J. Anim. Feed Res. 2012, 2, 70–75. [Google Scholar]
- Onyimonyi, A.E.; Onu, E. An assessment of pawpaw leaf meal as protein ingredient for finishing broiler. Int. J. Poult. Sci. 2009, 8, 995–998. [Google Scholar] [CrossRef]
- Khattak, F.M.; Pasha, T.N.; Hayat, Z.; Mahmud, A. Enzymes in poultry nutrition. J. Anim. Pl. Sci 2006, 16, 1–7. [Google Scholar]
- Ojha, B.K.; Singh, P.K.; Shrivastava, N. Enzymes in the animal feed industry. In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 93–109. [Google Scholar]
- Alzueta, C.; RodrÍguez, M.L.; Cutuli, M.T.; RebolÉ, A.; Ortiz, L.T.; Centeno, C.; TreviÑo, J. Effect of whole and demucilaged linseed in broiler chicken diets on digesta viscosity, nutrient utilisation and intestinal microflora. Br. Poult. Sci. 2003, 44, 67–74. [Google Scholar] [CrossRef]
- Wu, A.; Noble, E.E.; Tyagi, E.; Ying, Z.; Zhuang, Y.; Gomez-Pinilla, F. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. BBA Mol. Basis Dis. 2015, 1852, 951–961. [Google Scholar] [CrossRef]
- Sugasini, D.; Lokesh, B.R. Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats. Prostaglandins, Leukot. Essent. Fat. Acids 2017, 119, 45–52. [Google Scholar] [CrossRef]
- Kumar, F.; Tyagi, P.K.P.K.; Mir, N.A.; Dev, K.; Begum, J.; Biswas, A.A.K.; Sheikh, S.A.; Tyagi, P.K.P.K.; Sharma, D.; Sahu, B.; et al. Dietary flaxseed and turmeric is a novel strategy to enrich chicken meat with long chain ω-3 polyunsaturated fatty acids with better oxidative stability and functional properties. Food Chem. 2020, 305, 125458. [Google Scholar] [CrossRef]
- Romero, C.; Arija, I.; Viveros, A.; Chamorro, S. Productive Performance, Egg Quality and Yolk Lipid Oxidation in Laying Hens Fed Diets including Grape Pomace or Grape Extract. Animals 2022, 12, 1076. [Google Scholar] [CrossRef] [PubMed]
- Bantie, L.; Assefa, S.; Teklehaimanot, T.; Engidawork, E. In vivo antimalarial activity of the crude leaf extract and solvent fractions of Croton macrostachyus Hocsht. (Euphorbiaceae) against Plasmodium berghei in mice. BMC Complement. Altern. Med. 2014, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Amelo, W.; Nagpal, P.; Makonnen, E. Antiplasmodial activity of solvent fractions of methanolic root extract of Dodonaea angustifolia in Plasmodium berghei infected mice. BMC Complement. Altern. Med. 2014, 14, 462. [Google Scholar] [CrossRef] [PubMed]
- Tauchen, J.; Doskocil, I.; Caffi, C.; Lulekal, E.; Marsik, P.; Havlik, J.; Van Damme, P.; Kokoska, L. In vitro antioxidant and anti-proliferative activity of Ethiopian medicinal plant extracts. Ind. Crops Prod. 2015, 74, 671–679. [Google Scholar] [CrossRef]
- Yikna, B.B.; Yehualashet, A.S. Medicinal Plant Extracts Evaluated In Vitro and In Vivo for Antidiabetic Activities in Ethiopia: Bases for Future Clinical Trials and Related Investigations. Evidence-Based Complement. Altern. Med. 2021, 2021, 9108499. [Google Scholar] [CrossRef]
- Deyno, S.; Eneyew, K.; Seyfe, S.; Wondim, E. Efficacy, safety and phytochemistry of medicinal plants used for the management of diabetes mellitus in Ethiopia: A systematic review. Clin. Phytosci. 2021, 7, 16. [Google Scholar] [CrossRef]
- Sasikumar, J.M.; Erba, O.; Egigu, M.C. In vitro antioxidant activity and polyphenolic content of commonly used spices from Ethiopia. Heliyon 2020, 6, e05027. [Google Scholar] [CrossRef]
- Kebede, B.H.; Forsido, S.F.; Tola, Y.B.; Astatkie, T. Free radical scavenging capacity, antibacterial activity and essential oil composition of turmeric (Curcuma domestica) varieties grown in Ethiopia. Heliyon 2021, 7, e06239. [Google Scholar] [CrossRef]
- Aguillón-Páez, Y.J.; Romero, L.A.; Diaz, G.J. Effect of full-fat sunflower or flaxseed seeds dietary inclusion on performance, egg yolk fatty acid profile and egg quality in laying hens. Anim. Nutr. 2020, 6, 179–184. [Google Scholar] [CrossRef]
- Hang, T.T.T.; Molee, W.; Khempaka, S. Linseed oil or tuna oil supplementation in slow-growing chicken diets: Can their meat reach the threshold of a “high in n-3 polyunsaturated fatty acids” product? J. Appl. Poult. Res. 2018, 27, 389–400. [Google Scholar] [CrossRef]
- Mancinelli, A.C.; Silletti, E.; Mattioli, S.; Bosco, A.D.; Sebastiani, B.; Menchetti, L.; Koot, A.; Van Ruth, S.; Castellini, C. Fatty acid profile, oxidative status, and content of volatile organic compounds in raw and cooked meat of different chicken strains. Poult. Sci. 2019, 100, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, D.; Retta, N.; Girma, M.; Ndiwa, N.; Dessie, T.; Hanotte, O.; Getachew, P.; Dannenberger, D.; Maak, S. In Vitro Antioxidant Activities of Plant Polyphenol Extracts and Their Combined Effect with Flaxseed on Raw and Cooked Breast Muscle Fatty Acid Content, Lipid Health Indices and Oxidative Stability in Slow-Growing Sasso Chickens. Foods 2022, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- FGS, Farmer’s guide to SASSO dual purpose chicken. In Hendrix Poultry Genetics; FGS: La Plata, MD, USA, 2018; pp. 1–8.
- Desta, K.T.; Kim, G.S.; El-Aty, A.A.; Raha, S.; Kim, M.-B.; Jeong, J.H.; Warda, M.; Hacımüftüoğlu, A.; Shin, H.-C.; Shim, J.-H.; et al. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC–ESI–MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1053, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Zia, K.M.; Zuber, M.; Salman, M.; Anjum, M.N. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review. Int. J. Biol. Macromol. 2015, 81, 877–890. [Google Scholar] [CrossRef] [PubMed]
- Nimalaratne, C.; Schieber, A.; Wu, J. Effects of storage and cooking on the antioxidant capacity of laying hen eggs. Food Chem. 2016, 194, 111–116. [Google Scholar] [CrossRef]
- Tönißen, K.; Pfuhl, R.; Franz, G.P.; Dannenberger, D.; Bochert, R.; Grunow, B. Impact of spawning season on fillet quality of wild pikeperch (Sander lucioperca). Eur. Food Res. Technol. 2022, 248, 1277–1285. [Google Scholar] [CrossRef]
- Kalbe, C.; Priepke, A.; Nürnberg, G.; Dannenberger, D. Effects of long-term microalgae supplementation on muscle microstructure, meat quality and fatty acid composition in growing pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 574–582. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty acid and cholesterol profiles and hypocholesterolemic, atherogenic, and thrombogenic indices of table eggs in the retail market. Lipids Health Dis. 2015, 14, 1–8. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 March 2023).
- RStudio Team: RStudio. Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2021. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Packag. 2022, 1, 3. [Google Scholar]
- Sosin, E.; Borowiec, F.; Strzetelski, J.; Smulikowska, S. The effect of feeding regular or low α-linolenic acid linseed on the fatty acid composition of egg yolks. J. Anim. Feed Sci. 2006, 15, 641–650. [Google Scholar] [CrossRef]
- Grčević, M.; Kralik, Z.; Kralik, G.; Galović, O. Effects of dietary marigold extract on lutein content, yolk color and fatty acid profile of omega-3 eggs. J. Sci. Food Agric. 2019, 99, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Gurbuz, Y.; Salih, Y.G. Influence of sumac (Rhus Coriaria L.) and ginger (Zingiber officinale) on egg yolk fatty acid, cholesterol and blood parameters in laying hens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1316–1323. [Google Scholar] [CrossRef]
- Szymczyk, B.; Pisulewski, P.M. Effects of dietary conjugated linoleic acid isomers and vitamin E on fatty acid composition and cholesterol content of hen egg yolks. J. Anim. Feed. Sci. 2005, 14, 109–123. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Untea, A.E.; Turcu, R.P.; Panaite, T.D.; Saracila, M. Rosehip (Rosa canina L.) Meal as a Natural Antioxidant on Lipid and Protein Quality and Shelf-Life of Polyunsaturated Fatty Acids Enriched Eggs. Antioxidants 2022, 11, 1948. [Google Scholar] [CrossRef]
- Christiansen, E.N.; Lund, J.S.; Rørtveit, T.; Rustan, A.C. Effect of dietary n-3 and n-6 fatty acids on fatty acid desaturation in rat liver. Biochim. Biophys. Acta 1991, 1082, 57–62. [Google Scholar] [CrossRef]
- Huang, S.; Baurhoo, B.; Baurhoo, B.; Baurhoo, B.; Mustafa, A.; Mustafa, A.; Mustafa, A.F. Effects of extruded flaxseed on layer performance, nutrient retention and yolk fatty acid composition. Br. Poult. Sci. 2018, 59, 463–469. [Google Scholar] [CrossRef]
- Van Elswyk, M.E. Comparison of n–3 fatty acid sources in laying hen rations for improvement of whole egg nutritional quality: A review. Br. J. Nutr. 1997, 78, S61–S69. [Google Scholar] [CrossRef]
- Vakili, R.; Heravi, R.M. Performance and egg quality of laying hens fed diets supplemented with herbal extracts and flaxseed. Poult. Sci. J. 2016, 4, 107–116. [Google Scholar]
- Botsoglou, E.; Govaris, A.; Fletouris, D.; Iliadis, S. Olive leaves (Olea europea L.) and α-tocopheryl acetate as feed antioxidants for improving the oxidative stability of α-linolenic acid-enriched eggs. J. Anim. Physiol. Anim. Nutr. 2013, 97, 740–753. [Google Scholar] [CrossRef]
- Shahid, M.S.; Zhou, S.; Nie, W.; Wang, L.; Lv, H.; Yuan, J. Phytogenic Antioxidants Prolong n-3 Fatty Acid-Enriched Eggs’ Shelf Life by Activating the Nrf-2 Pathway through Phosphorylation of MAPK. Foods 2022, 11, 3158. [Google Scholar] [CrossRef]
- Shetty, S.S.; Shetty, P.K. ω-6/ω-3 fatty acid ratio as an essential predictive biomarker in the management of type 2 diabetes mellitus. Nutrition 2020, 79, 110968. [Google Scholar] [CrossRef] [PubMed]
- Kralik, G.; Kralik, Z.; Grčević, M.; Hanžek, D. Qualitative characteristics of fatty acid profile in fresh and boiled n-3 PUFA enriched eggs. J. Cent. Eur. Agric. 2019, 20, 802–808. [Google Scholar] [CrossRef]
- Kirubakaran, A.; Narahari, D.; Valavan, T.E.; Kumar, A.S. Effects of flaxseed, sardines, pearl millet, and holy basil leaves on production traits of layers and fatty acid composition of egg yolks. Poult. Sci. 2011, 90, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Galobart, J.; Barroeta, A.C.; Baucells, M.D.; Guardiola, F. Lipid Oxidation in Fresh and Spray-Dried Eggs Enriched with ω 3 and ω 6 Polyunsaturated Fatty Acids During Storage as Affected by Dietary Vitamin E and Canthaxanthin Supplementation Animals and Diets. Poult. Sci. 2001, 80, 327–337. [Google Scholar] [CrossRef]
- Meluzzi, A.; Sirri, F.; Manfreda, G.; Tallarico, N.; Franchini, A. Effects of Dietary Vitamin E on the Quality of Table Eggs Enriched with n-3 Long-Chain Fatty Acids. Poult. Sci. 2000, 79, 539–545. [Google Scholar] [CrossRef]
- Galobart, J.; Barroeta, A.C.; Baucells, M.D.; Cortinas, L.; Guardiola, F. α-Tocopherol transfer efficiency and lipid oxidation in fresh and spray-dried eggs enriched with ω3-polyunsaturated fatty acids. Poult. Sci. 2001, 80, 1496–1505. [Google Scholar] [CrossRef]
- Huang, S.; Baurhoo, B.; Mustafa, A. Effects of feeding extruded flaxseed on layer performance, total tract nutrient digestibility, and fatty acid concentrations of egg yolk, plasma and liver. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1365–1374. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Wan, B.; Wang, Q.; Wan, X. Green tea polyphenols alter lipid metabolism in the livers of broiler chickens through increased phosphorylation of AMP-activated protein kinase. PLoS ONE 2017, 12, e0187061. [Google Scholar] [CrossRef]
- Ren, Y.; Perez, T.I.; Zuidhof, M.J.; Renema, R.A.; Wu, J. Oxidative stability of omega-3 polyunsaturated fatty acids enriched eggs. J. Agric. Food Chem. 2013, 61, 11595–11602. [Google Scholar] [CrossRef] [PubMed]
- Cortinas, L.; Galobart, L.; Barroeta, A.C.; Baucells, M.D.; Grashorn, M.A. Change in alpha-tocopherol contents, lipid oxidation and fatty acid profile in eggs enriched with linolenic acid or very long-chain omega3 polyunsaturated fatty acids after different processing methods. J. Sci. Food Agric. 2003, 83, 820. [Google Scholar] [CrossRef]
- Douny, C.; El Khoury, R.; Delmelle, J.; Brose, F.; Degand, G.; Moula, N.; Farnir, F.; Clinquart, A.; Maghuin-Rogister, G.; Scippo, M. Effect of storage and cooking on the fatty acid profile of omega-3 enriched eggs and pork meat marketed in Belgium. Food Sci. Nutr. 2015, 3, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Grela, E.R.; Knaga, S.; Winiarska-Mieczan, A.; Zięba, G. Effects of dietary alfalfa protein concentrate supplementation on performance, egg quality, and fatty acid composition of raw, freeze-dried, and hard-boiled eggs from Polbar laying hens. Poult. Sci. 2020, 99, 2256–2265. [Google Scholar] [CrossRef] [PubMed]
- Vakili, R.; Toroghian, M.; Torshizi, M.E. Saffron extract feed improves the antioxidant status of laying hens and the inhibitory effect on cancer cells (PC3 and MCF7) Growth. Vet. Med. Sci. 2022, 8, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Van Elswyk, M.E.; Sams, A.R.; Hargis, P.S. Composition, Functionality, and Sensory Evaluation of Eggs from Hens Fed Dietary Menhaden Oil. J. Food Sci. 1992, 57, 342–344. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5995. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Mattioli, S.; Ruggeri, S.; Sebastiani, B.; Brecchia, G.; Bosco, A.D.; Mancinelli, A.C.; Castellini, C. Performance and egg quality of laying hens fed flaxseed: Highlights on n-3 fatty acids, cholesterol, lignans and isoflavones. Animal 2017, 11, 705–712. [Google Scholar] [CrossRef]
- Hamelin, C.; Hubert, N.; Mireaux, M.; Panheleux-Lebastard, M. Influence of flaxseed and antioxidants association on egg quality. In Proceedings of the 13èmes Journées de la Recherche Avicole et Palmipèdes à Foie Gras, Tours, France, 20–21 March 2019; Institut Technique de l’Aviculture (ITAVI): France, Paris, 2019; pp. 825–829. [Google Scholar]
- Aymond, W.M.; Van Elswyk, M.E. Yolk thiobarbituric acid reactive substances and n-3 fatty acids in response to whole and ground flaxseed. Poult. Sci. 1995, 74, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Grune, T.; Krämer, K.; Hoppe, P.P.; Siems, W. Enrichment of eggs with n−3 polyunsaturated fatty acids: Effects of vitamin E supplementation. Lipids 2001, 36, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Galobart, J.; Barroeta, A.C.; Baucells, M.D.; Codony, R.; Ternes, W. Effect of dietary supplementation with rosemary extract and α-tocopheryl acetate on lipid oxidation in eggs enriched with ω3-fatty acids. Poult. Sci. 2001, 80, 460–467. [Google Scholar] [CrossRef] [PubMed]
Fatty Acids (mg/g) | 1 Treatments | Random Effect | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FS | VE8 | DA8 | TS8 | CD8 | ||||||||
Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | |||
C14:0 | 0.80 | [0.72, 0.86] | 0.78 | [0.70, 0.85] | 0.82 | [0.74, 0.89] | 0.77 | [0.69, 0.84] | 0.80 | [0.73, 0.87] | non 0 | 0.8556 |
C16:0 | 63.90 | [61.1, 66.7] | 65.20 | [62.4, 68.0] | 66.30 | [63.6, 69.1] | 64.00 | [61.3, 66.8] | 65.50 | [62.7, 68.3] | non 0 | 0.6833 |
C18:0 | 22.70 | [21.6, 23.9] | 21.50 | [20.3, 22.6] | 22.20 | [21.0, 23.3] | 23.10 | [21.9, 24.2] | 22.70 | [21.5, 23.9] | 0 | 0.3320 |
C14:1cis-9 | 0.15 | [0.12, 0.18] | 0.14 | [0.11, 0.17] | 0.17 | [0.14, 0.20] | 0.14 | [0.11, 0.17] | 0.16 | [0.13, 0.19] | non 0 | 0.4706 |
C16:1cis-9 | 6.97 | [6.17, 7.78] | 6.68 | [5.87, 7.49] | 7.57 | [6.76, 8.38] | 6.58 | [5.77, 7.39] | 7.31 | [6.50, 8.12] | non 0 | 0.3638 |
C18:2n-6 | 33.70 | [30.9, 36.5] | 37.20 | [34.4, 40.1] | 35.60 | [32.8, 38.4] | 38.8 | [36.0, 41.6] | 36.20 | [33.4, 39.1] | non 0 | 0.1383 |
C18:3n-3 | 6.60 | [5.39, 7.80] | 6.56 | [5.36, 7.77] | 7.63 | [6.43, 8.83] | 8.51 | [7.31, 9.72] | 8.08 | [6.88, 9.28] | non 0 | 0.0981 |
C20:4n-6 | 3.79 | [3.52, 4.07] | 4.09 | [3.81, 4.37] | 3.65 | [3.37, 3.93] | 4.09 | [3.81, 4.37] | 4.00 | [3.73, 4.28] | non 0 | 0.1045 |
C20:5n-3 | 0.16 a | [0.14, 0.18] | 0.16 a | [0.13, 0.17] | 0.20 b | [0.17, 0.22] | 0.21 b | [0.18, 0.23] | 0.21 b | [0.19, 0.23] | 0 | 0.0003 |
C22:5n-3 | 0.81 a | [0.60, 1.02] | 0.95 a | [0.75, 1.16] | 1.29 b | [1.08, 1.50] | 1.07 ab | [0.86, 1.27] | 1.08 ab | [0.87, 1.29] | non 0 | 0.0338 |
C22:6n-3 | 5.96 a | [5.51, 6.42] | 6.31 ab | [5.86, 6.77] | 6.50 ab | [6.04, 6.95] | 7.39 c | [6.93, 7.84] | 6.93 bc | [6.47, 7.38] | non 0 | 0.0011 |
2 ∑SFA | 88.20 | [84.9, 91.6] | 88.40 | [85.1, 91.7] | 90.20 | [86.9, 93.5] | 88.80 | [85.5, 92.1] | 89.90 | [86.5, 93.2] | non 0 | 0.8785 |
3 ∑MUFA | 117 | [113, 122] | 116 | [112, 120] | 118 | [114, 122] | 117 | [113, 121] | 119 | [115, 123] | 0 | 0.9255 |
4 ∑ PUFA | 53.10 a | [49.2, 56.9] | 57.50 ab | [53.6, 61.3] | 57.00 ab | [53.1, 60.8] | 62.10 b | [58.3, 66.0] | 58.50 b | [54.7, 62.4] | non 0 | 0.0366 |
∑ n-3 PUFAs | 13.70 a | [12.1, 15.3] | 14.20 a | [12.6, 15.8] | 15.80 ab | [14.2, 17.4] | 17.40 b | [15.8, 19.0] | 16.50 b | [14.9, 18.1] | non 0 | 0.0122 |
∑ n-6 PUFAs | 39.10 | [36.3, 41.9] | 43.10 | [40.3, 45.9] | 40.90 | [38.0, 43.7] | 44.50 | [41.6, 47.3] | 41.80 | [38.9, 44.6] | non 0 | 0.0935 |
Fat (%) | 25.90 | [25.2, 26.5] | 26.20 | [25.5, 26.9] | 26.50 | [25.8, 27.2] | 26.80 | [26.1, 27.5] | 26.70 | [26.0, 27.4] | non 0 | 0.2900 |
Fatty Acids (mg/g) | 1 Treatments | Random Effect | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FS | VE8 | DA8 | TS8 | CD8 | ||||||||
Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | |||
C14:0 | 0.79 | [0.71, 0.85] | 0.81 | [0.74, 0.87] | 0.79 | [0.72, 0.85] | 0.83 | [0.76, 0.89] | 0.81 | [0.74 0.87] | non 0 | 0.8464 |
C16:0 | 63.90 | [61.1, 66.7] | 65.60 | [62.9, 68.4] | 63.70 | [61.0, 66.5] | 66.40 | [63.7, 69.2] | 65.60 | [62.8, 68.3] | non 0 | 0.5566 |
C18:0 | 21.70 | [20.6, 22.8] | 22.60 | [21.5, 23.7] | 22.10 | [21.0, 23.2] | 22.30 | [21.2, 23.4] | 23.60 | [22.5, 24.7] | non 0 | 0.16807 |
C14:1cis-9 | 0.16 | [0.13, 0.18] | 0.16 | [0.12, 0.18] | 0.16 | [0.12, 0.18] | 0.17 | [0.13, 0.19] | 0.16 | [0.12, 0.18] | non 0 | 0.981 |
C16:1cis-9 | 7.07 | [6.27, 7.87] | 6.99 | [6 19, 7.80] | 6.91 | [6.11, 7.71] | 7.43 | [6.63, 8.24] | 7.00 | [6.19, 7.80] | non 0 | 0.8927 |
C18:2n-6 | 34.60 | [31.2, 38.0] | 35.50 | [32.1, 38.9] | 36.40 | [33.0, 39.8] | 38.90 | [35.5, 42.3] | 36.00 | [32.6, 39.4] | non 0 | 0.4476 |
C18:3n-3 | 6.42 a | [5.44,7.39] | 7.22 ab | [6.25, 8.19] | 8.16 b | [7.19, 9.12] | 8.48 b | [7.51, 9.45] | 7.99 b | [7.02, 8.96] | non 0 | 0.03423 |
C20:4n-6 | 4.01 | [3.73, 4.29] | 3.97 | [3.69, 4.25] | 3.65 | [3.37, 3.93] | 4.15 | [3.87, 4.43] | 3.82 | [3.54, 4.10] | non 0 | 0.1302 |
C20:5n-3 | 0.17 a | [0.13, 0.19] | 0.17 a | [0.14, 0.20] | 0.19 ab | [0.16, 0.22] | 0.23 b | [0.20, 0.26] | 0.18 ab | [0.15, 0.21] | non 0 | 0.0165 |
C22:5n-3 | 0.83 a | [0.63, 1.02] | 1.26 b | [1.07, 1.45] | 1.05 ab | [0.86, 1.24] | 1.44 c | [1.25, 1.63] | 1.05 ab | [0.86, 1.24] | non 0 | 0.00095 |
C22:6n-3 | 6.06 a | [5.70, 6.42] | 6.74 b | [6.38, 7.11] | 6.56 ab | [6.20, 6.93] | 7.45 c | [7.09,7.81] | 6.67 bc | [6.31, 7.04] | non 0 | 0.00023 |
2 ∑SFA | 87.10 | [83.9, 90.4] | 89.90 | [86.6, 93.1] | 87.40 | [84.2, 90.6] | 90.50 | [87.3, 93.7] | 90.80 | [87.6, 94.0] | non 0 | 0.32185 |
3 ∑MUFA | 116 | [112, 121] | 120 | [115, 124] | 117 | [113, 122] | 118 | [113, 122] | 120 | [115, 124] | non 0 | 0.71882 |
4 ∑ PUFA | 54.10 | [49.8, 58.4] | 57.00 | [52.7, 61.2] | 58.00 | [53.7, 62.3] | 62.90 | [58.6, 67.2] | 57.70 | [53.2, 62.0] | non 0 | 0.08507 |
∑ n-3 PUFAs | 13.6 a | [12.40, 14.90] | 15.6 b | [14.40, 16.80] | 16.20 bc | [15.00, 7.40] | 17.90 c | [16.60, 19.10] | 16.10 bc | [14.90, 17.30] | non 0 | 0.00099 |
∑ n-6 PUFA | 40.20 | [36.70, 43.70] | 41.20 | [37.70, 44.70] | 41.60 | [38.10, 45.10] | 44.80 | [41.30, 48.30] | 41.30 | [37.80, 44.80] | non 0 | 0.3988 |
Fat (%) | 25.70 | [24.9, 26.6] | 26.60 | [25.8, 27.5] | 26.30 | [25.4, 27.1] | 27.10 | [26.3, 27.9] | 26.80 | [26.0, 27.7] | non 0 | 0.18607 |
2 Indices | Sample Type | 1 Treatments | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FS | VE8 | DA8 | TS8 | CD8 | p-Value | |||||||
Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | Mean | 95% [LCL, UCL] | |||
n-6/n-3 ratio | raw | 3.07 | [2.55, 3.59] | 3.33 | [2.81, 3.85] | 2.61 | [2.09, 3.13] | 2.54 | [2.02, 3.06] | 2.52 | [2.00, 3.04] | 0.1029 |
cooked | 4.01 | [3.77, 4.25] | 3.69 | [3.45, 3.93] | 3.59 | [3.35, 3.83] | 3.55 | [3.31, 3.79] | 3.59 | [3.35, 3.83] | 0.05681 | |
AI | raw | 0.53 | [0.50, 0.54] | 0.52 | [0.49, 0.53] | 0.52 | [0.50, 0.54] | 0.50 | [0.48, 0.52] | 0.52 | [0.49, 0.53] | 0.3956 |
cooked | 0.52 | [0.50, 0.53] | 0.52 | [0.50, 0.52] | 0.51 | [0.49, 0.52] | 0.51 | [0.49, 0.52] | 0.52 | [0.50, 0.53] | 0.4562 | |
TI | raw | 0.75 | [0.71, 0.79] | 0.74 | [0.69, 0.77] | 0.72 | [0.68, 0.76] | 0.68 | [0.63, 0.71] | 0.70 | [0.66, 0.74] | 0.1104 |
cooked | 0.72 a | [0.69, 0.75] | 0.70 ab | [0.67, 0.73] | 0.68 bc | [0.64, 0.70] | 0.66 bc | [0.63, 0.69] | 0.70 abc | [0.66, 0.72] | 0.02659 | |
h/H ratio | raw | 2.42 | [2.31, 2.53] | 2.43 | [2.32, 2.54] | 2.38 | [2.27, 2.49] | 2.56 | [2.45, 2.67] | 2.46 | [2.35, 2.57] | 0.2229 |
cooked | 2.41 | [2.33, 2.50] | 2.44 | [2.35, 2.52] | 2.50 | [2.41, 2.59] | 2.46 | [2.37, 2.55] | 2.46 | [2.38, 2.55] | 0.6718 | |
NVI | raw | 0.75 | [0.72, 0.77] | 0.72 | [0.70, 0.74] | 0.73 | [0.70, 0.75] | 0.71 | [0.69, 0.73] | 0.73 | [0.70, 0.74] | 0.2179 |
cooked | 1.97 | [1.89, 2.04] | 1.97 | [1.90, 2.05] | 2.00 | [1.92, 2.07] | 1.91 | [1.84, 1.99] | 2.00 | [1.93, 2.08] | 0.417 | |
HFA | raw | 64.7 | [61.9, 67.5] | 66.0 | [63.2, 68.8] | 67.2 | [64.3, 70.0] | 64.8 | [62.0, 67.6] | 66.3 | [63.5, 69.2] | 0.6883 |
cooked | 64.7 | [61.9, 67.5] | 66.4 | [63.7, 69.3] | 64.5 | [61.7, 67.3] | 67.3 | [64.4, 70.1] | 66.4 | [63.6, 69.2] | 0.5578 | |
S/P | raw | 0.51 | [0.49, 0.53] | 0.50 | [0.48, 0.52] | 0.51 | [0.49, 0.52] | 0.49 | [0.47, 0.50] | 0.50 | [0.48, 0.52] | 0.4107 |
cooked | 0.51 | [0.49, 0.52] | 0.50 | [0.49, 0.51] | 0.49 | [0.48, 0.50] | 0.49 | [0.48, 0.50] | 0.51 | [0.49, 0.51] | 0.4324 | |
MDA (µg/g) | raw | 4.44 a | [3.16, 5.72] | 4.20 a | [2.89, 5.51] | 3.11 ab | [1.80, 4.42] | 1.46 b | [0.16, 2.75] | 3.87 ab | [2.57, 5.16] | 0.01476 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadesse, D.; Retta, N.; Girma, M.; Ndiwa, N.; Dessie, T.; Hanotte, O.; Getachew, P.; Dannenberger, D.; Maak, S. Yolk Fatty Acid Content, Lipid Health Indices, and Oxidative Stability in Eggs of Slow-Growing Sasso Chickens Fed on Flaxseed Supplemented with Plant Polyphenol Extracts. Foods 2023, 12, 1819. https://doi.org/10.3390/foods12091819
Tadesse D, Retta N, Girma M, Ndiwa N, Dessie T, Hanotte O, Getachew P, Dannenberger D, Maak S. Yolk Fatty Acid Content, Lipid Health Indices, and Oxidative Stability in Eggs of Slow-Growing Sasso Chickens Fed on Flaxseed Supplemented with Plant Polyphenol Extracts. Foods. 2023; 12(9):1819. https://doi.org/10.3390/foods12091819
Chicago/Turabian StyleTadesse, Desalew, Negussie Retta, Mekonnen Girma, Nicholas Ndiwa, Tadelle Dessie, Olivier Hanotte, Paulos Getachew, Dirk Dannenberger, and Steffen Maak. 2023. "Yolk Fatty Acid Content, Lipid Health Indices, and Oxidative Stability in Eggs of Slow-Growing Sasso Chickens Fed on Flaxseed Supplemented with Plant Polyphenol Extracts" Foods 12, no. 9: 1819. https://doi.org/10.3390/foods12091819