Effects of Different Bacteriostats on the Dynamic Germination of Clostridium perfringens Spores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instrumentation and Equipment
2.3. Preparation of C. perfringens Suspension and Spores
2.4. Treatment of Spore Suspension with Different Bacteriostats
2.5. Determination of Antibacterial Activity
2.6. Determination of Spore Survival Rate
2.7. Determination of Spore Turbidity
2.8. Determination of 2,6-Pyridinedicarboxylic Acid Release from Spores
2.9. Determination of Leakage of UV-Absorbing Substances from Spores
2.10. Determination of Refractive Power
2.11. Statistical Analysis
3. Results
3.1. Bacteriostatic Activity of Different Bacteriostats
3.2. Effects of Different Bacteriostats on Spore Inactivation
3.3. Effects of Different Bacteriostats on Spore Germination
3.3.1. Effects of Different Bacteriostats on the Turbidity of Spores
3.3.2. Effects of Different Bacteriostats on DPA Release Rate from Spores
3.4. Effects of Different Bacteriostats on Spore Structure during Germination
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, D.; Chen, F.; H, X.S. Advance in spore germination. J. China Food 2018, 18, 221–228. [Google Scholar]
- Ren, H.R.; Li, M.Y.; Zhu, Y.D.; Zhao, G.M.; Zhao, L.J.; Wu, H.L.; Xiao, K.; Cui, W.M. Advances in research on the hazards and control of Clostridium perfringens in food. Food Sci. 2021, 42, 352–359. [Google Scholar]
- Jones, C.; Padula, N.; Setlow, P. Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis. J. Appl. Microbiol. 2005, 99, 1484–1494. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, M.Y.; Zhao, L.J.; Zhu, Y.D.; Zhao, G.M.; Liang, D.; Ma, Y.Y. Research progress on harm and control of spores in vacuum-packed food. Packag. Eng. 2021, 42, 29–35. [Google Scholar]
- Young, S.; Setlow, P. Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone. J. Appl. Microbiol. 2004, 96, 1133–1142. [Google Scholar] [CrossRef]
- Webb, J.E.; Regev, G.J.; Garfin, S.R.; Kim, C.W. Navigation-assisted fluoroscopy in minimally invasive direct lateral interbody fusion: A cadaveric study. SAS J. 2010, 4, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Liu, D.; Zhou, J. Bacterial spore inactivation by non-thermal technologies: Resistance and inactivation mechanisms. Curr. Opin. Food Sci. 2021, 42, 31–36. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, G.; Shen, P.; Shi, Y.; Yang, Y.; Liu, Y.; Xia, X.; Wang, S. Inactivation mechanism of slightly acidic electrolyzed water on Bacillus cereus spores. Food Microbiol. 2022, 103, 103951. [Google Scholar] [CrossRef]
- Mooyottu, S.; Flock, G.; Venkitanarayanan, K. Carvacrol reduces Clostridium difficile sporulation and spore outgrowth in vitro. J. Med. Microbiol. 2017, 66, 1229–1234. [Google Scholar] [CrossRef]
- Redondo-Solano, M.; Valenzuela-Martinez, C.; Cassada, D.A.; Snow, D.D.; Juneja, V.K.; Burson, D.E.; Thippareddi, H. Effect of meat ingredients (sodium nitrite and erythorbate) and processing (vacuum storage and packaging atmosphere) on germination and outgrowth of Clostridium perfringens spores in ham during abusive cooling. Food Microbiol. 2013, 35, 108–115. [Google Scholar] [CrossRef]
- Roberts, T.A.; Ingram, M. The effect of sodium chloride, potassium nitrate and sodium nitrite on the recovery of heated bacterial spores. Int. J. Food Sci. Tech. 2007, 1, 147–163. [Google Scholar] [CrossRef]
- Cho, W.-I.; Chung, M.-S. Sporicidal activities and mechanism of surfactant components against Clostridium sporogenes spores. J. Food Sci. Technol. 2018, 55, 4675–4680. [Google Scholar] [CrossRef]
- Boix, E.; Couvert, O.; André, S.; Coroller, L. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) provides new possibilities for optimizing processes to manage risk of C. sporogenes spoilage. Food Microbiol. 2021, 100, 103832. [Google Scholar] [CrossRef] [PubMed]
- Arnaouteli, S.; Bamford, N.C.; Stanley-Wall, N.R.; Kovács, T. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol. 2021, 19, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Vischer, N.O.E.; de Vos, A.L.; Manders, E.M.M.; Setlow, P.; Brul, S. Organization and dynamics of the SpoVAEa protein and its surrounding inner membrane lipids, upon germination of Bacillus subtilis spores. Sci. Rep. 2022, 12, 4944. [Google Scholar] [CrossRef]
- Szabo, J.G.; Adcock, N.J.; Rice, E.W. Rice, Disinfection of Bacillus spores with acidified nitrite. Chemosphere 2014, 113, 171–174. [Google Scholar] [CrossRef]
- Bi, K.; Liu, Y.; Xin, W.; Yang, J.; Zhang, B.; Zhang, Z. Combined treatment of epsilon-polylysine and heat damages protective structures and spore inner membranes to inactivate Bacillus subtilis spores. Food Microbiol. 2023, 109, 104–137. [Google Scholar] [CrossRef]
- Redondo-Solano, M.; Valenzuela-Martinez, C.; Juneja, V.K.; Burson, D.E.; Thippareddi, H. Control of Clostridium perfringens spore germination and outgrowth by potassium lactate and sodium diacetate in ham containing reduced sodium chloride. LWT 2021, 137, 110395. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, T. Antimicrobial Activities of Tea Polyphenol on Phytopathogens: A Review. Molecules 2019, 24, 816. [Google Scholar] [CrossRef]
- Sun, X.; Kong, X.; Li, C.; Wang, M.; Yi, J.; Deng, Z.; Niu, B.; Chen, Q. Sporicidal mechanism of the combination of ortho-phthalaldehyde and benzyldimethyldodecylammonium chloride as a disinfectant against the Bacillus subtilis spores. Braz. J. Microbiol. 2022, 53, 547–556. [Google Scholar] [CrossRef]
- Leggett, M.; McDonnell, G.; Denyer, S.; Setlow, P.; Maillard, J.-Y. Bacterial spore structures and their protective role in biocide resistance. J. Appl. Microbiol. 2012, 113, 485–498. [Google Scholar] [CrossRef]
- Gauvry, E.; Mathot, A.-G.; Couvert, O.; Leguérinel, I.; Coroller, L. Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. Int. J. Food Microbiol. 2021, 337, 108–115. [Google Scholar] [CrossRef]
- Ojha, S.C.; Phanchana, M.; Harnvoravongchai, P.; Chankhamhaengdecha, S.; Singhakaew, S.; Ounjai, P.; Janvilisri, T. Teicoplanin Suppresses Vegetative Clostridioides difficile and Spore Outgrowth. Antibiotics 2021, 10, 984. [Google Scholar] [CrossRef] [PubMed]
- Doona, C.J.; Feeherry, F.E.; Setlow, B.; Wang, S.; Li, W.; Nichols, F.C.; Talukdar, P.K.; Sarker, M.R.; Li, Y.-Q.; Shen, A.; et al. Effects of High-Pressure Treatment on Spores of Clostridium Species. Appl. Environ. Microbiol. 2016, 82, 5287–5297. [Google Scholar] [CrossRef]
- Rao, L.; Feeherry, F.E.; Ghosh, S.; Liao, X.; Lin, X.; Zhang, P.; Li, Y.; Doona, C.J.; Setlow, P. Effects of lowering water activity by various humectants on germination of spores of Bacillus species with different germinants. Food Microbiol. 2018, 72, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.R.; Li, M.Y.; Zhu, Y.D.; Zhao, G.M.; Zhang, J.Y.; Zhao, L.J.; Zhang, Y.Y.; Wang, W.T. Induction of spore germination of Clostridium perfringens by peptidoglycan of different bacteria. Mod. Food Sci. 2020, 36, 178–184. [Google Scholar]
- Baloh, M.; A Sorg, J. Clostridioides difficile spore germination: Initiation to DPA release. Curr. Opin. Microbiol. 2022, 65, 101–107. [Google Scholar] [CrossRef]
- Setlow, B.; Cowan, A.; Setlow, P. Germination of spores of Bacillus subtilis with dodecylamine. J. Appl. Microbiol. 2003, 95, 637–648. [Google Scholar] [CrossRef]
- Huang, Z.W.; Wu, X.H.; Zhou, Y.; Lan, X.H.; Zhang, B. Study on bacteriostasis of edible composite film of cinnamon essential oil. China Condiment 2022, 47, 22–25. [Google Scholar]
- Sun, J.; Zhang, J.Y.; Hu, X.S.; Zhang, Y.; Du, W.B.; Zhang, Z. Ultra-high pressure causes sublethal damage to spores and further increases the thermal sensitivity of spores. Food Sci. 2017, 42, 313–317. [Google Scholar]
- Rao, L. Efficacy and Mechanisms of High Pressure Carbon Dioxide Combined with Temperature in Killing Bacillus Subtilis Spores; China Agricultural University: Guangzhou, China, 2017. [Google Scholar]
- Li, F.J. Inactivation Efficiency and Mechanism of High Pressure CO2 on Bacillus Subtilis Spores; Hefei University of Technology: Hefei, China, 2013. [Google Scholar]
- Setlow, P.; Wang, S.; Li, Y.-Q. Germination of Spores of the Orders Bacillales and Clostridiales. Annu. Rev. Microbiol. 2017, 71, 459–477. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, P.K.; Udompijitkul, P.; Hossain, A.; Sarker, M.R. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells. Appl. Environ. Microbiol. 2017, 83, e02731-16. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, J.; Wang, H. Inhibitory Activity of Tea Polyphenols on Biofilm Development of Shewanella putrefaciens. J. Food Process. Preserv. 2016, 40, 910–917. [Google Scholar] [CrossRef]
- Rao, L.; Liao, X.; Setlow, P. Bacillus spore wet heat resistance and evidence for the role of an expanded osmoregulatory spore cortex. Lett. Appl. Microbiol. 2016, 63, 247–253. [Google Scholar] [CrossRef]
- Rao, L.; Zhou, B.; Serruya, R.; Moussaieff, A.; Sinai, L.; Ben-Yehuda, S. Glutamate catabolism during sporulation determines the success of the future spore germination. iScience 2022, 25, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Setlow, P.; Christie, G. Bacterial Spore mRNA—What’s Up With That? Front. Microbiol. 2020, 11, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Yasugi, M.; Motooka, D.; Nakamura, S.; Miyake, M. Phosphorothioation of foreign DNA influences the transformation efficiency in Clostridium perfringens NCTC 8239. Anaerobe 2020, 61, 102–185. [Google Scholar] [CrossRef]
- Roberts, T.A.J.L. Smart Inhib. Spores Clostridium spp. by Sodium Nitrite. J. Appl. Bacteriol. 1974, 37, 261–264. [Google Scholar] [CrossRef]
- Janganan, T.K.; Mullin, N.; Dafis-Sagarmendi, A.; Brunt, J.; Tzokov, S.B.; Stringer, S.; Moir, A.; Chaudhuri, R.R.; Fagan, R.; Hobbs, J.K.; et al. Architecture and Self-Assembly of Clostridium sporogenes and Clostridium botulinum Spore Surfaces Illustrate a General Protective Strategy across Spore Formers. mSphere 2020, 5, e00424-20. [Google Scholar] [CrossRef]
Sort | Name of Inhibition Agent | Diameter of Inhibition Circle/mm |
---|---|---|
Food additives | Control | 8.00 ± 0.11 a |
Tea Polyphenols | 9.20 ± 0.18 ab | |
Nisin | 13.67 ± 0.21 b | |
Nitrite | 32.53 ± 0.98 e | |
Potassium sorbate | 17.60 ± 0.31 bc | |
D-isoascorbic acid | 24.67 ± 0.83 cd | |
Sodium diacetate | 20.20 ± 0.97 c | |
ԑ-Polylysine hydrochloride | 16.40 ± 0.37 b | |
Whey protein baking powder | 8.00 ± 0.13 a | |
Ethylenediaminetetraacetate | 35.33 ± 0.79 d | |
Cleaning agent | Hydrogen peroxide Ag+ | 25.57 ± 0.53 d |
Sodium dichloroisocyanurate + trichloroisocyanuric acid | 30.00 ± 0.79 e | |
4-Chloro-3,5-dimethylphenol | 22.57 ± 0.51 cd | |
Glutaraldehyde | 37.77 ± 0.84 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Liu, S.; Li, M.; Zhu, Y.; Zhao, L.; Sun, L.; Ma, Y.; Zhao, G. Effects of Different Bacteriostats on the Dynamic Germination of Clostridium perfringens Spores. Foods 2023, 12, 1834. https://doi.org/10.3390/foods12091834
Liang D, Liu S, Li M, Zhu Y, Zhao L, Sun L, Ma Y, Zhao G. Effects of Different Bacteriostats on the Dynamic Germination of Clostridium perfringens Spores. Foods. 2023; 12(9):1834. https://doi.org/10.3390/foods12091834
Chicago/Turabian StyleLiang, Dong, Shengnan Liu, Miaoyun Li, Yaodi Zhu, Lijun Zhao, Lingxia Sun, Yangyang Ma, and Gaiming Zhao. 2023. "Effects of Different Bacteriostats on the Dynamic Germination of Clostridium perfringens Spores" Foods 12, no. 9: 1834. https://doi.org/10.3390/foods12091834
APA StyleLiang, D., Liu, S., Li, M., Zhu, Y., Zhao, L., Sun, L., Ma, Y., & Zhao, G. (2023). Effects of Different Bacteriostats on the Dynamic Germination of Clostridium perfringens Spores. Foods, 12(9), 1834. https://doi.org/10.3390/foods12091834